首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Association with resource-rich particles may benefit a numberof planktonic species in oligotrophic, open-ocean regimes. Thisstudy examined communities of microbes and zooplankton associatedwith colonies of the cyanobacterium Trichodesmium spp. in theSargasso Sea. Trichodesmium colonies and seawater controls werecollected near Bermuda using SCUBA during September 1995, andJune, July and August 1996. Organisms associated with the coloniesand those in the surrounding seawater were enumerated usinglight and fluorescence microscopy. We found that 85% of theTrichodesmiumpuff and tuft colonies examined harbored associated organisms.Associated organisms included bacteria (rod and coccoid), fungi,pennate diatoms, centric diatoms, heterotrophic and autotrophicdinoflagellates, chrysophytes, hypotrich ciliates, amoebae,hydroids, juveniles and nauplii of harpacticoid copepods, andjuvenile decapods. The most common associates (in addition tobacteria) were dinoflagellates (present in 74% of the coloniesexamined), amoebae (50%), ciliates (24%), and diatoms (24%).Numbers of bacteria per colony volume averaged 8.2x108 bacteriaml-1 (range = 8.1x107 – 3.5 x109 bacteria ml-1), and thedensity of associated microzooplankton and metazoans averaged6.8x104 organisms ml-1 (range = 0 – 3.6 x106 organismsml-1). Associates of Trichodesmium colonies were enriched bytwo to five orders of magnitude over plankton in the surroundingwater. This unique habitat allows for the association of primarilybenthic ciliate, diatom and copepod species and could contributesignificantly to plankton heterogeneity in the open-ocean. Thedistribution of associated organisms was affected by samplecharacteristics such as colony morphology, mucoid matrix structureand colony integrity. The influence of these factors indicatesthat succession or competition between heterotrophic microorganismsultimately determines Trichodesmium microcommunity structure.Similar processes could regulate microbial and metazoan communitiesassociated with other resource-rich microenvironments, suchas marine snow particles.  相似文献   

2.
We examined freshly collected samples of the colonial planktonic cyanobacterium Trichodesmium thiebautii to determine the pathways of recently fixed N within and among trichomes. High concentrations of glutamate and glutamine were found in colonies. Glutamate and glutamine uptake rates and concentrations in cells were low in the early morning and increased in the late morning to reach maxima near midday; then uptake and concentration again fell to low values. This pattern followed that previously observed for T. thiebautii nitrogenase activity. Our results suggest that recently fixed nitrogen is incorporated into glutamine in the N2-fixing trichomes and may be passed as glutamate to non-N2-fixing trichomes. The high transport rates and concentrations of glutamate may explain the previously observed absence of appreciable uptake of NH4+, NO3-, or urea by Trichodesmium spp. Immunolocalization, Western blots (immunoblots), and enzymatic assays indicated that glutamine synthetase (GS) was present in all cells during both day and night. GS appeared to be primarily contained in cells of T. thiebautii rather than in associated bacteria or cyanobacteria. Double immunolabeling showed that cells with nitrogenase (Fe protein) contained levels of the GS protein that were twofold higher than those in cells with little or no nitrogenase. GS activity and the uptake of glutamine and glutamate dramatically decreased in the presence of the GS inhibitor methionine sulfoximine. Since no glutamate dehydrogenase activity was detected in this species, GS appears to be the primary enzyme responsible for NH3 incorporation.  相似文献   

3.
We examined freshly collected samples of the colonial planktonic cyanobacterium Trichodesmium thiebautii to determine the pathways of recently fixed N within and among trichomes. High concentrations of glutamate and glutamine were found in colonies. Glutamate and glutamine uptake rates and concentrations in cells were low in the early morning and increased in the late morning to reach maxima near midday; then uptake and concentration again fell to low values. This pattern followed that previously observed for T. thiebautii nitrogenase activity. Our results suggest that recently fixed nitrogen is incorporated into glutamine in the N2-fixing trichomes and may be passed as glutamate to non-N2-fixing trichomes. The high transport rates and concentrations of glutamate may explain the previously observed absence of appreciable uptake of NH4+, NO3-, or urea by Trichodesmium spp. Immunolocalization, Western blots (immunoblots), and enzymatic assays indicated that glutamine synthetase (GS) was present in all cells during both day and night. GS appeared to be primarily contained in cells of T. thiebautii rather than in associated bacteria or cyanobacteria. Double immunolabeling showed that cells with nitrogenase (Fe protein) contained levels of the GS protein that were twofold higher than those in cells with little or no nitrogenase. GS activity and the uptake of glutamine and glutamate dramatically decreased in the presence of the GS inhibitor methionine sulfoximine. Since no glutamate dehydrogenase activity was detected in this species, GS appears to be the primary enzyme responsible for NH3 incorporation.  相似文献   

4.
The genetic diversity of Trichodesmium spp. from natural populations (off Bermuda in the Sargasso Sea and off North Australia in the Arafura and Coral Seas) and of culture isolates from two regions (Sargasso Sea and Indian Ocean) was investigated. Three independent techniques were used, including a DNA fingerprinting method based on a highly iterated palindrome (HIP1), denaturing gradient gel electrophoresis of a hetR fragment, and sequencing of the internal transcribed spacer (ITS) of the 16S-23S rDNA region. Low genetic diversity was observed in natural populations of Trichodesmium spp. from the two hemispheres. Culture isolates of Trichodesmium thiebautii, Trichodesmium hildebrandtii, Trichodesmium tenue, and Katagnymene spiralis displayed remarkable similarity when these techniques were used, suggesting that K. spiralis is very closely related to the genus TRICHODESMIUM: The largest genetic variation was found between Trichodesmium erythraeum and all other species of Trichodesmium, including a species of KATAGNYMENE: Our data obtained with all three techniques suggest that there are two major clades of Trichodesmium spp. The HIP1 fingerprinting and ITS sequence analyses allowed the closely related species to be distinguished. This is the first report of the presence of HIP1 in marine cyanobacteria.  相似文献   

5.
Characterization of Trichodesmium spp. by Genetic Techniques   总被引:1,自引:0,他引:1       下载免费PDF全文
The genetic diversity of Trichodesmium spp. from natural populations (off Bermuda in the Sargasso Sea and off North Australia in the Arafura and Coral Seas) and of culture isolates from two regions (Sargasso Sea and Indian Ocean) was investigated. Three independent techniques were used, including a DNA fingerprinting method based on a highly iterated palindrome (HIP1), denaturing gradient gel electrophoresis of a hetR fragment, and sequencing of the internal transcribed spacer (ITS) of the 16S-23S rDNA region. Low genetic diversity was observed in natural populations of Trichodesmium spp. from the two hemispheres. Culture isolates of Trichodesmium thiebautii, Trichodesmium hildebrandtii, Trichodesmium tenue, and Katagnymene spiralis displayed remarkable similarity when these techniques were used, suggesting that K. spiralis is very closely related to the genus Trichodesmium. The largest genetic variation was found between Trichodesmium erythraeum and all other species of Trichodesmium, including a species of Katagnymene. Our data obtained with all three techniques suggest that there are two major clades of Trichodesmium spp. The HIP1 fingerprinting and ITS sequence analyses allowed the closely related species to be distinguished. This is the first report of the presence of HIP1 in marine cyanobacteria.  相似文献   

6.
The stable isotope composition of the light elements (i.e., H, C, N, O and S) of organic samples varies significantly and, for C, is also unique and distinct from that of inorganic carbon. This is the result of (1) the isotope composition of reactants, (2) the nature of the reactions leading to formation and post-formational modification of the samples, (3) the environmental conditions under which the reactions took place, and (4) the relative concentration of the reactants compared to that of the products (i.e., [products]/[reactants] ratio). This article will examine the carbon isotope composition of terrestrial plant materials and its relationship with the above factors. delta13C(PDB) values of terrestrial plants range approximately from -8 to -38%, inclusive of C3-plants (-22 to -38%), C4-plants (-8 to -15%) and CAM-plants (-13 to -30%). Thus, the delta13C(PDB) values largely reflect the photosynthesis pathways of a plant as well as the genetics (i.e., species difference), delta13C(PDB) values of source CO2, relevant humidity, CO2/O2 ratios, wind and light intensity etc. Significant variations in these values also exist among different tissues, different portions of a tissue and different compounds. This is mainly a consequence of metabolic reactions. Animals mainly inherit the delta13C(PDB) values of the foods they consume; therefore, their delta13C(PDB) values are similar. The delta13C(PDB) values of plant materials, thus, contain information regarding the inner workings of the plants, the environmental conditions under which they grow, the delta13C(PDB) values of CO2 sources etc., and are unique. Furthermore, this uniqueness is passed on to their derivative matter, such as animals, humus etc. Hence, they are very powerful tools in many areas of research, including the ecological and environmental sciences.  相似文献   

7.
The Atlantic Meridional Transect (AMT) programme is a seriesof bi-annual cruises between the Falkland Islands (50°S)and the UK (50°N). Measurements of the abundance of theN2-fixing, colonial cyanobacterium Trichodesmium along thistransect in the years 1995–1999 reveal that it is especiallyabundant between 0 and 15°N, but by contrast almost completelyabsent between 5 and 30°S. The cruise path between 0 and15°N lies close to 20°W, on the African (eastern) sideof the Atlantic. The maximum colony abundances we observed (  相似文献   

8.
The marine diazotroph Trichodesmium is a major contributor to primary production and nitrogen fixation in the tropical and subtropical oceans. These regions are often characterized by low phosphorus (P) concentrations, and P starvation of Trichodesmium could limit growth, and potentially constrain nitrogen fixation. To better understand how this genus responds to P starvation we examined four genes involved in P acquisition: two copies of a high-affinity phosphate binding protein ( pstS and sphX ) and two putative alkaline phosphatases ( phoA and phoX ). Sequence analysis of these genes among cultured species of Trichodesmium ( T. tenue, T. erythraeum, T. thiebautii and T. spiralis ) showed that they all are present and conserved within the genus. In T. erythraeum IMS101, the expression of sphX , phoA and phoX were sensitive to P supply whereas pstS was not. The induction of alkaline phosphatase activity corresponded with phoA and phoX expression, but enzyme activity persisted after the expression of these genes returned to basal levels. Additionally, nifH (nitrogenase reductase; involved in nitrogen fixation) expression was downregulated under P starvation conditions. These data highlight molecular level responses to low P and lay a foundation for better understanding the dynamics of Trichodesmium P physiology in low-P environments.  相似文献   

9.

Micrometer sized stromatolitic structures called Frutexites are features observed in samples from the deep subsurface, and hot-spring environments. These structures are comprised of fine laminations, columnar morphology, and commonly consist of iron oxides, manganese oxides, and/or carbonates. Although a biological origin is commonly invoked, few reports have shown direct evidence of their association with microbial activity. Here, we report for the first time the occurrence of subsurface manganese-dominated Frutexites preserved within carbonate veins in ultramafic rocks. To determine the biogenicity of these putative biosignatures, we analyzed their chemical and isotopic composition using Raman spectroscopy and secondary ion mass spectroscopy (SIMS). These structures were found to contain macromolecular carbon signal and have a depleted 13C/12C carbon isotopic composition of – 35.4?±?0.50‰ relative to the entombing carbonate matrix. These observations are consistent with a biological origin for the observed Frutexites structures.

  相似文献   

10.
The mechanism by which planktonic marine cyanobacteria of the genus Trichodesmium fix N2 aerobically during photosynthesis without heterocysts is unknown. As an aid in understanding how these species protect nitrogenase, we have developed an immunofluorescence technique coupled to light microscopy (IF-LM) with which intact cyanobacteria can be immunolabeled and the distribution patterns of nitrogenase and other proteins can be described and semiquantified. Chilled ethanol was used to fix the cells, which were subsequently made permeable to antibodies by using dimethyl sulfoxide. Use of this technique demonstrated that about 3 to 20 cells (mean ± standard deviation, 9 ± 4) consecutively arranged in a Trichodesmium trichome were labeled with the nitrogenase antibody. The nitrogenase-containing cells were distributed more frequently around the center of the trichome and were rarely found at the ends. On average 15% of over 300 randomly encountered cells examined contained nitrogenase. The percentage of nitrogenase-containing cells (nitrogenase index [NI]) in an exponential culture was higher early in the light period than during the rest of the light-dark cycle, while that for a stationary culture was somewhat constant at a lower level throughout the light-dark cycle. The NI was not affected by treatment of the cultures with the photosynthetic inhibitor dichloro 1,3′-dimethyl urea or with low concentrations of ammonium (NH4Cl). However, incubation of cultures with 0.5 μM NH4Cl over 2 days reduced the NI. The IF technique combined with 14C autoradiography showed that the CO2 fixation rate was lower in nitrogenase-containing cells. The results of the present study suggest that (i) the IF-LM technique may be a useful tool for in situ protein localization in cyanobacteria, (ii) cell differentiation occurs in Trichodesmium and only a small fraction of cells in a colony have the potential to fix nitrogen, (iii) the photosynthetic activity (CO2 uptake) is reduced if not absent in N2-fixing cells, and (iv) variation in the NI may be a modulator of nitrogen-fixing activity.  相似文献   

11.
12.
Monomorium orientale Mayr (Hymenoptera: Formicidae) is a common structure- and food-infesting ant in Asia. There is only limited information on the biology and habits of this species, especially on the preferred foods and distribution of nutrients in colonies. We conducted a laboratory study on the distribution of carbohydrates, proteins, and lipids, which were represented by respective food sources, in M. orientale colonies. Three colony conditions were applied: normal, with a balanced ratio of castes, queenless (only workers and brood), and broodless (only queens and workers). Food sources were stained to track the flow of the respective food in the colonies. Results revealed that carbohydrates had rapid distribution, with > 60% of the colony indicated in 24 h, in all colony conditions. Queens in all colonies did not feed on protein. Protein showed a more delayed distribution in the brood in all colony conditions; < 10% of the colony fed on protein by 24 h. Only queens in broodless colonies showed signs of feeding on lipid, with < 10% indicated in 24 h. Workers in all colonies fed on lipid as soon as it was delivered, whereas the brood only began to reveal feeding response after 24 h.  相似文献   

13.
The carbon isotopic compositions of leaves and stems of woody legumes growing in coastal mediterranean and inland desert sites in California were compared. The overall goal was to determine what factors were most associated with the carbon isotope composition of photosynthetic stems in these habitats. The carbon isotope signature (d13C) of photosynthetic stems was less negative than that of leaves on the same plants by an average of 1.51 ± 0.42 ;pp. The d13C of bark (cortical chlorenchyma and epidermis) was more negative than that of wood (vascular tissue and pith) from the same plant for all species studied on all dates. Desert woody legumes had a higher d13C (less negative) and a lower intercellular CO2 concentration (Ci ) (for both photosynthetic tissues) than that of woody legumes from mediterranean climate sites. Differences in the d13C of stems among sites could be entirely accounted for by differences among site air temperatures. Thus, the d13C composition of stems did not indicate a difference in whole-plant integrated water use efficiency (WUE) among sites. In contrast, stems on all plants had a lower stem Ci and a higher d13C than leaves on the same plant, indicating that photosynthetic stems improve long-term, whole-plant water use efficiency in a diversity of species.  相似文献   

14.
O'Neil  J. M.  Roman  M. R. 《Hydrobiologia》1994,292(1):235-240
Trichodesmium is a filamentous, colonial nitrogen fixing cyanobacteria, ubiquitous in tropical and subtropical regions of the world's oceans. Trichodesmium fixes atmospheric nitrogen and can comprise a significant fraction of total primary production in oceanic surface waters. Therefore, the consumption and fate of Trichodesmium has important consequences for understanding carbon and nitrogen cycling in the open ocean. The pelagic harpacticoid copepod Macrosetella gracilis uses Trichodesmium not only as a physical substrate for juvenile development, but also as a food source. Several different types of pelagic copepods (including several species of calanoids, harpacticoids and a poecilostomatoid species) were tested for ingestion of Trichodesmium by labelling the cyanobacteria with 14C. Only the pelagic harpacticoids ingested Trichodesmium. Here we report the first grazing rates based on 14C-uptake measurements for Macrosetella gracilis (0.173 µg C copepod–1 h–1), and the first quantitative measurements of both Miracia efferata (0.402 µg C copepod–1 h–1) and Oculosetella gracilis (0.126 µg C copepod–1 h–1) ingesting this cyanobacteria. Ingestion rates of M. gracilis and M. efferata on the two different species of Trichodesmium, T. thiebautii and T. erythraeum, as well as the two different colonial morphologies of T. thiebautii, spherical-shaped (puffs) and fusiform (tufts), were also compared. Both Miracia and Macrosetella had higher ingestion rates on the puff colonies than the tuft colonies of T. thiebautii.. Both also had higher ingestion rates of T. erythraeum than T. thiebautii. Trichodesmium thiebautii contains a previously reported neurotoxin which may be an important factor in determining trophodynamic interactions. Our results suggest that pelagic harpacticoid copepods can be quantitatively important in determining the fate of Trichodesmium carbon and nitrogen.  相似文献   

15.
《Palaeoworld》2020,29(3):636-647
Planktonic foraminifera collected from a sediment trap deployed off Hainan in the northwestern South China Sea (SCS-NW) between July 2012 and April 2013 were studied to evaluate their seasonal variability and ecology as well as to infer the factors controlling their shell fluxes. The total planktonic foraminifera flux, as well as the fluxes of the dominant species (Globigerinoides ruber, Globigerinoides sacculifer and Neogloboquadrina dutertrei), showed three distinct maxima during SW-monsoon in August 2012, the SW-NE intermonsoon in October 2012 and the NE-monsoon in December 2012–February 2013. These periods were characterized by upwelling, aerosol fallout, and intense wind mixing, respectively, from which the foraminiferal assemblages benefitted, as indicated by the close correlation between wind speed, sea surface temperature (SST), chlorophyll a concentration (Chl-a), δ18O of G. ruber and the shell fluxes. The correlation also suggests that temperature and food availability might have been the primary drivers of the observed changes in foraminiferal abundance. The offset between the SST deduced from flux-weighted of G. ruber δ18O and annual mean SST is only ∼0.3 °C, much lower than ∼5.2 °C between the summer and winter temperature, indicating a balanced seasonality bias in the shell flux. The linear regression between the satellite-derived sea surface temperature and G. ruber δ18O reveals the strong potential of this species, at least in the studied region, as an ecological indicator for past oceanic environments.  相似文献   

16.
Ecologists use stable isotopes to infer diets and trophic levels of animals in food webs, yet some assumptions underlying these inferences have not been thoroughly tested. We used laboratory‐reared colonies of Solenopsis invicta Buren (Hymenoptera: Formicidae: Solenopsidini) to test the effects of metamorphosis, diet, and lipid storage on carbon and nitrogen stable isotope ratios. Effects of metamorphosis were examined in ant colonies maintained on a control diet of domestic crickets and sucrose solution. Effects of a diet shift were evaluated by adding a tuna supplement to select colonies. Effects of lipid content on stable isotopes were tested by treating worker ants with polar and non‐polar solvents. δ13C and δ15N values of larvae, pupae, and workers were measured by mass spectrometry on whole‐animal preparations. We found a significant effect of colony age on δ13C, but not δ15N; larvae, pupae, and workers collected at 75 days were slightly depleted in 13C relative to collections at 15 days (Δδ13C = ?0.27‰). Metamorphosis had a significant effect on δ15N, but not δ13C; tissues of each successive developmental stage were increasingly enriched in 15N (pupae, +0.5‰; workers, +1.4‰). Availability of tuna resulted in further shifts of about +0.6‰ in isotope ratios for all developmental stages. Removing fat with organic solvents had no effect on δ13C, but treatment with a non‐polar solvent resulted in enriched δ15N values of +0.37‰. Identifying regular patterns of isotopic enrichment as described here should improve the utility of stable isotopes in diet studies of insects. Our study suggests that researchers using 15N enrichment to assess trophic levels of an organism at different sites need to take care not to standardize with immature insect herbivores or predators at one site and mature ones at another. Similar problems may also exist when standardizing with holometabolous insects at one site and spiders or hemimetabolous insects at another site.  相似文献   

17.
Summary Trichodesmium is the first described example of a filamentous cyanobacterium without heterocysts that contains cells specialised for nitrogen fixation. The ultrastructure of cells with and without nitrogenase were compared using primarilyTrichodesmium tenue Wille, but alsoT. thiebautii Gomont andT. erythraeum Ehrenberg et Gomont. Immunohistochemistry demonstrated that the cytoplasm of certain cells was densely labelled with antibodies against Fe-protein (dinitrogenase reductase). Comparative TEM-image analysis revealed that these cells were also distinguished by a denser thylakoid network, dividing the vacuole-like space into smaller units. The nitrogenase-containing cells also exhibited less extensive gas vacuoles as well as fewer and smaller cyanophycin granules compared to cells which lacked nitrogenase. Carboxysomes were present in both cell types in equal proportion. Longitudinal sections showed that cells with nitrogenase were arranged adjacent to each other, and that groups of cells with and without nitrogenase may coexist in the same trichome. The correlation between modifications in ultrastructure and the presence of nitrogenase suggests a new type of cyanobacterial cell specialisation related to nitrogen fixation. The results obtained also question the systematic affiliation of the genusTrichodesmium.  相似文献   

18.
The fatty acid composition of 42 isolates belonging to the major plant affinity groups of Rhizobium has been determined and found to vary reproducible with culture age. Numerical taxonomic techniques applied to the 15 major fatty acid components of log-phase cultures of comparable physiological age showed that the rhizobia constitute a uniform group. However, two clusters comprising soybean-cowpea isolates and pea-bean isolates were evident. These observations, based on a simple analysis of only one group of chemical components, indicate relationships among rhizobia which differ from the conventional plant-affinity groupings but which are consistent with other proposed relationships established using a variety of biochemical and physiological criteria.  相似文献   

19.
Sessile invertebrate coelobite communities attached to the walls and roof of cavities in coralgal reefs on the annular rim of the Bermuda platform near North Rock (4 sites) and in the algal cup reef tract on the south shore (3 sites) have been studied by belt photo-transects and direct sampling. Irradiance measurements reveal a light gradient which appears to exert a strong influence on the composition, relative coverage and zonation of the attached biotic communities. Two main communities are recognised from cluster analysis and relative areal coverage data. Near the cavity entrances is a community dominated by crustose coralline algae, with subsidiary ascidians, demosponges, bryozoans and Foraminifera. Species richness is high and there is total biotic coverage of walls and roof. This community grades laterally into an exclusively animal community characterised by encrusting sponges and Foraminifera, with subsidiary bryozoans and unidentified branching organisms. Coverage varies from 100% to 30%, the substrate often exhibiting high micro-relief from the branching growth forms of the Foraminifera. Species richness is high at North Rock sites, less so on the south shore. The distribution of coelobite species is compared with that described from previous studies in Bermuda, Grand Cayman and Madagascar.  相似文献   

20.
Cyanobacteria are prominent constituents of the marine biosphere that account for a significant percentage of oceanic primary productivity. In an effort to resolve how open-ocean cyanobacteria persist in regions where the Fe concentration is thought to be limiting their productivity, we performed a number of Fe stress experiments on axenic cultures of marine Synechococcus spp., Crocosphaera sp., and Trichodesmium sp. Through this work, we determined that all of these marine cyanobacteria mount adaptive responses to Fe stress, which resulted in the induction and/or repression of several proteins. We have identified one of the Fe stress-induced proteins as an IdiA homologue. Genomic observations and laboratory data presented herein from open-ocean Synechococcus spp. are consistent with IdiA having a role in cellular Fe scavenging. Our data indicate that IdiA may make an excellent marker for Fe stress in open-ocean cyanobacterial field populations. By determining how these microorganisms respond to Fe stress, we will gain insight into how and when this important trace element can limit their growth in situ. This knowledge will greatly increase our understanding of how marine Fe cycling impacts oceanic processes, such as carbon and nitrogen fixation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号