首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The conversion of exogenous 3H-farnesenic acid to 3H-methyl farnesoate and 3H-C16 juvenile hormone (JH) has been followed in the corpus allatum (CA) cells of the desert locust Schistocerca gregaria by means of electron microscopic autoradiography. Aerobic and anaerobic chase incubations have been used to modify the quantities of these three compounds within the CA cells. Under all incubation conditions, radiolabel is found associated almost exclusively with the subcellular membrane systems — smooth endoplasmic reticulum (SER) and Golgi elements —and with the mitochondria. CA cells are probably similar to vertebrate steroid-synthesizing cells in that the secretory product is synthesized in the SER and mitochondria.Radiolabel was found to be present in all cells of the CA suggesting that all cells are capable of at least the final two stages of JH biosynthesis (the esterification and epoxidation of 3H-farnesenic aid). This indicates that JH biosynthesis may be regulated through changes in the biosynthetic capabilities of individual cells rather than through changes in the total number of cells engaged in biosynthesis. Radiolabel was not observed to be associated with any distinctive cellular product, a result which provides additional evidence for the suggestion that the release of JH from the CA is governed by laws of simple physical diffusion.Supported by operating grants from the National Research Council of Canada to SST and ASMS. 3H-farnesenic acid was supplied by the late Dr. A.F. White of the Unit of Invertebrate Chemistry and Physiology, A.R.C., University of Sussex. We thank Dr. G.E. Pratt for helpful discussions  相似文献   

2.
Corpora allata incubated in appropriate medium release several compounds including juvenile hormones. Juvenile hormones (14C labeled or unlabeled) were extracted with hexane and directly analyzed by gas chromatography-mass spectroscopy. This method allowed the qualitative and quantitative analysis of total released juvenile hormone. It could also be used as a routine assay for evaluation of corpus allatum activity. Data obtained by this method were compared to those obtained by radiochemical assay.  相似文献   

3.
《Insect Biochemistry》1985,15(2):175-179
The effect of varying l-methionine (l-met) concentration on rates of juvenile hormone (JH) biosynthesis/release by corpora allata of females of the viviparous cockroach Diploptera punctata has been studied using a radiochemical assay. Both high activity glands (corpora allata from day 5 females) and low activity glands (corpora allata from day 11 females) were used to study the dose dependence of JH biosynthesis on l-met concentrations, under both de novo (spontaneous) conditions of JH biosynthesis and stimulated conditions (in the presence of the exogenous JH III precursor farnesoic acid). Maximal rates of JH biosynthesis/release were observed at l-met concentration of 20 μM (spontaneous) and 40 μM (stimulated). Below these concentrations, rates of JH biosynthesis declined linearly with decreasing l-met concentration. Optimal concentration of l-met appeared to be similar for both high and low activity corpora allata, under spontaneous and stimulated conditions of biosynthesis. Above 40 μM l-met, no increase in rates of JH biosynthesis was observed. It appears that the corpora allata of D. punctata are efficient scavengers of l-met and are able to utilize even low concentrations of the substrate for JH biosynthesis. The corpora allata of D. punctata may prove useful for the biosynthesis of authentic JH III, radiolabelled in the methyl position using as methyl donor, l[methyl-3H]met of high specific activity.  相似文献   

4.
ABSTRACT. Incubation of corpora allata (CA) from adult females of Locusta migratoria (L.) in vitro in medium with a potassium concentration of 50 mM results in an elevation of the rate of juvenile hormone (JH) release. This elevation is however delayed, becoming apparent after the glands have been returned to low concentration of potassium but it is also prolonged, lasting up to 270 min. The elevation is initially modest but becomes more marked with time. The response of glands to high concentration of potassium is heterogeneous and appears to some extent to be a function of the initial rate of JH release of the glands. Glands starting with low rates of JH release are stimulated strongly by potassium, those with high rates of JH release much less so. Co-incubation of glands with high concentration of potassium and with calcium channel blockers (both organic and ionic) prevents the elevation of release rates otherwise consequent on high concentrations of potassium.  相似文献   

5.
Methyl (2E, 6E) - 10, 11 - epoxy - 3, 7, 11 - trimethyl - 2, 6 - dodecadienoate (JH III) is synthesized by corpora cardiaca/allata of the American cockroach Periplaneta americana in vitro and released into the culture medium. It constitutes the principal part of the biologically detectable JH activity. A fully synthetic medium without terpenoid precursors or serum was used, which proves, that the entire molecule is synthesized de novo. The presence of JH III in orders as different as Blattodea, Orthoptera, Coleoptera and Lepidoptera indicates, that it is the most widely occuring JH of insects.  相似文献   

6.
Juvenile hormone III (JH) is synthesized by the corpora allata (CA) and plays a key role in mosquito development and reproduction. JH titer decreases in the last instar larvae allowing pupation and metamorphosis to progress. As the anti-metamorphic role of JH comes to an end, the CA of the late pupa (or pharate adult) becomes again “competent” to synthesize JH, which plays an essential role orchestrating reproductive maturation. 20-hydroxyecdysone (20E) prepares the pupae for ecdysis, and would be an ideal candidate to direct a developmental program in the CA of the pharate adult mosquito. In this study, we provide evidence that 20E acts as an age-linked hormonal signal, directing CA activation in the mosquito pupae. Stimulation of the inactive brain-corpora allata-corpora cardiaca complex (Br-CA-CC) of the early pupa (24 h before adult eclosion or −24 h) in vitro with 20E resulted in a remarkable increase in JH biosynthesis, as well as increase in the activity of juvenile hormone acid methyltransferase (JHAMT). Addition of methyl farnesoate but not farnesoic acid also stimulated JH synthesis by the Br-CA-CC of the −24 h pupae, proving that epoxidase activity is present, but not JHAMT activity. Separation of the CA-CC complex from the brain (denervation) in the −24 h pupae also activated JH synthesis. Our results suggest that an increase in 20E titer might override an inhibitory effect of the brain on JH synthesis, phenocopying denervation. All together these findings provide compelling evidence that 20E acts as a developmental signal that ensures proper reactivation of JH synthesis in the mosquito pupae.  相似文献   

7.
The synthesis of juvenile hormone-III by corpora allata of the cockroach Diploptera punctata is dependent under in vitro conditions upon a supply of exogenous methionine. Radiolabelled S-adenosylmethionine was identified by HPLC in extracts of corpora allata incubated with either [methyl-3H]methionine or [35S]methionine. Juvenile hormone (JH) synthesis by intact glands in vitro was inhibited by cycloleucine and selenomethionine, but this inhibition could be relieved by increasing the concentration of methionine. S-adenosylhomocysteine or sinefungin had little or no inhibitory effect on JH synthesis by intact glands, but 5′-deoxy-5′-methylthioadenosine was inhibitory. Adenosine and homocysteine synergistically inhibited JH synthesis. These results show that JH-III synthesis by intact glands can be inhibited by interfering with the S-adenosylmethionine-dependent transmethylation, and suggest that the product and inhibitor of that reaction, S-adenosyl-homocysteine, is rapidly hydrolyzed to adenosine and homocysteine in the corpora allata.  相似文献   

8.
We investigated the effect of fifteen 1,5-disubstituted imidazoles (1,5-dis) on juvenile hormone III (JH III) and methyl farnesoate (MF) biosynthesis by the corpora allata (CA) of the mosquito Aedes aegypti in vitro. Four compounds (TH-35, TH-83, TH-62 and TH-28) significantly decreased JH biosynthesis in the CA dissected from 3-day old sugar-fed females. The decrease of JH synthesis was not always associated with increased MF. TH-30 and TH-83 increased MF levels, while TH-85 and TH-61 significantly decreased MF levels. Five compounds (TH-26, TH-60, TH-83, TH-35 and TH-30) significantly inhibited JH biosynthesis in the CA dissected from females 15 h after a blood meal. Four 1,5-dis (TH-30, TH-26, TH-28 and TH-66) caused MF increases in CA from blood-fed females. 1,5-Disubstituted imidazoles had higher inhibitory activity on JH synthesis when substituted at position 5 by a 3-benzyloxyphenyl group and at position 1 by a benzyl group (such as TH-35). Inhibition of JH and MF biosynthesis by TH-35 was age-dependent and influenced by nutritional status; inhibition differed when evaluated in the CA dissected from sugar-fed females at different days after emergence and in the CA dissected from females at different hours after a blood meal. Inhibition was always higher when the CA was more active. The addition of TH-35 significantly reduced the stimulatory effect of Aedes-allatotropin and farnesoic acid on JH synthesis. This is the first report of an inhibitory effect of 1,5-disubstituted imidazoles on JH synthesis in Diptera.  相似文献   

9.
Summary

Corpora allata from 8-day-old female Locusta migratoria, during the phase of yolk deposition, exhibit high rates of C-16 juvenile hormone (JH) biosynthesis. The effect of different potential factors which may be involved in the regulation of corpora allata activity is reported. The biosynthetic activity of corpora allata was determined by radiochemical assay.

In maturing females, no changes in corpora allata activity are detected during one daily cycle. Starvation reduces JH biosynthesis only 3 days after the beginning of the food deprivation. Suppression of the median neurosecretory material by electrocoagulation of the internal cardiaca tract (TCC-I) does not disturb JH biosynthesis whereas the transection of the allata I nerve fibres (NCA-I) or the electrocoagulation of the lateral neurosecretory pericarya results in a rapid decline of JH biosynthesis. These data indicate that the median and lateral allatotropins are different, and that only the lateral neurosecretory material exerts an allatostimulating action on corpora allata at the time of vitellogenesis. The corpora allata response to the median allatotropin changes during oocyte growth. C-16 JH and/or 20-hydroxyecdysone treatments in vitro (addition in the culture medium) and in vivo (injection in female) do not influence JH production in our experimental conditions.  相似文献   

10.
Two genes coding for enzymes previously reported to be involved in the final steps of juvenile hormone (JH) biosynthesis in different insect species, were characterised in the desert locust, Schistocerca gregaria. Juvenile hormone acid O-methyltransferase (JHAMT) was previously described to catalyse the conversion of farnesoic acid (FA) and JH acid to their methyl esters, methyl farnesoate (MF) and JH respectively. A second gene, CYP15A1 was reported to encode a cytochrome P450 enzyme responsible for the epoxidation of MF to JH. Additionally, a third gene, FAMeT (originally reported to encode a farnesoic acid methyltransferase) was included in this study. Using q-RT-PCR, all three genes (JHAMT, CYP15A1 and FAMeT) were found to be primarily expressed in the CA of the desert locust, the main biosynthetic tissue of JH. An RNA interference approach was used to verify the orthologous function of these genes in S. gregaria. Knockdown of the three genes in adult animals followed by the radiochemical assay (RCA) for JH biosynthesis and release showed that SgJHAMT and SgCYP15A1 are responsible for synthesis of MF and JH respectively. Our experiments did not show any involvement of SgFAMeT in JH biosynthesis in the desert locust. Effective and selective inhibitors of SgJHAMT and SgCYP15A1 would likely represent selective biorational locust control agents.  相似文献   

11.
《Insect Biochemistry》1981,11(4):401-409
Biosynthesis of C16 juvenile hormone (C16JH) by isolated corpora allata (CA) of the viviparous cockroach Diploptera punctata has been studied by a radiochemical assay. This assay uses the incorporation from methyl labelled l-methionine in the methyl ester moiety of C16JH. The optimal concentration of l-methionine in the medium has been determined. When varying proportions of (methyl-3H)- and (methyl-14C)-labelled l-methionine are used in the assay, no isotope effect was observed indicating that labelled l-methionine can be used as a mass marker to quantify C16JH synthesis in D. punctata. C16JH synthesis was stimulated by addition of farnesoic acid (FA) to the medium (maximum at 30–40 μM). When stimulated with 30 μM FA, the C16JH release rate was directly dependent on C16JH synthesis rate, and no intraglandular accumulation of either C16JH or its immediate precursor methyl farnesoate were observed. Spontaneous and FA-stimulated rates of C16JH release were studied during the first reproductive cycle of the adult female. The two final steps of C16JH biosynthesis are not physiologically rate-limiting, as the ratio of spontaneous to FA-stimulated C16JH release (fractional endocrine activity ratio) is always lower than unity. There is a precise relationship between the length of the basal oöcytes and the rate of C16JH release.  相似文献   

12.
Brains of young (newly emerged) adult female locusts (Locusta migratoria migratorioides) and of mature (> 9 days old) locusts contain an extractable allatotropic factor, soluble in 100% methanol and in distilled water. This factor stimulates juvenile hormone III (JH III) synthesis and release from corpora allata (CA) that have been excised from donor locusts and then incubated with (radiolabeled methyl)-methionine in vitro in its presence. In addition to JH III, which is the major product synthesized by the CA, other hexanesoluble, radiolabeled compounds–-more polar than JH III–-are also released when CA are incubated in vitro. The activation of CA by the allatotropic factor is rapid and quickly declines when the factor is removed from the medium. Corpora allata excised from young females are marginally active and can be activated by brain allatotropic factor to less of an extent than CA of mature locusts. The content of allatotropic factor in brains of mature locusts is higher than that ascertained in brains of young females. Allatotropic factor is also present in the corpora cardiaca.  相似文献   

13.
Co-incubation of corpora allata (CA) from the cockroach, Diploptera punctata, with ovaries, fat body or muscle but not brain or testis, leads to a substantial increase in juvenile hormone synthesis. Incubation of the glands in medium pre-conditioned with ovaries also stimulates JH synthesis. The ovary was used as a convenient source of stimulatory factor for a detailed analysis of its physiological effects on the CA. The increase in JH synthesis is stable, maintained over 24h after exposure to the stimulatory factor. Stimulation is dose-dependent, and the corpora allata show an exquisite relationship between sensitivity to this factor and developmental stage. Day 0 and day 1 glands, as well as glands from post-vitellogenic females, are sensitive to stimulation, whereas glands from vitellogenic females are not sensitive. Corpora allata attached to the brain do not respond to the stimulatory factor, and denervation in vivo leads to an increase in JH synthesis by the glands and a loss in sensitivity to the factor. These data suggest that glands from pre- and post-vitellogenic females are inhibited by their nervous connection to the brain. In contrast, glands from vitellogenic females are normally responding to the endogenous stimulatory factor and are thus no longer stimulated in vitro. Co-incubation of CA with allatostatin and conditioned medium still leads to a stimulation of JH synthesis, suggesting that the restraining effect of the nervous connections to the brain is not caused by allatostatin. The CA cell number increases between emergence and day 2, then remains stable until after oviposition. The stimulatory factor accelerates the increase in cell number in young adult females. The results are interpreted as providing evidence for a constitutive change in CA activity caused by a humoral factor produced by various tissues including the ovary, and modulated by nervous connections to the brain.  相似文献   

14.
Exogenous farnesol or farnesoic acid (FA) stimulates juvenile hormone III (JH III) biosynthesis by isolated corpora allata from Locusta migratoria in a dose-dependent manner. Farnesol and FA also stimulate a dose-dependent accumulation of substantial amounts of methyl farnesoate (MF), identified by gas chromatography-mass spectroscopy (GCMS) analysis, in the corpora allata. Lower quantities of MF were found in the incubation medium. Corpora allata, denervated 2 days prior to assay, showed low spontaneous rates of JH biosynthesis which were stimulated by farnesol and FA. The dose-response curves for control and denervated corpora allata were similar. During oocyte maturation the rate of farnesol and FA stimulation of JH biosynthesis increased gradually. However, after transection of nervus corporis allati 1 (NCA-1), the rate of stimulated JH synthesis was maintained at preoperative levels. Although the spontaneous rate of JH biosynthesis decreased rapidly after NCA-1 transection, denervated glands could still be stimulated by farnesol or FA to produce large amounts of JH. These results suggest that the low spontaneous rate of JH biosynthesis in denervated corpora allata is not caused by inhibition of the final steps of JH biosynthesis.  相似文献   

15.
Allatectomy of 1-day-old female desert locusts resulted in an accumulation of lipid in the fat body. This accumulation of lipid was due to the continuation of lipid deposition in the fat body after the period of somatic growth. Somatic growth and feeding activity were unaffected by allatectomy, and so could not be indirect causes of fat body lipid accumulation. Lipid accumulation in allatectomized locusts is more likely to be related directly to a lack of juvenile hormone. Implantation of active corpora allata into 1-day-old adult female locusts resulted in a premature development of oöcytes and a decrease in fat body lipid accumulation; somatic growth was not inhibited. Implantation of active corpora allata into old allatectomized locusts resulted in a decrease in the fat body lipid content and the onset of oöcyte development. The lipid synthetic activity of the fat body, measured by the incorporation of 14C-actate into total fat body lipid, was greatly increased in allatectomized locusts after the period of somatic growth. The protein synthetic activity of the fat body, measured by the incorporation of 3H-leucine into total fat body protein, remained low after the period of somatic growth in allatectomized insects. Juvenile hormone might thus have a dual effect on fat body metabolism, that is suppressing lipid synthesis and stimulating vitellogenic protein synthesis. Increased synthesis of lipid by the fat body would then account for the accumulation of lipid in the fat body after allatectomy. Inhibition of release of lipid from the fat body is unlikely to play a part in the accumulation as allatectomy had no effect on haemolymph lipid concentrations.  相似文献   

16.
One juvenile hormone was isolated from culture medium containing isolated corpora allata of the grasshopper Schistocerca vaga (Orthoptera: Acrididae) and was shown by microchemical methods to be methyl (2E, 6E) - (10R) - 10, 11-epoxy-3, 7, 11-trimethyldodeca-2, 6-dienoate. This compound (JH III), which occurs in a sphingid moth Manduca sexta, is the first juvenile hormone identified in an insect order other than the Lepidoptera. Grasshopper organs incorporate both [2?14C] acetate and [methyl-14C] methionine into JH III showing de novo biosynthesis, but no indication of the synthesis of JH I or JH II was seen.  相似文献   

17.
《Insect Biochemistry》1987,17(7):1115-1118
The effects of the juvenile hormone (JH) analogue fenoxycarb (ethyl[2-(4-phenoxyphenoxy)-ethyl]carbamate) on the activity of corpora allata (CA) from adult female Periplaneta americana have been investigated. The in vitro biosynthesis of JH III by isolated CA was inhibited by about 85% in the presence of a high concentration (1 × 10−4 M) of fenoxycarb. However, at lower concentrations (1 × 10−6 M and 1 × 10−8 M) no inhibition of JH biosynthesis was apparent. Topical treatment of adult female cockroaches with fenoxycarb (100 μg/insect) did not reduce the subsequent rate of JH III biosynthesis by CA in vitro. By contrast, the same treatment markedly reduced the titre of endogenous JH III in intact cockroaches. These results suggest that CA activity in adult female P. americana may be controlled by negative feedback, and that this system of control is dependent on the maintenance of contact between the CA and nervous or humoral factors in the intact insect. Alternatively, it is possible that treatment with fenoxycarb increases the rate at which endogenous JH is metabolized.  相似文献   

18.
The hemolymph juvenile hormone (JH) titer in sexually immature female adults of Locusta migratoria (Ibaraki strain, Japan) was lower than in sexually mature females; nevertheless, JH synthetic activity by the corpora allata (CA) in vitro was considerably higher in immature females than in sexually mature females ([Okuda et al., 1996]). We carried out experiments to explain this contradiction. The CA activity of sexually immature female adults was very low when the CA were incubated as a complex together with the corpora cardiaca (CC) and brain. When the same complex was assayed after cutting the nerve cord connecting the CC and CA (NCA1), JH synthesis by the CA was enhanced tenfold. When this pair of CA was incubated in fresh medium without the CC and brain, JH synthesis was further increased. Therefore, the higher in-vitro JH production by CA from immature female adults was the result of isolation of the CA from the brain and CC. A methanolic extract of brain-CC complexes contained a factor that inhibited JH synthetic activity by CA in vitro in both immature and mature insects, and this inhibition was reversible. The factor was heat-resistant but lost allatostatic activity after pronase digestion. These results indicate that the allatostatic factor is probably a heat-stable peptide.  相似文献   

19.
A radioimmunoassay (RIA) for juvenile hormone III has been established which quantifies the biosynthesis of this hormone in vitro by the corpora allata of larvae and pupae of the tobacco hornworm, Manduca sexta. The specificity of the RIA for homologues and metabolites of juvenile hormone III was determined and it was found that the antibody was specific for juvenile hormone III and its acid. The juvenile hormone III RIA activity synthesized in vitro by corpora allata from day-5 last-instar larvae was identified as juvenile hormone III by high pressure liquid chromatography. The kinetics of hormone synthesis by corpora allata from selected stages during larval-pupal development revealed differential rates of synthesis, suggesting that juvenile hormone III may have a hormonal function in the larva and that regulation of its synthesis may occur. The significance of these developmental fluctuations in rates of juvenile hormone III synthesis by the corpora allata is discussed in relation to the haemolymph titres of the hormone.  相似文献   

20.
1-Citronellyl-5-phenyl imidazole (1,5-CPI), 1-citronellyl-4-phenyl imidazole (1,4-CPI) and 1-citronellyl-2-phenyl imidazole (1,2-CPI) were tested as inhibitors of JH-III biosynthesis in vitro. 1,5-CPI was found to be most active followed by 1,2-CPI. The least active isomer was 1,4-CPI. Inhibition of JH biosynthesis by 1,5-CPI resulted in no significant accumulation of the epoxidation substrate methyl farnesoate, and piperonyl butoxide, a known microsomal epoxidase inhibitor, produced only a slight increase in methyl farnesoate. Topical application of fluoromevalonolactone resulted in reduced biosynthetic capability of subsequently excised corpora allata.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号