首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Escherichia coli ssrA encodes a small stable RNA molecule, tmRNA, that has many diverse functions, including tagging abnormal proteins for degradation, supporting phage growth, and modulating the activity of DNA binding proteins. Here we show that ssrA plays a role in Salmonella enterica serovar Typhimurium pathogenesis and in the expression of several genes known to be induced during infection. Moreover, the phage-like attachment site, attL, encoded within ssrA, serves as the site of integration of a region of Salmonella-specific sequence; adjacent to the 5' end of ssrA is another region of Salmonella-specific sequence with extensive homology to predicted proteins encoded within the unlinked Salmonella pathogenicity island SPI4. S. enterica serovar Typhimurium ssrA mutants fail to support the growth of phage P22 and are delayed in their ability to form viable phage particles following induction of a phage P22 lysogen. These data indicate that ssrA plays a role in the pathogenesis of Salmonella, serves as an attachment site for Salmonella-specific sequences, and is required for the growth of phage P22.  相似文献   

2.
The ability of an isogenic set of mutants of Salmonella enterica serovar Typhimurium L354 (SL1344) with defined deletions in genes encoding components of tripartite efflux pumps, including acrB, acrD, acrF and tolC, to colonize chickens was determined in competition with L354. In addition, the ability of L354 and each mutant to adhere to, and invade, human embryonic intestine cells and mouse monocyte macrophages was determined in vitro. The tolC and acrB knockout mutants were hyper-susceptible to a range of antibiotics, dyes and detergents; the tolC mutant was also more susceptible to acid pH and bile and grew more slowly than L354. Complementation of either gene ablated the phenotype. The tolC mutant poorly adhered to both cell types in vitro and was unable to invade macrophages. The acrB mutant adhered, but did not invade macrophages. In vivo, both the acrB mutant and the tolC mutant colonized poorly and did not persist in the avian gut, whereas the acrD and acrF mutant colonized and persisted as well as L354. These data indicate that the AcrAB-TolC system is important for the colonization of chickens by S. Typhimurium and that this system has a role in mediating adherence and uptake into target host cells.  相似文献   

3.
Lee ES  Yoon CH  Kim YS  Bae YS 《FEBS letters》2007,581(22):4325-4332
Sustained ER stress leads to apoptosis. However, the exact mechanism still remains to be elucidated. Here, we demonstrate that the double strand RNA-dependent protein kinase (PKR) is involved in the ER stress-mediated signaling pathway. ER stress rapidly activated PKR, inducing the phosphorylation of eIF2alpha, followed by the activation of the ATF4/CHOP pathway. ER-stress-mediated eIF2alpha/ATF4/CHOP signaling and associated cell death was markedly reduced by PKR knockdown. We also found that PKR activation was mediated by PACT, the expression of which was elevated by ER-stress. These results indicate that the ER-stress-mediated eIF2alpha/ATF4/CHOP/cell death pathway is, to some degree, dependent on PACT-mediated PKR activation apart from the PERK pathway.  相似文献   

4.
The ability of archaea to salvage cobinamide has been under question because archaeal genomes lack orthologs to the bacterial nucleoside triphosphate:5'-deoxycobinamide kinase enzyme (cobU in Salmonella enterica). The latter activity is required for cobinamide salvaging in bacteria. This paper reports evidence that archaea salvage cobinamide from the environment by using a pathway different from the one used by bacteria. These studies demanded the functional characterization of two genes whose putative function had been annotated based solely on their homology to the bacterial genes encoding adenosylcobyric acid and adenosylcobinamide-phosphate synthases (cbiP and cbiB, respectively) of S. enterica. A cbiP mutant strain of the archaeon Halobacterium sp. strain NRC-1 was auxotrophic for adenosylcobyric acid, a known intermediate of the de novo cobamide biosynthesis pathway, but efficiently salvaged cobinamide from the environment, suggesting the existence of a salvaging pathway in this archaeon. A cbiB mutant strain of Halobacterium was auxotrophic for adenosylcobinamide-GDP, a known de novo intermediate, and did not salvage cobinamide. The results of the nutritional analyses of the cbiP and cbiB mutants suggested that the entry point for cobinamide salvaging is adenosylcobyric acid. The data are consistent with a salvaging pathway for cobinamide in which an amidohydrolase enzyme cleaves off the aminopropanol moiety of adenosylcobinamide to yield adenosylcobyric acid, which is converted by the adenosylcobinamide-phosphate synthase enzyme to adenosylcobinamide-phosphate, a known intermediate of the de novo biosynthetic pathway. The existence of an adenosylcobinamide amidohydrolase enzyme would explain the lack of an adenosylcobinamide kinase in archaea.  相似文献   

5.
6.
Here, the PduX enzyme of Salmonella enterica is shown to be an L-threonine kinase used for the de novo synthesis of coenzyme B(12) and the assimilation of cobyric acid (Cby). PduX with a C-terminal His tag (PduX-His(6)) was produced at high levels in Escherichia coli, purified by nickel affinity chromatography, and partially characterized. (31)P NMR spectroscopy established that purified PduX-His(6) catalyzed the conversion of l-threonine and ATP to L-threonine-O-3-phosphate and ADP. Enzyme assays showed that ATP was the preferred substrate compared with GTP, CTP, or UTP. PduX displayed Michaelis-Menten kinetics with respect to both ATP and l-threonine and nonlinear regression was used to determine the following kinetic constants: V(max) = 62.1 +/- 3.6 nmol min(-1) mg of protein(-1); K(m)(, ATP) = 54.7 +/- 5.7 microm and K(m)(,Thr) = 146.1 +/- 8.4 microm. Growth studies showed that pduX mutants were impaired for the synthesis of coenzyme B(12) de novo and from Cby, but not from cobinamide, which was the expected phenotype for an L-threonine kinase mutant. The defect in Cby assimilation was corrected by ectopic expression of pduX or by supplementation of growth medium with L-threonine-O-3-phosphate, providing further support that PduX is an L-threonine kinase. In addition, a bioassay showed that a pduX mutant was impaired for the de novo synthesis of coenzyme B(12) as expected. Collectively, the genetic and biochemical studies presented here show that PduX is an L-threonine kinase used for AdoCbl synthesis. To our knowledge, PduX is the first enzyme shown to phosphorylate free L-threonine and the first L-threonine kinase shown to function in coenzyme B(12) synthesis.  相似文献   

7.
During bell pepper (Capsicum annuum L.) fruit ripening, beta-galactosidase activity increased markedly as compared with other glycosidases. We purified 77.5 kDa exo-1,4-beta-D-galactanase from red bell pepper fruit classified as beta-galactosidase II. A marked decrease in galactose content appeared during fruit ripening, especially in the pectic fraction. The purified enzyme hydrolyzed a considerable amount of galactose residues in this fraction. We isolated bell pepper beta-galactosidase (PBG1) cDNA. This PBG1 protein contained the putative active site, G-G-P-[LIVM]-x-Q-x-E-N-E-[FY], belonging to glycosyl hydrolase family 35. Quantitative RT-PCR revealed that the expression of PBG1 in red fruit was significantly stronger than that from any other tissues. Moreover, expression of PBG1 occurred prior to that of pepper endo-polygalacturonase 1 (PPG1), the major fruit-ripening enzyme. Based on these results, it appears that the hydrolysis of galactose residues in pectic substances is the first event in the ripening process in bell pepper fruit.  相似文献   

8.
The EutD protein of Salmonella enterica is homologous to the catalytic domain of the phosphotransacetylase (Pta) enzyme. The Pta-like activity level of the EutD enzyme compared favorably to that of other Pta enzymes. High-pressure liquid chromatography and mass spectrometry verified that acetyl-coenzyme A was the product of the reaction. The EutD protein restored growth of an S. enterica pta strain on acetate as the source of carbon and energy.  相似文献   

9.
Thiamine pyrophosphate is an essential cofactor that is synthesized de novo in Salmonella enterica serovar Typhimurium and other bacteria. In addition to genes encoding enzymes in the biosynthetic pathway, mutations in other metabolic loci have been shown to prevent thiamine synthesis. The latter loci identify the integration of the thiamine biosynthetic pathway with other metabolic processes and can be uncovered when thiamine biosynthesis is challenged. Mutations in gshA, encoding gamma-L-glutamyl-L-cysteine synthetase, prevent the synthesis of glutathione, the major free thiol in the cell, and are shown here to result in a thiamine auxotrophy in some of the strains tested, including S. enterica LT2. Phenotypic characterization of the gshA mutants indicated they were similar enough to apbC and apbE mutants to warrant the definition of a class of mutants unified by (i) a requirement for both the hydroxymethyl pyrimidine (HMP) and thiazole (THZ) moiety of thiamine, (ii) the ability of L-tryosine to satisfy the THZ requirement, (iii) suppression of the thiamine requirement by anaerobic growth, and (iv) suppression by a second-site mutation at a single locus. Genetic data indicated that a defective ThiH generates the THZ requirement in these strains, and we suggest this defect is due to a reduced ability to repair a critical [Fe-S] cluster.  相似文献   

10.
单核细胞增生李斯特菌(Listeria monocytogenes,LM)是重要的革兰氏阳性食源性致病菌,易在食品以及各种食品加工、运输和保藏设备的接触面形成生物被膜,从而具有更强的抗逆性而难以彻底清除,因此成为食品卫生安全的重要隐患.PrfA是LM毒力基因转录表达的重要调控因子,通过比较研究LM野生株(EGD和EGDe)、PrfA缺失株(EGDAprfA和EGDeAprfA)、无害李斯特菌(Listeria innocua,LI),携带组成性表达PrfA蛋白的重组无害李斯特菌(LI-pERL3-prfA*)以及重组单核细胞增生李斯特菌(EGDeΔprfA-pERL3-prfA*)生物被膜形成能力的差异,探讨LM重要的毒力调控蛋白PrfA对生物被膜形成的影响.实验结果显示:LM野生株具有较强的生物被膜形成能力,而LI形成生物被膜的能力最弱;PrfA的缺失能降低LM生物被膜的形成能力;组成性高量表达PrfA蛋白可以回复EGDeΔprfA的生物被膜形成能力,但对LI没有增强作用.以上实验结果表明:PrfA在LM生物被膜形成中具有重要的促进作用.  相似文献   

11.
Segment formation in the long germ insect Drosophila is dominated by overlapping gap gene domains in the syncytial blastoderm. In the short germ beetle Tribolium castaneum abdominal segments arise from a cellular growth zone, implying different patterning mechanisms. We describe here the single Tribolium ortholog of the Drosophila genes knirps and knirps-related (called Tc-knirps). Tc-knirps expression is conserved during head patterning and at later stages. However, posterior Tc-knirps expression in the ectoderm is limited to a stripe in A1, instead of a broad abdominal domain covering segment primordia A2-A5 as in Drosophila. Tc-knirps RNAi yields only mild defects in the abdomen, at a position posterior to the abdominal Tc-knirps domain. In addition, Tc-knirps RNAi larvae lack the antennal and mandibular segments. These defects are much more severe than the head defects caused by combined inactivation of Dm-knirps and Dm-knirps-related. Our findings support the notion that the role of gap gene homologs in abdominal segmentation differs fundamentally in long and short germ insects. Moreover, the pivotal role of Tc-knirps in the head suggests an ancestral role for knirps as head patterning gene. Based on this RNAi analysis, Tc-knirps functions neither in the head nor the abdomen as a canonical gap gene.  相似文献   

12.
The three-dimensional structure of the pyridoxal 5'-phosphate (PLP)-dependent L-threonine-O-3-phosphate decarboxylase (CobD) from Salmonella enterica is described here. This enzyme is responsible for synthesizing (R)-1-amino-2-propanol phosphate which is the precursor for the linkage between the nucleotide loop and the corrin ring in cobalamin. The molecule is a molecular dimer where each subunit consists of a large and small domain. Overall the protein is very similar to the members of the family of aspartate aminotransferases. Indeed, the arrangement of the ligands surrounding the cofactor and putative substrate binding site are remarkably close to that observed in histidinol phosphate aminotransferase, which suggests that this latter enzyme might have been its progenitor. The only significant differences in structure occur at the N-terminus, which is approximately 12 residues shorter in CobD and does not form the same type of interdomain interaction common to other aminotransferases. CobD is unusual since within the aspartate aminotransferase subfamily of PLP-dependent enzymes the chemical transformations are substantially conserved, where the only exceptions are 1-aminocyclopropane-1-carboxylate synthase and CobD. Although there are a large number of PLP-dependent amino acid decarboxylases, these are generally larger and structurally distinct from the members of the aspartate aminotransferase subfamily of enzymes. The structure of CobD suggests that the chemical fate of the external aldimine can be redirected by modifications at the N-terminus of the protein. This study provides insight into the evolutionary history of the cobalamin biosynthetic pathway and raises the question of why most PLP-dependent decarboxylases are considerably larger enzymes.  相似文献   

13.
Post-translational modification of proteins is an efficient way cells use to control the activity of structural proteins, gene expression regulatory proteins, and enzymes. In eukaryotes, the Sir2-dependent system of protein acetylation/deacetylation controls a number of processes that affect cell longevity. Sir2 proteins have NAD+-dependent protein deacetylase activity and are found in all forms of life. Although the identity of the acetyltransferases that partner with Sir2 enzymes is known in eukaryotes, the identity of the prokaryotic acetyltransferases is not. We report the identification of the gene of Salmonella enterica serovar Typhimurium LT2 encoding the major protein acetyltransferase (Pat) enzyme that, in concert with the CobB sirtuin of this bacterium, regulates the activity of the central metabolic enzyme acetyl-coenzyme A synthetase (Acs). The Pat enzyme uses acetyl-CoA as substrate to modify residue Lys609 of Acs. The Pat/CobB system of S. enterica should serve as the paradigm to further investigate the contributions of this system to the physiology of prokaryotes.  相似文献   

14.
15.
16.
ABSTRACT: BACKGROUND: Salmonella enterica serotype Typhimurium produces surface-associated fimbriae that facilitate adherence of the bacteria to a variety of cells and tissues. Type 1 fimbriae with binding specificity to mannose residues are the most commonly found fimbrial type. In vitro, static-broth culture favors the growth of S. Typhimurium with type 1 fimbriae, whereas non-type 1 fimbriate bacteria are obtained by culture on solid-agar media. Previous studies demonstrated that the phenotypic expression of type 1 fimbriae is the result of the interaction and cooperation of the regulatory genes fimZ, fimY, fimW, and fimU within the fim gene cluster. Genome sequencing revealed a novel gene, stm0551, located between fimY and fimW that encodes an 11.4-kDa putative phosphodiesterase specific for the bacterial second messenger cyclic-diguanylate monophosphate (c-di-GMP). The role of stm0551 in the regulation of type 1 fimbriae in S. Typhimurium remains unclear. RESULTS: A stm0551-deleted stain constructed by allelic exchange constitutively produced type 1 fimbriae in both static-broth and solid-agar medium conditions. Quantative RT-PCR revealed that expression of the fimbrial major subunit gene, fimA, and one of the regulatory genes, fimZ, were comparably increased in the stm0551-deleted strain compared with those of the parental strain when grown on the solid-agar medium, a condition that normally inhibits expression of type 1 fimbriae. Following transformation with a plasmid possessing the coding sequence of stm0551, expression of fimA and fimZ decreased in the stm0551 mutant strain in both culture conditions, whereas transformation with the control vector pACYC184 relieved this repression. A purified STM0551 protein exhibited a phosphodiesterase activity in vitro while a point mutation in the putative EAL domain, substituting glutamic acid (E) with alanine (A), of STM0551 or a FimY protein abolished this activity. CONCLUSIONS: The finding that the stm0551 gene plays a negative regulatory role in the regulation of type 1 fimbriae in S. Typhimurium has not been reported previously. The possibility that degradation of c-di-GMP is a key step in the regulation of type 1 fimbriae warrants further investigation.  相似文献   

17.
Abstract All strains and serovars of Salmonella enterica such as serovar Typhimurium, Enteritidis, Dublin, Typhi, etc. were found to carry the Salmonella enterotoxin determinant stn as far as examined in PCR and hybridization studies. However, using MDCK cells for testing the toxicity of the strains under investigation, only a limited number of stn positive strains revealed phenotypically the Salmonella enterotoxin Stn. In contrast to S. enterica , other Enterobacteriaceae including Salmonella bongori were found neither genotypically nor phenotypically Stn toxin positive.  相似文献   

18.
19.
20.
The Salmonella enterica serovar Typhi CT18 (S.Typhi) chromosome harbours seven distinct prophage-like elements, some of which may encode functional bacteriophages. In silico analyses were used to investigate these regions in S.Typhi CT18, and ultimately compare these integrated bacteriophages against 40 other Salmonella isolates using DNA microarray technology. S.Typhi CT18 contains prophages that show similarity to the lambda, Mu, P2 and P4 bacteriophage families. When compared to other S.Typhi isolates, these elements were generally conserved, supporting a clonal origin of this serovar. However, distinct variation was detected within a broad range of Salmonella serovars; many of the prophage regions are predicted to be specific to S.Typhi. Some of the P2 family prophage analysed have the potential to carry non-essential "cargo" genes within the hyper-variable tail region, an observation that suggests that these bacteriophage may confer a level of specialisation on their host. Lysogenic bacteriophages therefore play a crucial role in the generation of genetic diversity within S.enterica.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号