首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Degranulation of CTL stimulated by alloantigen-bearing target cells is shown to be inhibited by short term exposure to low concentrations of long chain cis unsaturated free fatty acids (FFA), whereas saturated FFA have no effect. The Ag-specific (TCR mediated) stimulation of cloned murine CTL was monitored by changes in intracellular calcium concentrations [( Ca2+]i) using the fluorescence indicator acetoxymethylester of fura-2 and by degranulation as measured by the release of BLT-esterase. Treatment of the CTL cells with any of the physiologically important FFA; oleic (18:1), linoleic (18:2), linolenic (18:3), or arachidonic (20:4) acid, at concentrations between 1 and 10 microM inhibits the target cell-mediated rise in [Ca2+]i which occurs within seconds of stimulation and the release of BLT-esterase, which occurs over a period of 1 to 3 h. These inhibitory effects are observed within seconds to minutes of FFA addition. Inhibition can be reversed by treating cells with fatty acid free BSA and, in agreement with our previous studies, indicates that the effects of FFA are due to physical perturbations of cellular components. To determine the locus of this perturbation, the effect of FFA on the lipid order of CTL plasma membrane was determined using fluorescence polarization of the membrane impermeable probe trimethylammoniumdiphenylhexatriene. Cis unsaturated FFA were found to disorder the lipid acyl chains and the degree of disorder was found to increase with the degree of cis unsaturation. These results, together with the previous studies, suggest that inhibition results from a physical perturbation of plasma membrane lipid order. Moreover, because degranulation requires elevated levels of [Ca2+]i, it is likely that inhibition of degranulation results from a FFA-induced decrease in Ca2+ permeability through the membrane.  相似文献   

2.
Transmembrane signaling in CTL is found to be extremely sensitive to short term exposure to long chain free fatty acids (FFA). Both alloantigen specific target cells and the lectin Con A were used to stimulate cloned murine CTL. This stimulation was monitored by changes in intracellular calcium concentrations ([Ca2+]i) using the fluorescence indicator fura-2. Treatment of the CTL cells with oleic acid (18:1) at concentrations corresponding to less than 10% (mol/mol) bound to the cell, completely inhibits target cell or Con A-mediated rise in [Ca2+]i. The inhibitory effect of oleic acid is observed within seconds of addition and the inhibition is completely reversed by treating cells with fatty acid free BSA. In addition, using the fluorescence indicator 2',7'-bis(carboxyethyl)carboxyfluorescein to monitor intracellular pH, it was found that oleic acid itself acidifies the cytosol by about 0.3 to 0.4 pH units. Acidification is probably necessary, but is not sufficient to inhibit the calcium rise. Stearic acid (18:0), even at concentrations that correspond to a factor of two to three more bound to the cell than for oleic acid, had no effect on either the [Ca2+]i or intracellular pH responses. Oleic acid was found to bind to cells with single site kinetics and with a number of sites and affinity corresponding to membrane lipid binding sites. Esterification of added oleic acid was negligible in the time (seconds to minutes) required to induce inhibition of the [Ca2+]i response. Inasmuch as added FFA primarily binds to membrane lipid, is not appreciably esterified, and the inhibition is reversed by treatment with fatty acid free BSA, it is likely that the oleic acid effects are due to a physical perturbation of membrane lipid. Furthermore, oleic acid does not affect Con A binding or the production of inositol phosphate metabolites, suggesting that the inhibition of the response is distal to surface recognition events or receptor-phospholipase C coupling. Given the relatively low levels of FFA at which these effects occur it is possible, under conditions in which FFA levels are elevated, that FFA perturbation may modulate CTL activity.  相似文献   

3.
Conjugation of CTL with their cognate targets elicits a number of early changes within the target cell that are thought to play an important role in the lytic mechanism. We now report that at times earlier than 5 min after conjugation with allospecific CTL, free fatty acids (FFA) are produced in and then secreted from alloantigen-bearing target cells. Using murine CTL clones with different alloantigen specificities, stimulation of FFA production from target cells was found to be Ag specific. FFA production does not appear to be specific for any particular FFA species. Indeed, a wide spectrum of cis unsaturated as well as saturated FFA are produced. FFA production is well correlated with, and specific for, CTL-mediated target cell lysis. Other means of perturbing or lysing target cells, including freeze/thaw disruption, detergent solubilization, or increasing membrane permeabilization with ionomycin, do not stimulate FFA production. In particular, FFA production is not stimulated by treatment with pore-forming granules under conditions that cause more than 90% target cell lysis. These results suggest that FFA production plays an important role in CTL-mediated lysis because stimulation of FFA release specifically requires an event that is CTL induced, occurs very early after conjugation, and is strongly correlated with CTL-mediated lysis.  相似文献   

4.
Quercetin, a C-kinase antagonist, inhibits neutrophil degranulation and superoxide production induced by f-met-leu-phe, solid phase IgG, zymosan treated serum and a phorbol ester (PMA). Quercetin is more effective in inhibiting degranulation (IC50 = 20 uM) than superoxide production (IC50 = 80 microM). Neutrophil activation by PMA is accompanied by the phosphorylation of neutrophil proteins of 205, 170, 130, 91, 77, 67, 56, 47, 39, 34, 27, and 20 kilodaltons; quercetin also inhibits the phosphorylation of these proteins. Dose-response studies indicated that phosphorylation of the 67 kilodalton protein was particularly sensitive to inhibition by quercetin at concentrations that also inhibit neutrophil degranulation and superoxide production. These results suggest that phosphorylation of the 67 kilodalton protein may be an important intracellular reaction associated with neutrophil activation.  相似文献   

5.
Evidence for multiple lytic pathways used by cytotoxic T lymphocytes   总被引:6,自引:0,他引:6  
Previous data generated by ourselves and others questioned the role of degranulation as a mechanism to explain CTL-mediated cytotoxicity. In this report we examine this tissue in greater depth. CTL-mediated lysis was probed with three different inhibitors. 4,4'-diisothiocyano-2,2'-disulfonic acid stilbene inhibits degranulation in a wide range of cell types, including CTL. EGTA, through chelation of Ca2+, also inhibits degranulation processes in CTL, and would inhibit other events or processes dependent on extracellular Ca2+. We also used prolonged exposure to PMA to exhaust PKC activity in CTL. Using these inhibitors, we have defined three pathways of lysis used by CTL. One pathway requires Ca2+, is PMA sensitive, but does not depend on degranulation. The second pathway is independent of Ca2+, is not PMA sensitive, and also does not depend on degranulation. All primary CTL and cloned CTL lyse most target cells via pathway I. However, when confronted with certain target cells (which we have referred to previously as Ca2+-independent target cells), pathway II is induced. When pathway II is induced, pathway I apparently shuts down. We show here that pathway II does not depend on protein synthesis, and that it also leads to DNA solubilization in target cells. A limited number of cloned CTL use pathways I and II as just described, but use in addition, and simultaneously, a third pathway that appears to involve degranulation. This pathway is seen irregularly in most CTL clones, and may be influenced by levels of IL-2 in the culture medium.  相似文献   

6.
Previous findings support the prediction that drugs which antagonize the action of calcium should inhibit cytolytic T lymphocyte (CTL)-mediated killing without inhibiting the formation of Ag-specific CTL-target cell conjugates. This would contrast with other CTL-inhibiting drugs, nearly all of which inhibit conjugate formation. Testing this prediction, we found that two calcium channel blockers (verapamil and ruthenium red) inhibit killing only when the extracellular calcium concentration is low (100 microM), and, as predicted, do not inhibit conjugate formation. Surprisingly, the esterase inhibitor N alpha-p-tosyl-L-lysine choloromethylketone also inhibited killing without inhibiting conjugate formation. Unexpectedly, we found that the amount of calcium required by CTL varies by four-fold or more. CTL produced in vivo, or by a single Ag stimulation cycle in vitro, require more than 130 microM calcium for optimal killing, whereas 30 microM suffices for CTL primed in vivo plus boosted in vitro. The rate of admission of calcium into the cytoplasm by physiologic channels did not appear to be the limiting factor for the former type of CTL. Recent findings indicate that allospecific CTL produced in vivo may lack cytoplasmic granules, and may kill by an unidentified mechanism distinct from the exocytosis of granules prominent in CTL lines or clones maintained in vitro. The differences in calcium requirements reported here may reflect differences in mechanisms of killing.  相似文献   

7.
Insulin resistance is a characteristic feature of type 2 diabetes and obesity. Insulin-resistant individuals manifest multiple disturbances in free fatty acid (FFA) metabolism and have excessive lipid accumulation in insulin target tissues. Although much evidence supports a causal role for altered FFA metabolism in the development of insulin resistance, i.e., "lipotoxicity", the intracellular mechanisms by which elevated plasma FFA levels cause insulin resistance have yet to be completely elucidated. Recent studies have implicated a possible role for mitochondrial dysfunction in the pathogenesis of insulin resistance in skeletal muscle. We examined the effect of FFA metabolites [palmitoyl carnitine (PC), palmitoyl-coenzyme A (CoA), and oleoyl-CoA] on ATP synthesis in mitochondria isolated from mouse and human skeletal muscle. At concentrations ranging from 0.5 to 2 microM, these FFA metabolites stimulated ATP synthesis; however, above 5 microM, there was a dose-response inhibition of ATP synthesis. Furthermore, 10 microM PC inhibits ATP synthesis from pyruvate. Elevated PC concentrations (> or =10 microM) inhibit electron transport chain activity and decrease the mitochondrial inner membrane potential. These acquired mitochondrial defects, caused by a physiological increase in the concentration of FFA metabolites, provide a mechanistic link between lipotoxicity, mitochondrial dysfunction, and muscle insulin resistance.  相似文献   

8.
When L3T4+ cloned murine helper T lymphocytes (HTL) are stimulated with antigen or immobilized anti-T cell receptor (TCR) monoclonal antibodies (mAb) at concentrations which are optimal for proliferation, anti-L3T4 mAb inhibits activation as measured by proliferation and lymphokine production. Under similar conditions, IL 2-independent proliferation of Lyt-2+ cloned murine cytolytic T lymphocytes (CTL) stimulated by anti-TCR mAb is inhibited by anti-Lyt-2 antibodies. Proliferation of cloned HTL and CTL cells stimulated by IL 2 is not affected by the anti-L3T4 and anti-Lyt-2 mAb. The inhibition of TCR-induced activation of the T cell clones is not due to interference with the binding of the anti-TCR mAb. Stimulation of the TCR has been proposed to induce lymphokine secretion and proliferation by T cells through a pathway involving the activation of protein kinase C and the stimulation of an increase in the concentration of intracellular free calcium. However, proliferation of T cells stimulated by PMA (which activates protein kinase C) plus the calcium ionophore A23187 (which increases the concentration of intracellular free calcium) is not affected by mAb reactive with the Lyt-2 or L3T4 structures. If TCR stimulation does indeed activate T cells by activating protein kinase and increasing intracellular free calcium, then our data suggest that anti-L3T4 and anti-Lyt-2 mAb inhibit TCR-driven proliferation at some step before the activation of protein kinase C and the stimulation of a rise in intracellular free calcium concentration. Our results suggest that anti-L3T4 and anti-Lyt-2 mAb interfere with early biochemical processes induced by stimulation of the TCR. In HTL, which proliferate via an autocrine pathway, anti-L3T4 mAb appears to inhibit proliferation by interfering with signaling events involved in lymphokine production. Inhibition of IL 2-independent proliferation of Lyt-2+ cells by anti-Lyt-2 mAb appears to occur by a different mechanism. The precise molecular basis for the interference of each cell type has not yet been characterized.  相似文献   

9.
Ethanol inhibits antibody-dependent cell-mediated cytotoxicity in a dose-dependent manner. The inhibitory effect of ethanol was reversed by the addition of excess calcium or calcium ionophore A23187. Excess calcium at 4-8 mM concentrations was required to reverse 50% of the inhibition caused by ethanol. In seven of nine experiments, 16 mM excess calcium completely reversed the inhibition and produced greater lysis than the control. Excess calcium in the absence of ethanol induced a dose-dependent increase in lytic activity by the spleen cells. However, the reversal of inhibition by ethanol could not be attributed to a simple additive effect resulting from the increased cytolytic capacity of the lymphocytes in the presence of excess Ca2+. Ionophore A23187 at 1 microM also partially reversed the inhibitory effect caused by ethanol. Ionophore alone did not potentiate lytic activity. When target cells were not sensitized with antibody, excess calcium had no effect on the lysis of target cells in the presence of ethanol-treated or untreated lymphocytes. These data suggest that ethanol inhibits antibody-dependent cell-mediated cytotoxicity at a calcium-dependent step.  相似文献   

10.
N-3 trans geometrical isomers of 20:5 n-3 and 22:6 n-3 were isolated from rats fed heated linseed oil. The ability of these acids to inhibit 20:4 n-6 metabolism by human platelets was examined. The concentrations required to inhibit 50% of platelet aggregation (IC50) induced by 2.5 microM 20:4 n-6 were higher for the 20:5 delta 17t isomer compared to all cis 20:5 n-3; means 29.2 and 7.6 microM, respectively (P less than 0.05). There were no significant differences in IC50 between 22:6 delta 19t and all cis 22:6 n-3; means 4.3 and 5.6 microM, respectively (P greater than 0.05). Inhibition of action of cyclooxygenase on 20:4 n-6 was similar for 20:5 delta 17t and 20:5 n-3 when examined at their IC50s, but comparison at equal concentrations indicated that 20:5 n-3 was a significantly better inhibitor (P less than 0.05). The ability to inhibit platelet aggregation was paralleled by cyclooxygenase inhibition as determined by thromboxane B2 and 12-hydroxyheptadecatrienoic acid formation. 22:6 delta 19t appeared to inhibit cyclooxygenase more completely than 22:6 n-3, examined at their IC50s or at similar concentrations (P less than 0.05). Isomers of 20:5 n-3 and 22:6 n-3 having an n-3 cis or trans bond appear to have similar modes of action, although levels required for effectiveness are different for the C20 acids.  相似文献   

11.
Lack of target cell participation in cytotoxic T lymphocyte-mediated lysis.   总被引:1,自引:0,他引:1  
Data on the subject of cell-mediated cytotoxicity suggest that no single mechanism is likely to provide a satisfactory explanation of this process. Lytic pathways have been proposed that involve both the effector cell and the target cell as active participants. In this report we describe a system in which the target cell is rendered unable to participate in its own demise. Using sheep E derivatized with CD3 antibodies, we show that metabolic inhibition of SRBC by depleting intracellular ATP with iodoacetamide, or even conversion of SRBC to "ghosts" by hypotonic lysis and resealing, has no effect on cytolysis. In the presence of EGTA or cholera toxin, both of which inhibit CTL degranulation, there is a strong suppression of both serine esterase release and cytolysis. These data show clearly that in some situations CTL are able to lyse target cells without any active participation by the target cells themselves.  相似文献   

12.
Requirements for triggering of lysis by cytolytic T lymphocyte clones   总被引:3,自引:0,他引:3  
Cloned murine cytolytic T lymphocytes (CTL) having defined specificity were triggered by the phorbol ester together with a calcium ionophore (either A23187 or Ionomycin) to lyse syngeneic or third party target cells efficiently. Neither phorbol 12-myristate 13-acetate (PMA) nor calcium ionophore alone induced efficient lysis. The characteristics of the lytic process induced by these signals are similar to those of antigen-specific or lectin-facilitated lysis by CTL. Lysis is calcium and temperature dependent and shows kinetics which are not grossly different from lysis mediated via the antigen receptor. Two helper T lymphocyte clones were not induced to lyse efficiently EL-4 target cells by concanavalin A or PMA + ionophore. Triggering of lysis induced with PMA plus ionophore by the CTL clone L3 differed from antigen-mediated lysis in specificity and in the susceptibility to inhibition by cytochalasin B. Properties of the target cell determine which cell surface associative recognition structures are important in the efficient lysis of these cells. Anti-LFA-1 monoclonal antibodies inhibited efficiently both antigen-mediated and PMA + ionophore-induced lysis of P-815 or EL-4 target cells which are of hematopoietic origin. However, anti-LFA-1 antibodies do not inhibit antigen-mediated, lectin-facilitated, or PMA + Ionomycin-induced CTL cytolysis of target cells derived from the L cell fibroblast line. We conclude that two intracellular signals, which can be provided by the combination of PMA + ionophore, are required for efficient lysis by antigen-specific murine CTL clones. When the T cell receptor for antigen is bypassed using PMA + ionophore to trigger lysis, we show that Lyt-2 and LFA-1 molecules may be required for efficient lysis. These associative recognition structures appear to play an important role in postactivation steps leading to efficient delivery of the lethal hit to the target cell.  相似文献   

13.
O,S,S,-Trimethyl phosphorodithioate (OSS-TMP), an organophosphate esterase inhibitor, has been shown to block the effector phase of the cytolytic reaction mediated by murine and human cytotoxic T lymphocytes (CTL) and human natural killer cells. The murine interleukin 2-dependent CTLL-1 (anti-Iad) clone was used to determine the phase of the cytolytic pathway inhibited by OSS-TMP. Pretreatment of the CTL or target cell with OSS-TMP was not effective at blocking lysis; however, inhibition of lysis was achieved if the reaction was carried out in the continuous presence of OSS-TMP (IC50 = 55 microM) or when CTL-target conjugates were performed and incubated with OSS-TMP (IC50 = 640 microM). Two structural analogues of OSS-TMP were unable to inhibit CTL-mediated lysis. In contrast to OSS-TMP, N-alpha-p-tosyl-L-lysine chloromethylketone required only a 5-min preincubation with the CTL to inhibit lysis. OSS-TMP did not block recognition-adhesion step(s) of the reaction since the ability to form conjugates was not impaired; however, the lytic efficiency of individual CTL-target pairs were blocked. OSS-TMP did not appear to be an inhibitor of the major granule-associated protease that cleaves the substrate, N-alpha-benzyloxycarbonyl-L-lysine thiobenzylester. Ca2+ pulse and kinetic experiments indicated that the OSS-TMP-sensitive site was at a pre-Ca2+-dependent phase but after recognition-adhesion. Human CTL and natural killer cell activity was also inhibited by OSS-TMP, suggesting the presence of a common site of action among these cytolytic systems. The results indicate that OSS-TMP may be a useful reagent in characterizing the early post-recognition events in the cytolytic pathway of CTL and natural killer effector cells.  相似文献   

14.
LaATP is shown to be an effective inhibitor of the calcium ATPase of sarcoplasmic reticulum because the binding of LaATP to cE.Ca2 results in the formation of lanthanum phosphoenzyme, which decays slowly. Steady-state activity of the calcium ATPase in leaky sarcoplasmic reticulum vesicles is inhibited 50% by 0.16 microM LaCl3 (15 nM free La3+, 21 nM LaATP) in the presence of 25 microM Ca2+ and 49 microM MgATP (5 mM MgSO4, 100 mM KCl, 40 mM 4-morpholinepropanesulfonic acid, pH 7.0, 25 degrees C). However, 50% inhibition of the uptake of 45Ca and phosphorylation by [gamma-32P]ATP in a single turnover experiment requires 100 microM LaCl3 (28 microM free La3+) in the presence of 25 microM Ca2+; this inhibition is reversed by calcium but inhibition of steady-state turnover is not. Therefore, binding of La3+ to the cytoplasmic calcium transport site is not responsible for the inhibition of steady-state ATPase activity. The addition of 6.7 microM LaCl3 (1.1 microM free La3+) has no effect on the rate of dephosphorylation of phosphoenzyme formed from MgATP and enzyme in leaky vesicles, while 6.7 mM CaCl2 slows the rate of phosphoenzyme hydrolysis as expected; 6.7 microM LaCl3 and 6.7 mM CaCl2 cause 95 and 98% inhibition of steady-state ATPase activity, respectively. This shows that inhibition of ATPase activity in the steady state is not caused by binding of La3+ to the intravesicular calcium transport site of the phosphoenzyme. Inhibition of ATPase activity by 2 microM LaCl3 (0.16 microM free La3+, 0.31 microM LaATP) requires greater than 5 s, which corresponds to approximately 50 turnovers, to reach a steady-state level of greater than or equal to 80% inhibition. Inhibition by La3+ is fully reversed by the addition of 0.55 mM CaCl2 and 0.50 mM EGTA; this reactivation is slow with t1/2 approximately 9 s. Two forms of phosphoenzyme are present in reactions that are partially inhibited by La3+: phosphoenzyme with Mg2+ at the catalytic site and phosphoenzyme with La3+ at the catalytic site, which undergo hydrolysis with observed rate constants of greater than 4 and 0.05 s-1, respectively. We conclude, therefore, that La3+ inhibits steady-state ATPase activity under these conditions by replacing Mg2+ as the catalytic ion for phosphoryl transfer. The slow development of inhibition corresponds to the accumulation of lanthanum phosphoenzyme. Initially, most of the enzyme catalyzes MgATP hydrolysis, but the fraction of enzyme with La3+ bound to the catalytic site gradually increases because lanthanum phosphoenzyme undergoes hydrolysis much more slowly than does magnesium phosphoenzyme.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
Soluble MHC-peptide (pMHC) complexes induce intracellular calcium mobilization, diverse phosphorylation events, and death of CD8+ CTL, given that they are at least dimeric and co-engage CD8. By testing dimeric, tetrameric, and octameric pMHC complexes containing spacers of different lengths, we show that their ability to activate CTL decreases as the distance between their subunit MHC complexes increases. Remarkably, pMHC complexes containing long rigid polyproline spacers (> or =80 A) inhibit target cell killing by cloned S14 CTL in a dose- and valence-dependent manner. Long octameric pMHC complexes abolished target cell lysis, even very strong lysis, at nanomolar concentrations. By contrast, an altered peptide ligand antagonist was only weakly inhibitory and only at high concentrations. Long D(b)-gp33 complexes strongly and specifically inhibited the D(b)-restricted lymphocytic choriomeningitis virus CTL response in vitro and in vivo. We show that complications related to transfer of peptide from soluble to cell-associated MHC molecules can be circumvented by using covalent pMHC complexes. Long pMHC complexes efficiently inhibited CTL target cell conjugate formation by interfering with TCR-mediated activation of LFA-1. Such reagents provide a new and powerful means to inhibit Ag-specific CTL responses and hence should be useful to blunt autoimmune disorders such as diabetes type I.  相似文献   

16.
SC-39026, (+/-) 2-chloro-4-(1-hydroxyoctadecyl)benzoic acid, inhibits human neutrophil elastase with an IC50 of 0.5 microM (KI of 1.5 microM). Its inhibition of elastase is reversible and noncompetitive at low concentrations (0.5-1.25 microM). Inhibition is "mixed" at higher inhibitor concentrations. SC-39026 is inactive against hog pancreatic elastase, bovine alpha-chymotrypsin and Pseudomonas aeruginosa elastase, but does inhibit human neutrophil cathepsin G with an IC50 of approximately 2.5 microM. Neutrophil elastases isolated from rat, hamster, rabbit and hog are also inhibited by SC-39026.  相似文献   

17.
Various indirect evidence has indicated that calcium ions and the calcium-binding regulator protein, calmodulin, may regulate mitosis in higher eukaryotes. We have used the competitive antagonist, CAPP1-calmodulin, to antagonize intracellular calmodulin and test the hypothesis that calmodulin serves as a regulator of mitosis. We find that CAPP1-calmodulin inhibits the transit of cells through metaphase at estimated intracellular concentrations up to that of native calmodulin; beyond that level, the inhibition of mitosis vanishes. The membrane-permeant anticalmodulin agents, W7 and calmidazolium, also inhibit the progress of cells through metaphase. The similarity of the inhibitory curves for CAPP1-calmodulin, W7, and calmidazolium suggests that all these agents inhibit mitosis by antagonizing intracellular calmodulin. In order to test whether this inhibition of metaphase transit is due to an effect of the agents on intracellular free calcium, we used the calcium indicator Fura-2 to measure intracellular calcium levels after CAPP1-calmodulin injection or during calmidazolium treatment. We found that, while intracellular calcium levels are modestly elevated during calmidazolium treatment, they were unaffected by CAPP1-calmodulin, a result suggesting that mitosis inhibition was not due to an effect on intracellular free calcium. The reasons for the anomalous dose-response behavior of these drugs are not known; however, the behavior of cells at drug levels below the point of anomaly supports the hypothesis that calmodulin acts as a regulator of mitosis in these cells.  相似文献   

18.
Many viruses interfere with apoptosis of infected cells, presumably preventing cellular apoptosis as a direct response to viral infection. Since cytotoxic T lymphocytes (CTL) induce apoptosis of infected cells as part of the “lethal hit,” inhibition of apoptosis could represent an effective immune evasion strategy. We report here herpes simplex virus type 1 (HSV-1) interference with CTL-induced apoptosis of infected cells and show that HSV-1 inhibits the nuclear manifestations of apoptosis but not the membrane changes. The HL-60 cell line (human promyelocytic leukemia) undergoes apoptosis in response to many stimuli, including incubation with ethanol. After HSV-1 infection (strains E115 and 17+), ethanol-treated cells did not produce oligonucleosomal DNA fragments characteristic of apoptosis, as assayed by gel electrophoresis and enzyme-linked immunosorbent assay. Inhibition was detected 2 h after infection and increased over time. Importantly, HSV-1-infected cells were resistant to apoptosis induced by antigen-specific CD4+ CTL, despite the fact that CTL recognition and degranulation in response to infected targets remained intact. Unlike HSV-1, HSV-2 (strains 333 and HG52) did not inhibit DNA fragmentation. In contrast to the inhibition of DNA fragmentation by HSV-1, none of the HSV-1 or -2 strains interfered with the ethanol-induced exposure of surface phosphatidylserine characteristic of apoptosis, as determined by annexin V binding. These results demonstrate that genes of HSV-1 inhibit the nuclear manifestations of apoptosis but not the membrane manifestations, suggesting that these may be mediated via separate pathways. They also suggest that HSV-1 inhibition of CTL-induced apoptosis may be an important mechanism of immune evasion.  相似文献   

19.
Three proteins encoded by murine cytomegalovirus (MCMV) -- gp34, encoded by m04 (m04/gp34), gp48, encoded by m06 (m06/gp48), and gp40, encoded by m152 (m152/gp40) -- act together to powerfully impact the ability of primed cytotoxic CD8 T lymphocytes (CTL) to kill virus-infected cells. Of these three, the impact of m152/gp40 on CTL lysis appears greater than would be expected based on its impact on cell surface major histocompatibility complex (MHC) class I. In addition to MHC class I, m152/gp40 also downregulates the RAE-1 family of NKG2D ligands, which can provide costimulation for CD8 T cells. We hypothesized that m152/gp40 may impact CTL lysis so profoundly because it inhibits both antigen presentation and NKG2D-mediated costimulation. We therefore tested the extent to which m152/gp40's ability to inhibit CTL lysis of MCMV-infected cells could be accounted for by its inhibition of NKG2D signaling. As was predictable from the results reported in the literature, NKG2D ligands were not detected by NKG2D tetramer staining of cells infected with wild-type MCMV, whereas those infected with MCMV lacking m152/gp40 displayed measurable levels of the NKG2D ligand. To determine whether NKG2D signaling contributed to the ability of CTL to lyse these cells, we used a blocking anti-NKG2D antibody. Blocking NKG2D signaling did affect the killing of MCMV-infected cells for some epitopes. However, for all epitopes, the impact of m152/gp40 on CTL lysis was much greater than the impact of inhibition of NKG2D signaling. We conclude that the downregulation of NKG2D ligands by MCMV makes only a small contribution to the impact of m152/gp40 on CTL lysis and only for a small subset of CTL.  相似文献   

20.
Teleost retinal cones elongate in the dark and contract in the light. In isolated retinas of the green sunfish Lepomis cyanellus, cone myoids undergo microtubule-dependent elongation from 5 to 45 micron. We have previously shown that cone contraction can be reactivated in motile models of cones lysed with Brij-58. Reactivated contraction is both actin and ATP dependent, activated by calcium, and inhibited by cAMP. We report here that we have obtained reactivated cone elongation in lysed models prepared by the same procedures. Reactivated elongation is ATP dependent, activated by cAMP, and inhibited by calcium. The rate of reactivated elongation is proportional to the cAMP concentration between 10 microM and 0.5 mM, but is constant between 10 microM and 1.0 mM Mg-ATP. No elongation occurs if cAMP or Mg-ATP concentration is less than or equal to 5 microM. Mg-ATP is required for both cAMP-dependent and cAMP-independent processes, suggesting that Mg-ATP is required both for a regulatory process entailing cAMP-dependent phosphorylation and for a force-producing process. Free calcium concentrations greater than or equal to 10(-7) reduce the elongation rate by 78% or more, completely inhibiting elongation at 10(-5) M. This inhibition is not due to competition from calcium-activated contraction. Cytochalasin D blocks reactivated contraction, but does not abolish calcium inhibition of reactivated elongation. Thus calcium directly affects the elongation mechanism. Calcium inhibition is calmodulin dependent. The calmodulin inhibitor trifluoperazine abolishes calcium inhibition of elongation. Furthermore, calcium blocks elongation only if present during the lysis step; subsequent calcium addition has no effect. However, if calcium plus exogenous calmodulin are subsequently added, elongation is again inhibited. Thus calcium inhibition appears to require a soluble calmodulin which is lost shortly after lysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号