首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two forms of protein kinase C (PKC) activity in cytosol of cultured rat mesangial cells have been characterized in vitro by using histone H1 or endogenous proteins as substrates. Histones H1-phosphorylation was significantly increased only when calcium, phosphatidylserine (PS) and 1,2-diacylglycerol (DAG) or phorbol myristate acetate (PMA) were present together in the incubation medium. EGTA, a calcium chelator, completely inhibited this activity. Upon hydroxyapatite chromatography (HPLC), the PKC activity was eluted as a main peak at 150 mM potassium phosphate with a shoulder at 180 mM. Both peaks corresponded to the type III PKC from rat brain and were identified as PKC alpha isoform by immunoblot analysis. In contrast with what was observed using histone H1, the increased phosphorylation of endogenous proteins in the presence of a mixture of Ca2+/PS, plus either DAG or PMA, was only partly reduced by EGTA. Moreover, the level of the PKC activity detected in the presence of EGTA was comparable to the level of kinase activity, measured in the presence of PS alone or associated with DAG or PMA. This suggests that mesangial cells contain PKC activity which does not absolutely require calcium. Polyacrylamide gel electrophoresis revealed that patterns of phosphorylated mesangial cell proteins are different depending on whether calcium was added or not. In the presence of calcium, PKC strongly phosphorylated the proteins of 53,000 molecular weight, a doublet of 37,000-39,000, the 24,000 and the triplet of 17,000-20,000-22,000 molecular weight. The addition of EGTA to the assays suppressed completely the labelling of most proteins; only the 20,000 molecular weight protein remained strongly labelled, while the 39,000 molecular weight band was only faintly visible. The same patterns of phosphorylations were obtained after omission of calcium in the assays containing only PS and DAG (or PMA). So, the main substrates of calcium-dependent PKC are proteins of 53,000, 39,000, 37,000, 22,000, 24,000 and 17,000 molecular weight while the protein of 20,000 molecular weight appears to be the main substrate of calcium-independent PKC. The existence in mesangial cells of at least two forms of PKC, which phosphorylate specific endogenous proteins, emphasizes the complexity of the phospholipid-dependent regulatory cascade and raises the possibility that actions of different regulators may be transduced through distinct PKC isozymes.  相似文献   

2.
The occurrence of phospholipid-sensitive calcium-dependent protein kinase (referred to as C kinase) and its endogenous substrate proteins was examined in a membrane preparation from rat pancreatic zymogen granules. Using exogenous histone H1 as substrate, C kinase activity was found in the membrane fraction. The kinase was solubilized from membranes using Triton X-100 and partially purified using DEAE-cellulose chromatography. An endogenous membrane protein (Mr approximately equal to 18 000) was found to be specifically phosphorylated in the combined presence of Ca2+ and phosphatidylserine. Added diacylglycerol was effective in stimulating phosphorylation of exogenous histone by the partially purified C kinase, but had no effect upon phosphorylation of the endogenous 18 kDa protein by the membrane-associated C kinase. Phosphorylation of the 18 kDa protein was rapid (detectable within 30 s following exposure to Ca2+ and phosphatidylserine), and highly sensitive to Ca2+ (Ka = 4 microM in the presence of phosphatidylserine). These findings suggest a role for this Ca2+-dependent protein phosphorylation system in the regulation of pancreatic exocrine function.  相似文献   

3.
Rat heart plasma membranes contain a calcium-dependent protein kinase which phosphorylates endogenous protein substrates as well as added histones. The major endogenous protein phosphorylated is of 17 kDa on SDS-polyacrylamide gel electrophoresis. Proteins of 85 kDa and 60 kDa were also phosphorylated. Treatment of a rat heart homogenate with the phorbol ester 12-O-tetradecanoylphorbol 13-acetate increased the recovery of kinase activity in the sarcolemmal membranes by up to 10-fold. The activity in such membranes was no longer calcium dependent. Although several histones were effective substrates for the enzyme, myosin light chain and phosvitin were not phosphorylated. These membranes contain a very active ATP hydrolysing activity which necessitated very brief incubation times to avoid loss of substrate. The membranes also contain cyclic AMP dependent protein kinase activity which is not active unless cyclic AMP is added to the incubations. The calcium dependent endogenous kinase, which is not inhibited by the heat stable inhibitor protein of cyclic AMP-dependent kinase, or by trifluoperazine, has several properties in common with protein kinase C. Preincubation of the sarcolemmal membranes with a high concentration of insulin caused inhibition of the phosphorylation of the endogenous 17 kDa and 85 kDa bands. There was no effect on the phosphorylation of the 60 kDa peptide. This effect of insulin was specific for the hormone and required preincubation of the hormone with the membranes for 20 min.  相似文献   

4.
The 10000 X g supernatant fraction of brown fat from newborn rats catalyzed the cyclic AMP-dependent phosphorylation of both histone and a preparation of proteins from the same subcellular fraction (endogenous proteins). The apparent affinity for ATP was lower for the phosphorylation of the endogenous proteins than for the phosphorylation of histone. In order to discover whether the phosphorylation of histone and the endogenous proteins were catalyzed by different enzymes, the 100000 X g supernatant was fractionated by ion-exchange and adsorption chromatography. Three different cyclic AMP-dependent protein kinases and one cyclic AMP-independent protein kinase were separated and partially purified. Each of these enzymes catalyzed the phosphorylation of both substrates, and the difference in apparent Km for ATP remained. Neither affinity chromatography on histone-Sepharose, nor electrophoresis on polyacrylamide gels resulted in the separation of the phosphorylation of histone from that of the endogenous proteins of any of the partially purified kinases. Moreover, experiments in which the phosphorylated substrates were separated by differential precipitation with trichloroacetic acid showed that the endogenous proteins competitively inhibited the phosphorylation of lysine-rich histone. It is concluded that each of the partially purified kinase preparations contains protein kinase, which catalyzes the phosphorylation of both substrates. The difference in apparent Km for ATP was found to be due to the presence in the endogenous protein preparation of a low molecular weight compound which competes with ATP. This was not ATP nor the modulator protein. The ratio of the phosphorylation of endogenous proteins to that of histone was much higher for the cyclic AMP-independent kinase preparation than for the other enzymes. Electrophoresis of the endogenous substrates in the presence of sodium dodecyl sulphate showed that the enzyme phosphorylated a greater number of proteins than did the cyclic AMP-dependent kinases. The phosphorylation of endogenous proteins relative to that of histone was significantly lower for one of the cyclic AMP-dependent kinases than for the other two. This difference was not reflected in a different pattern of phosphorylation of the individual proteins of the endogenous mixture.  相似文献   

5.
Insulin-receptor tyrosine kinase can phosphorylate a variety of artificial substrates in vitro. Its physiological substrate(s), however, remains unknown. In the present study, we show that immobilized insulin receptors phosphorylate tyrosine residues of two cytosolic proteins of 50 kDa and 35 kDa in rat liver. Phosphorylation of these two proteins required Mn2+- or Mg2+-ATP as the phosphate donor. Phosphorylation was time- and temperature-dependent. Furthermore, the rate of phosphorylation of the two proteins was related to the autophosphorylated state of the insulin receptor. The pI of the phosphorylated 50 kDa and 35 kDa proteins was 5.4 and 5.6 respectively. These proteins were present in low abundance. They were not related to each other, nor to the insulin receptor, as demonstrated by in-gel proteolytic digestion and by immunoprecipitation using antibodies produced against them. They were specific substrates for the insulin receptor kinase, since they were not phosphorylated by epidermal-growth-factor-receptor kinase. These observations suggest that the 50 kDa and 35 kDa cytosolic proteins may be endogenous substrates for the insulin-receptor kinase.  相似文献   

6.
Cyclic AMP-dependent phosphorylation of the rat brain sodium channel was reported to be restricted to five sites within an approximately 210 amino acid region of the primary sequence that is deleted in the homologous sodium channel from rat skeletal muscle. We find that, in spite of this deletion, the rat muscle sodium channel alpha-subunit is also an excellent substrate for phosphorylation by this kinase both in primary muscle cells in tissue culture and in vitro after isolation from adult muscle. Sodium channel protein purified from adult rat skeletal muscle was readily phosphorylated in vitro by the catalytic subunit of the bovine cyclic AMP-dependent protein kinase (PKa). Only the 260,000 MW alpha-subunit was labeled, with a maximum level of incorporation in vitro of approximately 0.5 mol [32P]phosphate per mole of channel protein. The beta-subunit of the channel is not phosphorylated under these conditions. In primary rat skeletal muscle cells in culture, incorporation of phosphate into the channel alpha-subunit is stimulated 1.3- to 1.5-fold by treatment of the cells with forskolin. Phosphorylation of the sodium channel isolated from these cells could also be demonstrated in vitro using PKa. This in vitro phosphorylation could be inhibited 80-90% by pretreatment of the cells in culture with forskolin, suggesting that the sites labeled in vitro by PKa were the same as those phosphorylated in the intact cells by the endogenous cyclic AMP-dependent kinase. In both the adult muscle channel and the channel from muscle cells in culture, phosphorylation by PKa was limited to serine residues.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
1. Endogenous phosphate acceptor proteins by cytosolic protein-tyrosine kinase from porcine spleen (CPTK-40) were studied using subcellular fractions of porcine spleen and supernatant fraction of rat various tissues. 2. At least 13 phosphate acceptor proteins ranging from 94 to 26 kDa were observed in all but mitochondrial subcellular fractions. 3. Among the supernatant fraction of rat tissues, brain, testis and spleen contained many phosphate acceptor proteins. 4. The most heavily phosphorylated band of around 55 kDa which was commonly recognized among various tissues was confirmed as tubulin by the immunoreactivity with anti-tubulin antibody. 5. The results obtained in this paper indicate that CPTK-40 has the potential to catalyze the phosphorylation of numerous endogenous proteins including tubulin.  相似文献   

8.
A heat-stable, soluble component of brown adipose tissue from newborn rats was found to be readily phosphorylated by protein kinase of the same subcellular fraction. The concentration of this component in brown fat decreased with the age of the animals. A boiled crude microsomal preparation from rat liver was also phosphorylated by brown fat protein kinase. The GTP-linked phosphorylation of the endogenous heat-stable protein was not stimulated by ATP (in contrast to phosphorylation of histone). The maximum velocity of phosphorylation achieved with GTP was about 2.5 times higher than that with ATP as nucleotide substrate. This difference was not due to ATPase activity in the assay. With histone as the protein acceptor both activities were the same. The affinity of protein kinase(s) for ATP was lower with the endogenous heat-stable brown-fat protein and with boiled microsomes (Km of 0.21 mM and 0.17 mM, respectively) than with histone (Km of 0.05 M). No detectable ATPase activity was present in either acceptor protein. It is concluded that the 100 000 times g supernatant fraction from brown fat of infant rats contains two protein kinase activities. One preferentially uses ATP and histone as substrates and the other uses endogenous heat-stable soluble proteins and either ATP or GTP.  相似文献   

9.
Chromosomal high-mobility-group (HMG) proteins have been examined as substrates for calcium/phospholipid-dependent protein kinase C. Protein kinase C from rat brain phosphorylated efficiently both HMG 14 and HMG 17 derived from calf thymus and the reactions were calcium/phospholipid-dependent. About 1 mol of 32P was incorporated per mol of HMG 14 and HMG 17. Phosphopeptide mapping suggested that the same major site was phosphorylated in both proteins at serine. The apparent Km values for HMG 14 and HMG 17 were about 5 μM. HMG 14, HMG 17 and the five histone H1 subtypes prepared from rat thymus, liver and spleen were phosphorylated by the kinase. HMG 14 and HMG 17 from transformed human lymphoblasts (Wi-L2) were also phosphorylated in a calcium/phospholipid-dependent manner. HMG 1 and HMG 2 from the tissues examined were found to be poor substrates for the kinase.  相似文献   

10.
In rat adrenal glomerulosa cells, endogenous substrate proteins for Ca2+/calmodulin (CaM)-dependent protein kinase (glomerulosa CaM kinase) and Ca2+/phospholipid-dependent protein kinase (protein kinase C) were investigated. In a 105,000 g-supernatant fraction (cytosol), the Mr 100,000 protein was phosphorylated in the presence of calcium (calculated free Ca2+ concentration, 460 microM) alone or calcium and CaM, and the phosphorylation of this protein was completely inhibited by the CaM antagonists pimozide (500 microM) and melittin (5 microM) in the presence of calcium alone, respectively. These results indicate that the Mr 100,000 protein is a major substrate for glomerulosa CaM kinase, and considerable amounts of endogenous CaM might be present in the cytosol. In the presence of phospholipids (the micelles of 8 micrograms of phosphatidyl serine and 1 microgram of diacylglycerol), at least twelve proteins of Mr 127,000, 80,000, 70,000, 36,000, 35,000, 33,000, 32,000, 30,000, 27,000, 22,000, 19,000 and 17,000 were phosphorylated, and the phosphorylation of these proteins was enhanced by the addition of calcium, indicating that these proteins are substrates for protein kinase C. No endogenous protein phosphorylation was found in a 105,000 g-particulate fraction. Thus, these findings demonstrate that adrenal glomerulosa cells have specific substrate proteins for glomerulosa CaM kinase and protein kinase C, respectively.  相似文献   

11.
The phosphorylation of rat cardiac microsomal proteins was investigated with special attention to the effects of okadaic acid (an inhibitor of protein phosphatases), inhibitor 2 of protein phosphatase 1 and inhibitor of cyclic AMP-dependent protein kinase (protein kinase A). The results showed that okadaic acid (5 µM) modestly but reproducibly augmented the protein kinase A-catalyzed phospholamban (PLN) phosphorylation, although exerted little effect on the calcium/calmodulin kinase-catalyzed PLN phosphorylation. Microsomes contained three other substrates (Mr 23, 19 and 17 kDa) that were phosphorylated by protein kinase A but not by calcium/calmodulin kinase. The protein kinase A-catalyzed phosphorylation of these three substrates was markedly (2-3 fold) increased by 5 µM okadaic acid. Calmodulin was found to antagonize the action of okadaic acid on such phosphorylation. Protein kinase A inhibitor was found to decrease the protein kinase A-catalyzed phosphorylation of microsomal polyp eptides. Unexpectedly, inhibitor 2 was also found to markedly decrease protein kinase A-catalyzed phosphorylation of phospholamban as well these other microsomal substrates. These results are consistent with the views that protein phosphatase 1 is capable of dephosphorylating membrane-associated phospholamban when it is phosphorylated by protein kinase A, but not by calcium/calmodulin kinase, and that under certain conditions, calcium/calmodulin-stimulated protein phosphatase (protein phosphatase 2B) is also able to dephosphorylate PLN phosphorylated by protein kinase A. Additionally, the observations show that protein phosphatase 1 is extremely active against the three protein kinase A substrates (Mr 23, 19 and 17 kDa) that were present in the isolated microsomes and whose state of phosphorylation was particularly affected in the presence of dimethylsulfoxide. Protein phosphatase 2B is also capable of dephosphorylating these three substrates. (Mol Cell Biochem 175: 109–115, 1997  相似文献   

12.
A 50 kDa, calcium-dependent protein kinase (CDPK) was purified about 1000-fold from cultured cells of alfalfa (Medicago varia) on the basis of its histone H1 phosphorylation activity. The major polypeptide from bovine histone H1 phosphorylated by either animal protein kinase C (PK-C) or by the alfalfa CDPK gave an identical phosphopeptide pattern. The phosphoamino acid determination showed phosphorylation of serine residues in histone H1 by the plant enzyme. Histone-related oligopeptides known to be substrates for animal histone kinases also served as substrates for the alfalfa kinase. Both of the studied peptides (GKKRKRSRKA; AAASFKAKK) inhibited phosphorylation of H1 histones by bovine and alfalfa kinases. The results of competition studies with the nonapeptide (AAASFKAKK), which is a PK-C specific substrate, suggest common features in target recognition between the plant Ca2+-dependent kinase and animal protein kinase C. We also propose that synthetic peptides like AAASFKAKK can be used as a tool to study substrates of plant kinases in crude cell extracts.  相似文献   

13.
We have characterized a novel ecto-protein kinase activity and a novel ecto-protein phosphatase activity on the membrane surface of human platelets. Washed intact platelets, when incubated with [gamma-32P]ATP in Tyrode's buffer, showed the phosphorylation of a membrane surface protein migrating with an apparent molecular mass of 42 kDa on 5-15% SDS polyacrylamide gradient gels. The 42 kDa protein could be further resolved on 15% SDS gels into two proteins of 39 kDa and 42 kDa. In this gel system, it was found that the 39 kDa protein became rapidly phosphorylated and dephosphorylated, whereas the 42 kDa protein was phosphorylated and dephosphorylated at a much slower rate. NaF inhibited the dephosphorylation of these proteins indicating the involvement of an ecto-protein phosphatase. The platelet membrane ecto-protein kinase responsible for the phosphorylation of both of these proteins was identified as a serine kinase and showed dependency on divalent cations Mg2+ or Mn2+ ions. Ca2+ ions potentiated the Mg(2+)-dependent ecto-protein kinase activity. The ecto-protein kinase rapidly phosphorylated histone and casein added exogenously to the extracellular medium of intact platelets. Following activation of platelets by alpha-thrombin, the incorporation of [32P]phosphate from exogenously added [gamma-32P]ATP by endogenous protein substrates was reduced by 90%, suggesting a role of the ecto-protein kinase system in the regulation of platelet function. The results presented here demonstrate that both protein kinase and protein phosphatase activities reside on the membrane surface of human platelets. These activities are capable of rapidly phosphorylating and dephosphorylating specific surface platelet membrane proteins which may play important roles in early events of platelet activation and secretion.  相似文献   

14.
The phosphorylation of nuclear proteins of porcine brain cAMP-dependent protein kinase was studied. Some nuclear proteins after extraction from the nuclei served as substrates for protein kinase. Lysine-rich histones H1, H2a and H2b were found to accept phosphate during chromatin phosphorylation by cAMP-dependent protein kinase. Phosphorylation of intact nuclei revealed that in such a system only histone H1 is a substrate for cAMP-dependent protein kinase. In the presence of DNA the histones are phosphorylated by cAMP-dependent protein kinase in a different manner. It was concluded that DNA can determine the accessibility of protein substrates for the catalytic subunit of cAMP-dependent protein kinase.  相似文献   

15.
A heat-stable, soluble component of brown adipose tissue from newborn rats was found to be readily phosphorylated by protein kinase of the same subcellular fraction. The concentration of this component in brown fat decreased with the age of the animals. A boiled crude microsomal preparation from rat liver was also phosphorylated by brown fat protein kinase. The GTP-linked phosphorylation of the endogenous heat-stable protein was not stimulated by ATP (in contrast to phosphorylation of histone). The maximum velocity of phosphorylation achieved with GTP was about 2.5 times higher than that with ATP as nucleotide substrate. This difference was not due to ATPase activity in the assay. With histone as the protein acceptor both activities were the same. The affinity of protein kinase(s) for ATP was lower with the endogenous heat-stable brown-fat protein and with boiled microsomes (Km of 0.21 mM and 0.17 mM, respectively) than with histone (Km of 0.05 M). No detecable ATPase activity was present in either acceptor protein. It is concluded that the 100 000 × g supernatant fraction from brown fat of infant rats contains two protein kinase activities. One preferentially uses ATP and histone as substrates and the other uses endogenous heat-stable soluble proteins and either ATP or GTP.  相似文献   

16.
In mammalian and squid nervous systems, the phosphorylation of neurofilament proteins (NFs) seems to be topographically regulated. Although NFs and relevant kinases are synthesized in cell bodies, phosphorylation of NFs, particularly in the lys‐ser‐pro (KSP) repeats in NF‐M and NF‐H tail domains, seem to be restricted to axons. To explore the factors regulating the cellular compartmentalization of NF phosphorylation, we separated cell bodies (GFL) from axons in the squid stellate ganglion and compared the kinase activity in the respective lysates. Although total kinase activity was similar in each lysate, the profile of endogenous phosphorylated substrates was strikingly different. Neurofilament protein 220 (NF220), high‐molecular‐weight NF protein (HMW), and tubulin were the principal phosphorylated substrates in axoplasm, while tubulin was the principal GFL phosphorylated substrate, in addition to highly phosphorylated low‐molecular‐weight proteins. Western blot analysis showed that whereas both lysates contained similar kinases and cytoskeletal proteins, phosphorylated NF220 and HMW were completely absent from the GFL lysate. These differences were highlighted by P13suc1 affinity chromatography, which revealed in axoplasm an active multimeric phosphorylation complex(es), enriched in cytoskeletal proteins and kinases; the equivalent P13 GFL complex exhibited six to 20 times less endogenous and exogenous phosphorylation activity, respectively, contained fewer cytoskeletal proteins and kinases, and expressed a qualitatively different cdc2‐like kinase epitope, 34 kDa rather than 49 kDa. Cell bodies and axons share a similar repertoire of molecular consitutents; however, the data suggest that the cytoskeletal/kinase phosphorylation complexes extracted from each cellular compartment by P13 are fundamentally different. © 1999 John Wiley & Sons, Inc. J Neurobiol 40: 89–102, 1999  相似文献   

17.
Numatrin is a nuclear matrix phosphoprotein whose synthesis and abundance were shown to be regulated during the cell cycle in mitogen-stimulated lymphocytes (Feuerstein, N., and Mond, J. (1987) J. Biol. Chem. 262, 11389-11397). We examined the effect of (a) CTD-kinase, which contains the cdc2 catalytic component (p34) in a complex with a p58 subunit (cdc2/p58) and (b) the M phase-specific histone H1 kinase, which contains the cdc2 kinase in association with a p62 subunit (cdc2/p62), on phosphorylation of numatrin. We show that both cdc2 kinase complexes can phosphorylate numatrin. However, cdc2/p58 at conditions that caused a similar effect to cdc2/p62 on phosphorylation of histone H1 (dpm/micrograms of substrate/micrograms of enzyme) was found to have a 5-25-fold higher catalytic activity in the phosphorylation of numatrin. Analysis of the tryptic phosphopeptide map of numatrin phosphorylated by these cdc2 kinase complexes showed that both kinase complexes phosphorylated two major identical peptides, but minor additional peptides were differentially phosphorylated by each of these kinases. This indicates that under certain experimental conditions cdc2/p58 and cdc2/p62 may express some differences in their catalytic activity. In vitro phosphorylation by CTD kinase of a whole nuclear protein extract from murine fibroblasts showed that numatrin is the most prominent substrate for CTD kinase in this nuclear extract. CTD kinase cdc2/p58 was found to induce significantly the phosphorylation of five other discrete nuclear substrates. Particularly, two nuclear proteins at 75 kDa/pI approximately 6.5 and 85 kDa/pI approximately 5.3, which were not Coomassie Blue stainable, were found to be markedly phosphorylated by CTD kinase. The results of this study call for further study of the role of CTD kinase cdc2/p58 in the phosphorylation of numatrin under physiological conditions and to further characterization of the other nuclear substrates for CTD kinase.  相似文献   

18.
Muscle glycogen phosphorylase kinase [EC 2.7.1.38] has the ability to phosphorylate five fractions of calf thymus histone. H1 histone is the most preferable substrate, and maximally about 1.3 mol of phosphate is incorporated into every mole of this histone. This reaction absolutely depends on CA2+, and the molecular activity is about one third of that of cyclic AMP-dependent protein kinase (protein kinase A). The affinity of phosphorylase kinase for H1 histone is higher than that of protein kinase A. Calmodulin stimulates this histone phosphorylation. Analysis of the N-bromosuccinimide-bisected fragments of fully phosphorylated H1 histone has revealed that the enzyme phosphorylates mostly seryl residues in both amino- and carboxyl-terminal portions, although phosphorylation of the carboxyl-terminal portion is twice as much as that of the amino-terminal portion. Fingerprint analysis indicates that the phosphorylation sites in H1 histone for this enzyme are different from the sites phosphorylated by protein kinase A. This catalytic activity also differs from that of a newly found multifunctional protein kinase which may be activated by the simultaneous presence of Ca2+ and phospholipid.  相似文献   

19.
We have attempted to purify endogenous substrate proteins for casein kinases I and II from the cytosol of AH-66 hepatoma cells. Utilizing the fact that only a few substrates are concentrated in the fraction eluted from DEAE-cellulose between 0.3 and 0.6 M NaCl, two substrates were purified from this fraction by DEAE-cellulose chromatography, hydroxyapatite chromatography, and HPLC on a DEAE-5PW column. The purified substrate proteins had molecular masses of 30.5 kDa and 31 kDa. The 31-kDa protein substrate was markedly phosphorylated by casein kinase II, but only slightly by casein kinase I. The radioactive phosphate incorporated into 31-kDa substrate by casein kinase II was 0.2 mol/mol of the protein and phosphorylation occurred on both threonine and serine residues. The 30.5 kDa protein was only slightly phosphorylated by casein kinase II, but not at all by casein kinase I.  相似文献   

20.
We have attempted to purify endogenous substrate proteins for casein kinases I and II from the cytosol of AH-66 hepatoma cells. Utilizing the fact that only a few substrates are concentrated in the fraction eluted from DEAE-cellulose between 0.3 and 0.6 M NaCl, two substrates were purified from this fraction by DEAE-cellulose chromatography, hydroxyapatite chromatography, and HPLC on a DEAE-5PW column. The purified substrate proteins had molecular masses of 30.5 kDa and 31 kDa. The 31-kDa protein substrate was markedly phosphorylated by casein kinase II, but only slightly by casein kinase I. The radioactive phosphate incorporated into 31-kDa substrate by casein kinase II was 0.2 mol/mol of the protein and phosphorylation occurred on both threonine and serine residues. The 30.5 kDa protein was only slightly phosphorylated by casein kinase II, but not at all by casein kinase I.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号