共查询到20条相似文献,搜索用时 15 毫秒
1.
R Keller M S Cooper M Danilchik P Tibbetts P A Wilson 《The Journal of experimental zoology》1989,251(2):134-154
Morphometric data from scanning electron micrographs (SEM) of cells in intact embryos and high-resolution time-lapse recordings of cell behavior in cultured explants were used to analyze the cellular events underlying the morphogenesis of the notochord during gastrulation and neurulation of Xenopus laevis. The notochord becomes longer, narrower, and thicker as it changes its shape and arrangement and as more cells are added at the posterior end. The events of notochord development fall into three phases. In the first phase, occurring in the late gastrula, the cells of the notochord become distinct from those of the somitic mesoderm on either side. Boundaries form between the two tissues, as motile activity at the boundary is replaced by stabilizing lamelliform protrusions in the plane of the boundary. In the second phase, spanning the late gastrula and early neurula, cell intercalation causes the notochord to narrow, thicken, and lengthen. Its cells elongate and align mediolaterally as they rearrange. Both protrusive activity and its effectiveness are biased: the anterioposterior (AP) margins of the cells advance and retract but produce much less translocation than the more active left and right ends. The cell surfaces composing the lateral boundaries of the notochord remain inactive. In the last phase, lasting from the mid- to late neurula stage, the increasingly flattened cells spread at all their interior margins, transforming the notochord into a cylindrical structure resembling a stack of pizza slices. The notochord is also lengthened by the addition of cells to its posterior end from the circumblastoporal ring of mesoderm. Our results show that directional cell movements underlie cell intercalation and raise specific questions about the cell polarity, contact behavior, and mechanics underlying these movements. They also demonstrate that the notochord is built by several distinct but carefully coordinated processes, each working within a well-defined geometric and mechanical environment. 相似文献
2.
3.
4.
Summary The adenohypophysial primordium of Xenopus laevis tadpoles at stages 33/34 to 46 (Nieuwkoop and Faber, 1956) were examined immuno-histologically for -MSH, -MSH and ACTH. -MSH was demonstrated from stage 37/38 onwards, and -MSH from stage 39. No signs of ACTH production were detected. -MSH and -MSH occurred in the same cells. No differences were found in the intensity of immunofluorescence between tadpoles which were kept on a black and a white background. The present study lends no support to the hypothesis concerning the derivation of -MSH from ACTH. The observations made suggest that the morphological formation of the pars intermedia is accomplished during stages 37/38 to 39.
Acknowledgement. The authors express warm thanks to Dr. M.P. Dubois (Laboratoire de Physiologie de la Reproduction, INRA, Nouzilly, France), who prepared and verified the antibodies. Grants from Swedish Natural Science Research Council and Landshovding Per Westlings minnesfond, Lund, Sweden are gratefully acknowledged 相似文献
5.
We report on the development of a slice culture of amphibian brain tissue. In particular, we cultured slices from Xenopus laevis tadpoles that contain the olfactory mucosae, the olfactory nerves, the olfactory bulb and the telencephalon. During 6 days in roller tubes the slices flattened, starting from 250 microm and decreasing to approximately 40 microm, corresponding to about three cell layers. Dendritic processes could be followed over distances as long as 200 microm. Neurons in the cultured slice could be recorded using the patch clamp technique and simultaneously imaged using an inverted laser scanning microscope. We characterized the main neuron types of the olfactory bulb, i.e. mitral cells and granule cells, by correlating their typical morphological features in the acute slice with the electrophysiological properties in both the acute slice and slice culture. This correlation allowed unambiguous identification of mitral cells and granule cells in the slice culture. 相似文献
6.
The structure of the olfactory bulb in tadpoles of Xenopus laevis (stages 54-56) was studied using axon tracing (with biocytin or low-weight dextran) and immunocytochemical techniques. Filling the olfactory nerve with biocytin made the nerve layer and the glomeruli visible. Dye injections into the glomerular layer labeled the lateral olfactory tract. Vice versa, dye injections into the lateral olfactory tract made mitral cells and their glomerular branching patterns visible. Anti-GABA antiserum stained periglomerular and granule cells, while the olfactory nerve and mitral cells were labeled by antiglutamate antiserum. We describe the layering, the numbers of cells and glomeruli, and their localization in both the main and the accessory olfactory bulb. 相似文献
7.
J. Peute 《Cell and tissue research》1969,97(4):564-575
Summary The ultrastructure of the Paraventricular organ in the hypothalamus of Xenopus laevis tadpoles is described. It appeares that the Paraventricular organ of this anuran species is homologous with the Organon vasculosum hypothalami or the Paraventricular organ of other vertebrates.The Paraventricular organ of Xenopus laevis is characterized by an ependymal lining with only few cilia and by two types of nerve cells. Both types of nerve cells have ventricular processes, protruding into the lumen of the third ventricle and forming a network. The protrusions bear cilia of the 8+1 pattern. It has been possible to distinguish both types of nerve cells on account of their dense-core vesicles. A secretory function of both cell types is suggested.In a region close to the Paraventricular organ, another granulated type of nerve cell has been observed. A relationship between these cells and the preoptic nucleus is discussed.The author thanks Prof. Dr. P. G. W. J. van Oordt for his helpful comments and criticism, Mr. H. van Kooten for photographic assistance and Mr. F. Dijk for technical assistance. 相似文献
8.
H. J. Th. Goos 《Cell and tissue research》1969,97(1):118-124
Summary In Xenopus laevis tadpoles the relation between a paired nucleus of bio-amine producing neurons in the caudal hypothalamus and the pars intermedia of the hypophysis was studied.Treatment of the animals (stage 49 to 50 of Nieuwkoop and Faber's normal table) with reserpine caused aggregation of the skin melanophores within one hour, followed by redispersion five to six hours after the beginning of the experiment. This was at exactly the same time as the bio-amines in the caudal hypothalamus disappeared. However, the drug was ineffective if the nuclei had been removed. This indicates that reserpine acts via these nuclei and does not influence the skin melanophores directly.It was concluded that the initial aggregation of the melanophores may be the result of a reduced extrusion of MSH from the pars intermedia, caused by an increased output of a MIF by the bio-amine producing nuclei. The redispersion was explained by assuming that the bio-amines were depleted and the nuclei stopped with the extrusion of the MIF. This does not mean that the production of a MIF is the only function of the paired bio-amine producing nucleus in the caudal hypothalamus.The author thanks Prof. Dr. P. G. W. J. van Oordt for his helpful comments and criticism. Mr. J. H. I. J. M. ten Berge and Mr. E. W. A. Kamperdijk provided great assistance during the course of the experiments. Mr. H. van Kooten made the diagram and the photograph. 相似文献
9.
C. D. Notenboom 《Cell and tissue research》1972,134(3):383-402
Summary The development of the preoptic nucleus of Xenopus laevis tadpoles during metamorphosis was studied and the effect of osmotic stimulation on this process investigated. The development of this region was not affected by treatment for one or more days in hypertonic media. It was found that at the end of metamorphosis the neurosecretory cells in the preoptic nucleus are localized in three regions: the rostro-dorsal, the caudo-dorsal and the ventral region. After osmotic stimulation only the neurosecretory cells of the caudo-dorsal region appeared to have reacted, as indicated by their loss of neurosecretory (PIC positive) material. It is concluded that the cells of this region may be involved in the synthesis of the posterior lobe hormones.The author thanks Prof. Dr. J. C. van de Kamer and Dr. F. C. G. van de Veerdonk for their interest and many helpful discussions, Dr. L. Boomgaart and Dr. A. P. van Overbeeke for correcting the English text and Miss C. M. G. van Bemmel for technical assistance. 相似文献
10.
The mechanics of notochord elongation, straightening and stiffening in the embryo of Xenopus laevis 总被引:3,自引:0,他引:3
We have examined the biomechanical development of the notochord of Xenopus early tail-bud embryos by: (1) quantifying morphological and mechanical changes in the embryo during stages 20-28, and (2) conducting manipulative experiments to elucidate mechanical roles of various components of the notochord. The notochord, which is composed of a stack of flat cells surrounded by a connective tissue sheath, elongates dramatically and begins straightening between stages 21 and 25. At this time the fiber density in the notochord sheath goes up, the osmotic activity of the notochord cells increases, vacuoles within these cells swell, the internal pressure of the notochord increases 2- to 3-fold, and the flexural stiffness of the notochord rises by an order of magnitude. We suggest that the tendency of the notochord cells to osmotically swell is resisted by the sheath, thereby permitting the internal pressure to rise. This pressure increase results in the greater stiffness that permits the notochord to elongate and straighten without being buckled by the surrounding tissues. 相似文献
11.
Summary The distribution of monoamine oxidase (MAO) in the brain of Xenopus laevis tadpoles (stage 52–56) was studied histochemically with a modified Glenner's tryptamine-tetrazolium method. A moderate activity was observed in fibre regions of the striatum and septum (including the medial and lateral forebrain bundles), in the neuropil of the nucleus amygdalae, in the commissura anterior and commissura hippocampi, in the fibre regions of the diencephalon (including the optic chiasma), in the fibre regions of the tectum opticum and the tegmentum of the mesencephalon and in the white substance of the ventral half of the medulla oblongata. A greater MAO activity was found in the neuropil of the entire nucleus praeopticus. In the partes anterior and magnocellularis of this nucleus, MAO positive fibres are present in close contact with the perikarya, indicating a monoaminergic innervation of these neurons. The perikarya themselves did not show MAO activity. In the neurons of the nucleus praeopticus epichiasmaticus, the paraventricular organ (PVO) and nucleus infundibularis dorsalis (NID), only a slight MAO activity has been demonstrated in the perikarya, whereas a strong MAO positivity was found in the intraventricular protrusions and the neuropil. These data indicate the aminergic character of the neurons of these nuclei. From the postoptic fibre region a MAO positive tract was observed towards the developing median eminence and pars intermedia of the hypophysis. The pars nervosa and some cells of the pars distalis also contained MAO. Along the border of the aquaeduct of Silvius and the fourth ventricle, MAO positive liquor-containing neurons are also present.The distribution of acetylcholinesterase (AChE) was investigated in the hypothalamohypophysial region. AChE activity was found in the neuropil of the nucleus praeopticus magnocellularis, in the fibres of the optic chiasma and in the postoptic fibre region. The neurons of the PVO and NID were AChE negative. An AChE positive tract could be traced from the postoptic fibre region to the developing median eminence and pars nervosa. The pars distalis did not show AChE activity. However, in tadpoles reaching the metamorphic climax, ChE activity appeared in certain cells of the pars distalis; this might be related to degenerative phenomena in the acidophilic cells. The absence of AChE activity in the pars intermedia indicates a regulation of MSH release by peptidergic nerves to be unlikely.The stimulating interest and helpful advice of Prof. Dr. P. G. W. J. van Oordt is gratefully acknowledged. Thanks are also due to Mr. H. van Kooten and his co-workers for making the photographs. 相似文献
12.
Dr. N. Erik I. Nyholm 《Cell and tissue research》1977,180(2):223-230
Summary The adenohypophyses of Xenopus laevis tadpoles at developmental stages 20 to 46 (Nieuwkoop and Faber, 1956) were studied. From its first appearance at about stage 20 to 21, the adenohypophysial primordium passes through four morphogenetic phases, each characterized by internal events. The first phase (stages 20 to about 33/34) is characterized by extensive proliferation of the primordium. During the second phase (stages 33/34 to about 37/38), the growth of the primordium is arrested. This arrest coincides with the attainment of secretory function. The primordium is claviform in shape at these stages. The third phase, roughly stage 39, is characterized by a thorough reorganization of the adenohypophysial cells, leading to the formation of the pars distalis and pars intermedia. The shape of the primordium changes, and its volume temporarily increases. The last phase is characterized by the organization of the pars distalis cells into cell cords which possibly demonstrate a functional relation to a specialized region (the hilus) of the adenohypo-physis-brain interspace.
Acknowledgements. Grants from the Faculty of Mathematics and Science, University of Lund, the Royal Physiographic Society, Lund, and the Swedish Natural Sience Research Council are gratefully acknowledged 相似文献
13.
Determination of the sensitive stages for gonadal sex-reversal in Xenopus laevis tadpoles 总被引:3,自引:0,他引:3
I Villalpando H Merchant-Larios 《The International journal of developmental biology》1990,34(2):281-285
The response of developing gonads of the clawed toad Xenopus laevis tadpoles to estradiol benzoate (EB) was studied between stages 44 and 67 using high resolution techniques. In presumptive genetic males the following results were obtained: 1) 100% sex reversal was induced when EB was administered before translocation of primordial germ cells (PGCs) from the gonadal epithelium into the medullary region (stages 44-50). 2) Ambiguous gonads were formed when EB treatment was initiated at stages 51-54, when PGCs were migrating into the medullary region. 3) Finally, normal testes differentiated when EB treatment began after the primordial germ cells had completed their translocation into the medulla (stages 55-56). These results suggest that EB might induce sex-reversal in genetic males by disruption of early somatic-germ cell interactions in the medullary region of the gonad. Consequently, later morphogenetic events might be deranged, preventing differentiation of testis. We propose a hypothesis in which precocious production of estradiol (E2) by genotypic females is the mechanism for primary sex differentiation. 相似文献
14.
Classes and narrowing selectivity of olfactory receptor neurons of Xenopus laevis tadpoles 下载免费PDF全文
In olfactory receptor neurons (ORNs) of aquatic animals amino acids have been shown to be potent stimuli. Here we report on calcium imaging experiments in slices of the olfactory mucosa of Xenopus laevis tadpoles. We were able to determine the response profiles of 283 ORNs to 19 amino acids, where one profile comprises the responses of one ORN to 19 amino acids. 204 out of the 283 response profiles differed from each other. 36 response spectra occurred more than once, i.e., there were 36 classes of ORNs identically responding to the 19 amino acids. The number of ORNs that formed a class ranged from 2 to 13. Shape and duration of amino acid-elicited [Ca2+]i transients showed a high degree of similarity upon repeated stimulation with the same amino acid. Different amino acids, however, in some cases led to clearly distinguishable calcium responses in individual ORNs. Furthermore, ORNs clearly appeared to gain selectivity over time, i.e., ORNs of later developmental stages responded to less amino acids than ORNs of earlier stages. We discuss the narrowing of ORN selectivity over stages in the context of expression of olfactory receptors. 相似文献
15.
The development of amphibian sensory systems and behavior is generally considered to proceed normally without reference to sensory experience during embryonic or larval stages. Most of the supporting research, however, has concentrated on the retinotectal (visual) systems of anurans and has ignored behaviors directed by other sensory systems. We demonstrate that early exposure to light is necessary for the development of photopositive behavior in Xenopus laevis tadpoles, a behavior probably directed by the pineal complex. Light-deprivation during the tadpoles' first 10 days of development results in a long-lasting reduction in the tadpoles' light preference. The development of a strong light preference is not influenced by light-deprivation before the tadpoles are 2 days old or after the tadpoles are 10 days old, but light-deprived tadpoles recover a weak light preference after subsequent days of rearing in the light. Lengthening the tadpoles' exposure to light during the first 10 days of development produces increasingly strong light preferences. Considering the important role of the pineal complex in guiding phototactic behaviors in anurans, we suggest that light-deprivation alters photopositive behavior in Xenopus tadpoles by altering the development of the pineal complex. 相似文献
16.
17.
Invariant T (iT) cells expressing an invariant or semi-invariant T cell receptor (TCR) repertoire have gained attention in recent years because of their potential as specialized regulators of immune function. These iT cells are typically restricted by nonclassical MHC class I molecules (e.g., CD1d and MR1) and undergo differentiation pathways distinct from conventional T cells. While the benefit of a limited TCR repertoire may appear counterintuitive in regard to the advantage of the diversified repertoire of conventional T cells allowing for exquisite specificity to antigens, the full biological importance and evolutionary conservation of iT cells are just starting to emerge. It is generally considered that iT cells are specialized to recognize conserved antigens equivalent to pathogen-associated molecular pattern. Until recently, little was known about the evolution of iT cells. The identification of class Ib and class I-like genes in nonmammalian vertebrates, despite the heterogeneity and variable numbers of these genes among species, suggests that iT cells are also present in ectothermic vertebrates. Indeed, recent studies in the amphibian Xenopus have revealed a drastic overrepresentation of several invariant TCRs in tadpoles and identified a prominent nonclassical MHC class I-restricted iT cell subset critical for tadpole antiviral immunity. This suggests an important and perhaps even dominant role of multiple nonclassical MHC class I-restricted iT cell populations in tadpoles and, by extension, other aquatic vertebrates with rapid external development that are under pressure to produce a functional lymphocyte repertoire with small numbers of cells. 相似文献
18.
R. Seldenrijk W. Berendsen D. R. W. Hup F. C. G. van de Veerdonk 《Cell and tissue research》1980,211(2):179-189
Summary Tail-fin melanophores of tadpoles of Xenopus laevis (Daudin) in primary culture were examined scanning electron microscopically in the aggregated and in the dispersed state. After isolation, the melanophores are spherical, but within 24 h they develop thin filopodia for attachment to the substratum. Subsequently, cylinder-like as well as flat sheet-like processes are formed, which adhere to the substratum with terminal pseudopodia and filopodia. The processes of adjacent melanophores contact each other, thus forming an interconnecting network between the melanophores.In the aggregated state the central part of the melanophore is spherical and voluminous. Both the central part and the processes bear microvilli. In melanophores with dispersed melanosomes the central part is much flatter; the distal parts have a thickness that equals a monolayer of melanosomes. The surface of the cell bears only scarce microvilli.These features indicate that melanophores do not have a fixed shape and that pigment migration is accompanied by reciprocal volume transformation between the cell body and its processes. 相似文献
19.