首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
The progressive inhibition of plasmin by pancreatic trypsin inhibitor and by alpha 2-plasmin inhibitor in the presence of D-valyl-L-leucyl-L-lysine 4-nitroanilide was investigated. The kinetics with plasmin were compared with those with miniplasmin. The kinetic properties of two functionally different forms of alpha 2-plasmin inhibitor described by Clemmensen [(1979) in The Physiological Inhibitors of Coagulation and Fibrinolysis (Collen. D., Wiman, B & Verstraete, M., eds.), pp 131-136, Elsevier, Amsterdam] were characterized. The two forms differ in their plasminogen-binding capability, and this difference can account for a difference in secondary site interaction suggested from the kinetics. The binding of inhibitor to miniplasmin is a simple pseudo-first-order reaction with both pancreatic trypsin inhibitor and the two alpha 2-plasmin inhibitor forms. Such simple kinetics are also observed for the reaction between plasmin and the non-plasminogen-binding form of alpha 2-plasmin inhibitor. More complicated kinetics are obtained for the reaction between plasmin and the alpha 2-plasmin inhibitor form that binds to plasminogen. With both forms of the alpha 2-plasmin inhibitor, a complex stable to acetic acid/urea and gel electrophoresis is present and fully developed 15 s after initiation of the reaction with plasmin.  相似文献   

2.
An elastase-dependent pathway of plasminogen activation   总被引:1,自引:0,他引:1  
R Machovich  W G Owen 《Biochemistry》1989,28(10):4517-4522
In reaction mixtures containing Glu-plasminogen, alpha 2-antiplasmin, and tissue plasminogen activator or urokinase, either pancreatic or leukocyte elastase enhances the rate of plasminogen activation by 2 or more orders of magnitude. This effect is the consequence of several reactions. (a) In concentrations on the order of 100 nM, elastase degrades plasminogen within 10 min to yield des-kringle1-4-plasminogen (mini-plasminogen), which is 10-fold more efficient than Glu-plasminogen as a substrate for plasminogen activators. Des-kringle1-4-plasminogen is insensitive to cofactor activities of fibrin(ogen) fragments or an endothelial cell cofactor. (b) Des-kringle1-4-plasmin is one-tenth as sensitive as plasmin to inhibition by alpha 2-antiplasmin: k" = 10(6) M-1 s-1 versus 10(7) M-1 s-1. (c) alpha 2-Antiplasmin is disabled efficiently by elastase, with a k" of 20,000 M-1 s-1. The elastase-dependent reactions are not influenced by 6-aminohexanoate. In diluted (10-fold) blood plasma, the capacity of endogenous inhibitors to block plasmin expression is suppressed by 30 microM elastase. It is proposed that elastases provide an alternative pathway for Glu-plasminogen activation and a mechanism for controlling initiation of fibrinolysis by urokinase-type plasminogen activators.  相似文献   

3.
Plasminogen and plasminogen derivatives which contain lysine-binding sites were found to decrease the reaction rate between plasmin and alpha2-antiplasmin by competing with plasmin for the complementary site(s) in alpha2-antiplasmin. The dissocwation constant Kd for the interaction between intact plasminogen (Glu-plasminogen) and alpha2-antiplasmin is 4.0 microM but those for Lys-plasminogen or TLCK-plasmin are about 10-fold lower indicating a stronger interaction. The lysine-binding site(s) which is situated in triple-loops 1--3 in the plasmin A-chain is mainly responsible for the interaction with alpha2-antiplasmin. The interaction between Glu-plasminogen and alpha2-antiplasmin furthermore enhances the activation of Glu-plasminogen by urokinase to a comparable extent as 6-aminohexanoic acid, suggesting that similar conformational changes occur in the proenzyme after complex formation. Fibrinogen, fibrinogen digested with plasmin, purified fragment E and purified fragment D interfere with the reaction between plasmin and alpha2-antiplasmin by competing with alpha2-antiplasmin for the lysine-binding site(s) in the plasmin A-chain. The Kd obtained for these interactions varied between 0.2 microM and 1.4 microM; fragment E being the most effective. Thus the fibrinogen molecule contains several complementary sites to the lysine-binding sites located both in its NH2-terminal and COOH-terminal regions; these sites are to a large extent.  相似文献   

4.
The molecular interactions between the plasminogen-staphylokinase complex, alpha 2-antiplasmin and fibrin were studied by measuring the effect of CNBr-digested fibrinogen on the inhibition rate of the plasminogen-staphylokinase complex by alpha 2-antiplasmin. The second-order rate constant for the inhibition of plasminogen-staphylokinase by alpha 2-antiplasmin was 2.7 +/- 0.3.10(6) M-1 s-1 (mean +/- S.D.; n = 7). Addition of CNBr-digested fibrinogen, but not of fibrinogen, resulted in a concentration-dependent reduction of the apparent inhibition rate constant, with a 50 percent reduction at a concentration of 5 nM CNBr-digested fibrinogen. The second-order rate constant for the inhibition of the low-Mr plasminogen-staphylokinase complex (plasminogen lacking the kringle structures comprising the lysine-binding sites) by alpha 2-antiplasmin was about 30-fold lower (9.3 +/- 0.7.10(4) M-1 s-1, mean +/- S.D.; n = 4) than that of plasminogen-staphylokinase and was not affected by addition of CNBr-digested fibrinogen. Inhibition of the plasminogen-staphylokinase complex by the chloromethylketone D-Val-Phe-Lys-Ch2Cl is 9-fold less efficient than that of plasmin (k2/Ki of 700 M-1 s-1 versus 6300 M-1 s-1). Our results confirm and establish that rapid inhibition of plasminogen-staphylokinase by alpha 2-antiplasmin requires the availability of the lysine-binding sites in the plasminogen moiety of the complex. Fibrin, but not fibrinogen, reduces the inhibition rate by alpha 2-antiplasmin by competition for interaction with the lysine-binding site. Protection of the plasminogen-staphylokinase complex bound to fibrin from rapid inhibition by alpha 2-antiplasmin thus appears to contribute to the fibrin-specificity of clot lysis with staphylokinase in a plasma milieu, by allowing preferential plasminogen activation at the fibrin surface, while the free complex is rapidly inhibited in plasma.  相似文献   

5.
Streptokinase reacts very rapidly with human plasmin (rate constant 5.4 S 10(7) M-1 s-1) forming a 1:1 stoichiometric complex which has a dissociation constant of 5 X 10(-11) M. This plasmin-streptokinase complex is 10(5) times less reactive towards alpha 2-antiplasmin than plasmin, the inhibition rate constant being 1.4 X 10(2) M-1 s-1. The loss of reactivity of the streptokinase-plasmin complex towards alpha 2-antiplasmin is independent of the lysine binding sites in plasmin since low-Mr plasmin, which lacks these sites, and plasmin in which the sites have been blocked by 6-aminohexanoic acid, are both equally unreactive towards alpha 2-antiplasmin on reaction with streptokinase. The plasmin-streptokinase complex binds to Sepharose-lysine and Sepharose-fibrin monomer in the same fashion as free plasmin, showing that the lysine binding sites are fully exposed in the complex. Bovine plasmin is rapidly inhibited by human alpha 2-antiplasmin (k1 = 1.6 X 10(6) M-1 s-1) and similarly loses reactivity towards the inhibitor on complex formation with streptokinase (50% binding at 0.4 microM streptokinase).  相似文献   

6.
7.
The mechanism of activation of human Glu-plasminogen by fibrin-bound tissue-type plasminogen activator (t-PA) in a plasma environment or in a reconstituted system was characterized. A heterogeneous system was used, allowing the setting of experimental conditions as close as possible to the physiological fibrin/plasma interphase, and permitting the separate analysis of the products present in each of the phases as a function of time. The generation of plasmin was monitored both by spectrophotometric analysis and by radioisotopic analysis with a plasmin-selective chromogenic substrate and radiolabelled Glu-plasminogen respectively. Plasmin(ogen)-derived products were identified by SDS/PAGE followed by autoradiography and/or immunoblotting. When the activation was performed in a plasma environment, the products identified on the fibrin surface were Glu-plasmin (90%) and Glu-plasminogen (10%), whereas in the soluble phase only complexes between Glu-plasmin and its fast-acting inhibitor were detected. Identical results were obtained with a reconstituted system comprising solid-phase fibrin, t-PA, Glu-plasminogen and and alpha 2-antiplasmin. In contrast, when alpha 2-antiplasmin was omitted from the solution, Lys-plasmin was progressively generated on to the fibrin surface (30%) and released to the soluble phase. In the presence of alpha 2-antiplasmin or in plasma, the amount of active plasmin generated on the fibrin surface was lower than in the absence of the inhibitor: in a representative experiment the initial velocity of plasmin generation was 2.8 x 10(-3), 2.0 x 10(-3) and 1.8 x 10(-3) (delta A405/min) for 200 nM-plasminogen, 200 nM-plasminogen plus 100 nM-alpha 2-antiplasmin and native plasma respectively. Our results indicate that in plasma or in a reconstituted purified system containing plasminogen and alpha 2-antiplasmin at a ratio similar to that found in plasma (1) the activation pathway of native Glu-plasminogen proceeds directly to the formation of Glu-plasmin, (2) Lys-plasminogen is not an intermediate of the reaction and therefore (3) Lys-plasmin is not the final active product. However, in the absence of the inhibitor, Lys-plasmin and probably Lys-plasminogen, which is more readily activated to plasmin than is Glu-plasminogen, are generated as well.  相似文献   

8.
Ternary complex formation of tissue plasminogen activator (TPA) and plasminogen (Plg) with thrombospondin (TSP) or histidine-rich glycoprotein (HRGP) has been demonstrated using an enzyme-linked immunosorbent assay, an affinity bead assay, and a rocket immunoelectrophoresis assay. The formation of these complexes was specific, concentration dependent, saturable, lysine binding site-dependent, and inhibitable by fluid phase plasminogen. Apparent Kd values were approximately 12-36 nM for the interaction of TPA with TSP-Plg complexes and 15-31 nM with HRGP-Plg complexes. At saturation the relative molar stoichiometry of Plg:TPA was 3:1 within the TSP-containing complexes and 1:1 within HRGP-containing complexes. The activation of Plg to plasmin by TPA on TSP- and HRGP-coated surfaces was studied using a synthetic fluorometric plasmin substrate (D-Val-Leu-Lys-7-amino-4-trifluoromethyl coumarin). Kinetic analysis demonstrated a marked increase in the affinity of TPA for plasminogen in the presence of surface-associated TSP or HRGP. Compared to fluid phase activation or activation on fibronectin- or Factor VIII-related antigen-coated surfaces there was a 35-fold increase in efficiency of plasmin generation. A substantial amount (up to 71%) of the plasmin formed remained surface-associated and was found to be protected from inhibition by alpha 2-plasmin inhibitor. Greater than 200-fold increase in inhibitor concentration was required to effect 50% inhibition. Complex formation of locally released tissue plasminogen activator with Plg immobilized on TSP or HRGP surfaces may thus play an important role in effecting proteolytic events in nonfibrin-containing microenvironments.  相似文献   

9.
Interaction of streptokinase and alpha-2-antiplasmin with plasmin and plasminogen fragments was compared. Binding sites on the enzyme become half-saturated, streptokinase and alpha-2-antiplasmin concentration being 8.5 and 30 nM, respectively. 6-Aminohexanoic acid in concentration of 20 mM reduces the adsorption of streptokinase and and alpha-2-antiplasmin by 20 and 60%, respectively. From all the investigated fragments, streptokinase shows the greatest affinity for mini-plasminogen and alpha-2-antiplasmin for kringles 1-3. Both proteins in the presence of 20 mM 6-aminohexanoic acid do not bind with kringle domains. Arginine dose 0.1 M does not influence streptokinase adsorption on mini-plasminogen and decreases the value of alpha-2-antiplasmin binding with mini-plasminogen by 50%. The data obtained indicate that plasminogen molecule has the sites of the highest affinity for streptokinase on the serine-proteinase domain, however for alpha-2-antiplasmin it is in the kringles 1-3. Streptokinase with equimolar quantity in respect of alpha-2-antiplasmin inhibits the adsorption of alpha-2-antiplasmin on the plasmin by 70% and in the presence of 6-aminohexanoic acid it is inhibited completely. Addition of streptokinase also increases the influence of increasing concentration of the acid. Inhibiting influence of streptokinase decreases, and that of 6-aminohexanoic acid increases, when plasmin is modified with diisopropylfluorophosphate in its active centre. At the same time maximum inhibition of streptokinase adsorption on the plasmin at different concentrations of alpha-2-antiplasmin and 6-aminohexanoic acid accounts for only 20%. We suppose that in the process of complex formation streptokinase competes with alpha-2-antiplasmin for the binding sites on the catalytic domain of the plasmin. Partial or complete blocking of the plasmin active centre contact zone by streptokinase effectively protects it from inhibition by alpha-2-antiplasmin.  相似文献   

10.
α(2)-Antiplasmin is the physiological inhibitor of plasmin and is unique in the serpin family due to N- and C-terminal extensions beyond its core domain. The C-terminal extension comprises 55 amino acids from Asn-410 to Lys-464, and the lysine residues (Lys-418, Lys-427, Lys-434, Lys-441, Lys-448, and Lys-464) within this region are important in mediating the initial interaction with kringle domains of plasmin. To understand the role of lysine residues within the C terminus of α(2)-antiplasmin, we systematically and sequentially mutated the C-terminal lysines, studied the effects on the rate of plasmin inhibition, and measured the binding affinity for plasmin via surface plasmon resonance. We determined that the C-terminal lysine (Lys-464) is individually most important in initiating binding to plasmin. Using two independent methods, we also showed that the conserved internal lysine residues play a major role mediating binding of the C terminus of α(2)-antiplasmin to kringle domains of plasmin and in accelerating the rate of interaction between α(2)-antiplasmin and plasmin. When the C terminus of α(2)-antiplasmin was removed, the binding affinity for active site-blocked plasmin remained high, suggesting additional exosite interactions between the serpin core and plasmin.  相似文献   

11.
The purpose of this investigation was to characterize the reaction of alpha 2-antiplasmin (alpha 2AP) and alpha 2-macroglobulin (alpha 2M) with human plasmin bound to rat C6 glioma cells and human umbilical vein endothelial cells (HUVECs). Binding of plasmin (0.1 microM) to C6 cells at 4 degrees C did not cause cell detachment, decrease viability or change cell morphology. The KD and Bmax for the binding of diisopropyl phosphoryl plasmin (DIP-plasmin) to C6 cells were 0.9 microM and 2.6 x 10(6) sites/cell. The dissociation rate constants (koff) for 125I-plasmin were 9.7 x 10(-4) and 4.0 x 10(-4) s-1 at 4 degrees C in the presence and absence of 0.3 microM DIP-plasmin, respectively. Similar constants were determined for 125I-plasminogen and 125I-DIP-plasmin. Neither alpha 2AP nor alpha 2M affected the dissociation of DIP-plasmin. C6 cell-associated 125I-plasmin reacted slowly with alpha 2AP; however, the inhibition rate constants exceeded the koff. alpha 2AP-plasmin complex formed after the plasmin dissociated into solution (reaction pathway 1) and by direct reaction of alpha 2AP with cell-associated enzyme (reaction pathway 2). High concentrations of alpha 2AP favored pathway 2. C6 cell-associated plasmin was also protected from inhibition by alpha 2M. While the same pathways were probably involved in this reaction, alpha 2M was less effective than alpha 2AP as an inhibitor of nondissociated plasmin (pathway 2). When C6 cell-bound plasmin reacted with alpha 2AP, alpha 2AP-plasmin complex was recovered primarily in the medium, suggesting dissociation of complexes formed on the cell surface. Plasmin-receptor dissociation and inhibition experiments were performed at 22 degrees and 37 degrees C, confirming the conclusions of the 4 degrees C studies. Comparable results were also obtained using HUVEC cultures. These studies demonstrate that cell-associated plasmin is protected from inhibition by alpha 2M as well as alpha 2AP. At least two reaction pathways may be demonstrated for the inhibition of plasmin that is initially receptor-bound; however, neither pathway is highly effective, accounting for the "plasmin-protective" activity of the cell surface.  相似文献   

12.
The alpha-2-antiplasmin influence on the Glu-plasminogen activation by tissue activator both on fibrin and fibrin(ogen) fragments was investigated. The kinetics of activation was studied and velocity of this process in the absence and presence of the inhibitor was calculated. It was established that alpha-2-antiplasmin decreased the velocity of Glu-plasminogen activation on desAABBfibrin, DDE-complex and DD-dimer and did no influence upon proenzyme activation on fibrinogen fragment--Ho1-DSK. In the presence of fibrin plasminogen activation linear related to the amount added tissue activator in limit concentration from 5 before 50 units/ml. It was shown that alpha-2-antiplasmin reduced the activation velocity with used concentration of tissue activator. Fibrin hydrolysis by plasmin, forming on its surface during the plasminogen activation by tissue activator, was also inhibited with alpha-2-antiplasmin. The obtained results are explained by the influence of the inhibitor on formation of the triple complex between plasminogen, tissue activator and fibrin, and competition of the alpha-2-antiplasmin for lysine-binding sites of tissue activator kringle 2 or for binding sites of the activator on fibrin.  相似文献   

13.
Kinetics of fibrinolysis by plasmin and plasmin streptokinase complex have been studied using fibrin gels formed from purified fibrin and human blood plasma. The gels were placed into buffer or blood plasma. The contributions of plasminogen and alpha 2-antiplasmin present or absent in both phases to the kinetics of fibrinolysis were quantitatively estimated. In the complex catalyzed fibrinolysis, plasminogen activation reaction dominated whereas in plasmin-catalyzed fibrinolysis, the inhibitor involved reaction, suppressing the process, prevailed.  相似文献   

14.
Fibrinolysis and fibrinogenolysis by Val442-plasmin   总被引:2,自引:0,他引:2  
Elastase cleavage of Lys77-plasmin results in the formation of Val442-plasmin. This result suggests that small, active plasmin fragments can be produced even under conditions of high plasminogen activator levels such as occur in vivo. We examined the effect of the generation of such fragments by studying the degradation of fibrinogen and fibrin by Val442-plasmin. Val442-plasmin lysis of fibrinogen yielded the same products as obtained with Lys77-plasmin, but at a slightly lower rate. Lysine inhibited fibrinogenolysis by both Lys77-plasmin and Val442-plasmin. The marked inhibition observed at concentrations higher than 10 mM lysine occurred to the same extent for both proteases. In addition, the products and rate of fibrinolysis were the same for both proteases. These results indicate that the lysine binding regions present in Lys77-plasmin but absent in Val442-plasmin do not determine the rate, reaction products, or lysine inhibition of fibrinolysis and fibrinogenolysis by plasmin.  相似文献   

15.
Streptokinase-human plasmin complex (Sk-hPm) reacted rapidly with purified mouse alpha 2-macroglobulin (m alpha 2M) in vitro at 37 degrees C. Approx. 98% of the plasmin in Sk-hPm bound covalently to at least one m alpha 2M subunit. Most of the streptokinase dissociated (95%). The rate of Sk-hPm inactivation clearly depended on the m alpha 2M concentration. With 1.2 microM-m alpha 2M, 50% of the Sk-hPm (0.02 microM) reacted in less than 50 s. A double-reciprocal plot comparing pseudo-first-order rate constants (kapp.) and m alpha 2M concentration yielded a second-order rate constant of 2.3 x 10(4) M-1.s-1 (r = 0.97). This value is an approximation, since Sk-hPm preparations are heterogeneous. Sk-hPm reacted with human alpha 2M (h alpha 2M), forming alpha 2M-plasmin complex (98% covalent). More than 99% of the streptokinase dissociated. The rate of reaction of Sk-hPm with h alpha 2M did not clearly depend on inhibitor concentration. The kapp. values determined with 0.6-1.2 microM-h alpha 2M were decreased 10-20-fold compared with m alpha 2M. In order to study the effect of Sk-hPm heterogeneity on the reaction with alpha 2M, the proteinase was incubated for various amounts of time at 37 degrees C before addition of inhibitor. The enzyme amidase activity was maximal within 5 min; however, reaction of Sk-hPm with m alpha 2M or h alpha 2M was most extensive after 20 min and 2 h respectively. After incubation for more than 1 h, Sk-hPm acquired fibrinogenolytic activity, suggesting plasmin dissociation. Therefore the enhanced reaction of h alpha 2M with 'older' Sk-hPm preparations may have resulted in part from dissociated plasmin or 'plasmin-like' species. By contrast, the reaction of Sk-hPm with m alpha 2M was most rapid when the proteinase preparation was free of plasmin, indicating direct reaction of Sk-hPm with m alpha 2M as the only major mechanism. Finally, streptokinase-cat plasminogen complex reacted more extensively with m alpha 2M than with h alpha 2M, suggesting that m alpha 2M may be a superior inhibitor with this class of plasminogen activators in general.  相似文献   

16.
Peptide T-11, a carboxyl terminal tryptic fragment of α2-plasmin inhibitor, inhibits the reversible first step of the reaction between plasmin and α2-plasmin inhibitor. To elucidate which amino-acid residues played a important role in the inhibitory activity of peptide T-11, we prepared the various synthetic derivatives of peptide T-11 and determined the peptide concentration that inhibited the apparent rate constant of the reaction between plasmin and α2-plasmin inhibitor by 50% (IC50). Peptide III, which lacked the residues Gly-1 to Pro-7 of peptide I (peptide T-11), had a strong inhibitory activity, like peptide I (IC50: peptide 1, 7 μM; peptide III, 13 μM). The peptides that lacked the Leu-9 and Lys-10 or Lys-26 of peptide III showed much weaker activity, and the loss of amidation of the C-terminal lysine of peptide III also markedly reduced the inhibitory activity, Peptide III competitivef inhibited the binding of [14C]tranexamic acid to kringle 1 + 2 + 3 (K1–3) and kringle 4 (K4) in a binding assay performed by the gel-diffusion method. The respectively dissociation constants (Kd) of peptide III for K1–3 and K4 were 0.85 μM and 35.2 μM. These data suggest that the amino residue of Lys-10 and the carboxylic acid of Lys-26 in peptide T-11 play crucial roles in the ionic binding of α2-plasmin inhibitor to the tranexamic acid-binding site (lysine-binding site) of plasminogen. Peptide T-11: H-G-D-K-L-F-G-P-D-L-K-L-V-P-P-M-E-E-D-Y-P-Q-F-G-S-P-K-OH.  相似文献   

17.
The interaction of human plasmin with the newly discovered alpha2-plasmin inhibitor was investigated. It was found from rate measurements that the reaction involves the rapid formation of a first enzyme-inhibitor complex, followed by the slow irreversible transition to another complex. L-Lysine influences the first step, but not the second.  相似文献   

18.
The mechanism of action of plasminogen (Pg) activators may affect their therapeutic properties in humans. Streptokinase (SK) is a robust Pg activator in physiologic fluids in the absence of fibrin. Deletion of a "catalytic switch" (SK residues 1-59), alters the conformation of the SK alpha domain and converts SKDelta59 into a fibrin-dependent Pg activator through unknown mechanisms. We show that the SK alpha domain binds avidly to the Pg kringle domains that maintain Glu-Pg in a tightly folded conformation. By virtue of deletion of SK residues 1-59, SKDelta59 loses the ability to unfold Glu-Pg during complex formation and becomes incapable of nonproteolytic active site formation. In this manner, SKDelta59 behaves more like staphylokinase than like SK; it requires plasmin to form a functional activator complex, and in this complex SKDelta59 does not protect plasmin from inhibition by alpha(2)-antiplasmin. At the same time, SKDelta59 is unlike staphylokinase or SK and is more like tissue Pg activator, because it is a poor activator of the tightly folded form of Glu-Pg in physiologic solutions. SKDelta59 can only activate Glu-Pg when it was unfolded by fibrin interactions or by Cl(-)-deficient buffers. Taken together, these studies indicate that an intact alpha domain confers on SK the ability to nonproteolytically activate Glu-Pg, to unfold and process Glu-Pg substrate in physiologic solutions, and to alter the substrate-inhibitor interactions of plasmin in the activator complex. The loss of an intact alpha domain makes SKDelta59 activate Pg through classical "fibrin-dependent mechanisms" (akin to both staphylokinase and tissue Pg activator) that include: 1) a marked preference for a fibrin-bound or unfolded Glu-Pg substrate, 2) a requirement for plasmin in the activator complex, and 3) the creation of an activator complex with plasmin that is readily inhibited by alpha(2)-antiplasmin.  相似文献   

19.
L A Miles  E F Plow 《Biochemistry》1986,25(22):6926-6933
An antibody population that reacted with the high-affinity lysine binding site of human plasminogen was elicited by immunizing rabbits with an elastase degradation product containing kringles 1-3 (EDP I). This antibody was immunopurified by affinity chromatography on plasminogen-Sepharose and elution with 0.2 M 6-aminohexanoic acid. The eluted antibodies bound [125I]EDP I, [125I]Glu-plasminogen, and [125I]Lys-plasminogen in radioimmunoassays, and binding of each ligand was at least 99% inhibited by 0.2 M 6-aminohexanoic acid. The concentrations for 50% inhibition of [125I]EDP I binding by tranexamic acid, 6-aminohexanoic acid, and lysine were 2.6, 46, and 1730 microM, respectively. Similar values were obtained with plasminogen and suggested that an unoccupied high-affinity lysine binding site was required for antibody recognition. The antiserum reacted exclusively with plasminogen derivatives containing the EDP I region (EDP I, Glu-plasminogen, Lys-plasminogen, and the plasmin heavy chain) and did not react with those lacking an EDP I region [miniplasminogen, the plasmin light chain or EDP II (kringle 4)] or with tissue plasminogen activator or prothrombin, which also contain kringles. By immunoblotting analyses, a chymotryptic degradation product of Mr 20,000 was derived from EDP I that retained reactivity with the antibody. The high-affinity lysine binding site was equally available to the antibody probe in Glu- and Lys-plasminogen and also appeared to be unoccupied in the plasmin-alpha 2-antiplasmin complex. alpha 2-Antiplasmin inhibited the binding of radiolabeled EDP I, Glu-plasminogen, or Lys-plasminogen by the antiserum, suggesting that the recognized site is involved in the noncovalent interaction of the inhibitor with plasminogen.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Monoclonal antibodies 10-F-1, directed against the K4 region of plasminogen, and 10-V-1, directed against the K1-3 region of plasminogen, were adducted to colloidal gold. These antibody-gold adducts bound specifically to alpha 2-macroglobulin (alpha 2M)-plasmin. Greater than 90% of the apparent binding was eliminated when alpha 2M-methylamine was substituted for the alpha 2M-plasmin. The plasmin epitope recognized by 10-F-1 was identified at the extreme pole of the alpha 2M-plasmin complex, suggesting that plasmin protrudes from the end of the hollow cylinder formed by alpha 2M. The complexes formed between alpha 2M-plasmin and 10-V-1 were indistinguishable from those formed with 10-F-1. This suggests that exposure of plasmin surface structure in alpha 2M-plasmin, while substantial, may be limited to the single region of the inhibitor. Evidence for ternary complexes containing one alpha 2M and two plasmin molecules was obtained in the form of antibody-gold bound at both poles of alpha 2M-plasmin. The fraction of alpha 2M-plasmin that associated with more than one antibody was small. The data presented here are considered in relation to current models of alpha 2M structure and function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号