首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microfilariae, infective larvae, and adult worms of Brugia malayi were incubated with a panel of seven lectins in order to study the expression of surface carbohydrates. Infective larvae and adult worms did not bind any of the lectins utilized. Microfilariae, on the other hand, bound wheat germ agglutinin. The binding of this lectin was saturable and specific, and attributed to the presence of N-acetyl-D-glucosamine. In addition, microfilariae derived in vitro bound concanavalin A, indicating the presence of glucose and/or mannose on this stage of the parasite. The fact that similar concanavalin A binding was not seen on microfilariae recovered directly from the infected host implies that there is masking or loss of parasite surface antigens as microfilariae mature in vivo.  相似文献   

2.
Use was made of seven FITC labelled lectins as tools to investigate the surface of Onchocerca lienalis larvae as they develop through to the infective third-stage in a natural vector, Simulium ornatum. The lectins were derived from Canavalia ensiformis (Con A), Lens culinaris (lentil), Triticum vulgaris (wheat germ), Arachis hypogaea (peanut), Helix pomatia, Phaseolus vulgaris (kidney bean) and Tetragonolobus purpureus (asparagus pea). Between 70 and 100 living parasites were examined for each developmental stage; i.e. skin microfilariae, late first-stages, second-stages, preinfective third-stages and infective third-stages isolated from the mouth parts of the flies. None of the lectins used bound to the surface of the microfilariae. However, progressive binding to the cuticle of the first- and second-stages was observed using Con. A, lentil lectin and wheat germ agglutinin (WGA). Following moulting to the third-stage, binding of these three lectins declined. Furthermore, as these lectins decreased, peanut and Helix pomatia lectins progressively increased in their binding, despite the fact that they showed little or no binding to the first- and second-stages; stages at which Con A, lentil and WGA were at their maximum. Asparagus pea and kidney bean lectins failed completely to bind to any of the larvae examined. Carbohydrate inhibition tests showed that the lectin was indeed binding specifically to glycoconjugates on the parasite surface. WGA binding was not inhibited by prior incubation with N-acetyl-D-glucosamine, even at high concentrations, but neuraminic acid did completely inhibit its binding. Judging from the patterns of binding on the nematodes themselves, the carbohydrates may not be vector in origin, but derive from the worms. The lectin specificities indicate that initially mannose/glucose type derivatives are present on the surface. Following moulting to the third-stage these are progressively replaced, or overlaid with galactosamine type derivatives, also present on the infective third-stage as it enters the bovine host. The availability of these surface glycoconjugates to attack mediated by natural insect lectins may be of importance in the parasite regulatory mechanisms of the blackfly. Variability in these surface carbohydrates, and in the response to them could well be a contributing factor in the cytospecific variation in S. damnosum susceptibility to geographical variants of O. volvulus.  相似文献   

3.
Exposure of A. viteae microfilariae to various lectins reduced their capacity to react with the peritoneal exudate cells of the host, Mastomys natalensis. Sugars corresponding to these lectins with the exception of N-acetyl glucosamine, did not affect the adhesion per se. They however, protected the parasite against the adverse effect of lectins. Neuraminidase and chitinase also suppressed adhesion capacity of the microfilariae. Except sodium dodecylsulphate which enhanced cell attachment, other surfactants inhibited this reaction considerably. The results indicate that antibody dependent adhesion of the microfilariae with the macrophages involves surface moieties of the parasite, where N-acetylglucosamine acts as the principal sugar residue. Participation of -SH groups also is inferred from the observations that p-chloromercuribenzoate and dithiobis-(2-nitrobenzoic acid) inhibited cell attachment and dithiothreitol provided protection against these agents.  相似文献   

4.
Animal lectins: a historical introduction and overview   总被引:20,自引:0,他引:20  
Some proteins we now regard as animal lectins were discovered before plant lectins, though many were not recognised as carbohydrate-binding proteins for many years after first being reported. As recently as 1988, most animal lectins were thought to belong to one of two primary structural families, the C-type and S-type (presently known as galectins) lectins. However, it is now clear that animal lectin activity is found in association with an astonishing diversity of primary structures. At least 12 structural families are known to exist, while many other lectins have structures apparently unique amongst carbohydrate-binding proteins, although some of those "orphans" belong to recognised protein families that are otherwise not associated with sugar recognition. Furthermore, many animal lectins also bind structures other than carbohydrates via protein-protein, protein-lipid or protein-nucleic acid interactions. While animal lectins undoubtedly fulfil a variety of functions, many could be considered in general terms to be recognition molecules within the immune system. More specifically, lectins have been implicated in direct first-line defence against pathogens, cell trafficking, immune regulation and prevention of autoimmunity.  相似文献   

5.
Sialyl Lewis X and its derivatives are cell-surface carbohydrates that are involved in cell-cell recognition by carbohydrate-mediated interactions. Unfortunately, owing to the similarities between carbohydrates only a limited number of tools are available for their differentiation. In this study, we prepared a selected phage-displayed peptide library against LeX (2), SLN (3), or LN (4), which compared to sLeX (1) lack sialic acid, fucose, and both sialic acid and fucose from constituents, respectively. Sequences of the selected peptides, prepared as tentacle type dimeric peptides, were prepared and shown to have micromolar affinities for the cognate carbohydrates. The specificities displayed by these 'artificial' lectins overwhelm those of natural lectins. These results suggest that they can serve as useful tools to detect changes in the terminal monosaccharide of cell-surface carbohydrates.  相似文献   

6.
植物凝集素的功能   总被引:3,自引:0,他引:3  
鲍锦库 《生命科学》2011,(6):533-540
植物凝集素是来源于植物的一类能凝集细胞和沉淀单糖或多糖复合物的非免疫来源的非酶蛋白质。由于其对于单糖或糖复合物特异性结合的能力,使得其在如信号转导、免疫反应、植物防御等诸多信号过程中均具有重要作用。同时植物凝集素具有细胞凝集、抗病毒、抗真菌及诱导细胞凋亡或自噬等多种能力,因此在生命科学、医学及农业方面均有较好的研究价值和应用前景。综述了植物凝集素的研究历史和凝集素的主要功能,并对现阶段凝集素的重点应用做简要介绍。  相似文献   

7.
Whole specimens and histological and semi-thin sections of Bothriocephalus gregarius adults were exposed to lectins to identify carbohydrates present in the tegument and parenchyma. The sugars N-acetyl glucosamine, N-acetyl galactosamine, galactose, glucose (or mannose) and fucose were detected in the cestode using eight lectins: WGA (Wheat germ agglutinin), HPA (Helix pomatia agglutinin), SBA (Soy bean agglutinin), PHA (Phaseolus vulgaris agglutinin), RCA60 and RCA120 (Ricinus communis toxin and agglutinin), ConA (Concanavalin agglutinin) and UEA-I (Ulex europaeus agglutinin). Combined use of these methodological approaches (whole specimens, paraffin and semi-thin sections) revealed the presence of a gradient in the distribution of most of the sugars over the tegument, with the highest concentrations on the strobila (as shown by most of the lectins). Other sugars were specific for the scolex or strobila (as shown by UEA-I or HPA, respectively). The ultrastructural study showed that the distribution of glycoconjugates was associated with the presence of specific tegumental coats. The significance of this selective distribution and its relevance to cestode physiology and host-parasite relationships are discussed.  相似文献   

8.
Dam TK  Brewer CF 《Biochemistry》2008,47(33):8470-8476
Many biological ligands are composed of clustered binding epitopes. However, the effects of clustered epitopes on the affinity of ligand-receptor interactions in many cases are not well understood. Clustered carbohydrate epitopes are present in naturally occurring multivalent carbohydrates and glycoproteins, which are receptors on the surface of cells. Recent studies have provided evidence that the enhanced affinities of lectins, which are carbohydrate binding proteins, for multivalent carbohydrates and glycoproteins are due to internal diffusion of lectin molecules from epitope to epitope in these multivalent ligands before dissociation. Indeed, binding of lectins to mucins, which are large linear glycoproteins, appears to be similar to the internal diffusion mechanism(s) of protein ligands binding to DNA, which have been termed the "bind and slide" or "bind and hop" mechanisms. The observed increasing negative cooperativity and gradient of decreasing microaffinity constants of a lectin binding to multivalent carbohydrates and glycoproteins result in an initial fraction of lectin molecules that bind with very high affinity and dynamic motion. These findings have important implications for the mechanisms of binding of lectins to mucins, and for other ligand-biopolymer interactions and clustered ligand-receptor systems in general.  相似文献   

9.
Patents of lectins with antiviral, antibacterial and antifungal applications were searched and reviewed. Lectins are proteins that reversibly bind to specific carbohydrates and have the potential for therapy of infectious diseases as biopharmaceuticals, biomedical tools or in drug design. Given the rising concerns over drug resistance and epidemics, our patent review aims to add information, open horizons and indicate our view of the future perspectives about the antimicrobial applications of lectins. Patents with publications until December 2020 were retrieved from Espacenet using defined search terms and Boolean operators. The documents were used to identify the geographical and temporal distribution of the patents, characterize their lectins, and classify and summarize their antiviral, antibiotic and antifungal applications. Lectins are promising antiviral agents against viruses with epidemics and drug resistance concerns. Mannose-binding lectins were the most suggested antiviral agents since glycans with mannose residues are commonly involved in viral entry mechanisms. They were also immobilized onto surfaces to trap viral particles and inhibit their spread and replication. Many patents described the extraction, isolation, amino acid and nucleotide sequences, and expression vectors of lectins with antibiotic and/or antifungal activities in terms of MIC and IC50 for in vitro assays. The inventions also included lectins as biological tools in nanosensors for antibiotics susceptibility tests, drug-delivery systems for the treatment of resistant bacteria, diagnostics of viral diseases and as a vaccine adjuvant. Although research and development of new medicines is highly expensive, antimicrobial lectins may be worth investments given the emergence of epidemics and drug resistance. For this purpose, less invasive routes should be developed as alternatives to the parenteral administration of biologics. While anti-glycan neutralizing antibodies are difficult to develop due to the low immunogenicity of carbohydrates, lectins can be produced more easily and have a broad-spectrum activity. Protein engineering technologies may make the antimicrobial applications of lectins more successful.  相似文献   

10.
The galectins are a family of animal lectins that possess similar carbohydrate binding specificities and conserved consensus sequences. The biological properties of mammalian galectins include the regulation of inflammation, cell adhesion, cell proliferation and cell death. Evidence suggests that the biological activities of the galectins are related to their multivalent binding properties since most galectins possess two carbohydrate recognition domains and are therefore bivalent. For example, galectin-1, which is dimeric, binds and cross-links specific glycoprotein counter-receptors on the surface of human T-cells leading to apoptosis [J. Immunol. 163 (1999) 3801]. Different galectin-1 counter-receptors associated with specific phosphatase or kinase activities formed separate clusters on the surface of the cells as a result of the lectin binding to the carbohydrate chains of the respective glycoproteins. Importantly, monovalent galectin-1 is inactive in this system. This indicates that the separation and organization of signaling molecules that result from galectin-1 binding is involved in the apoptotic signal. The separation of specific glycoprotein receptors induced by galectin-1 binding was modeled on the basis of molecular and structural studies of the binding of lectins to multivalent carbohydrates resulting in the formation of specific two- and three-dimensional cross-linked lattices [Biochemistry 36 (1997) 15073]. In this article, the binding and cross-linking properties of galectin-1 and other lectins are reviewed as a model for the biological signal transduction properties of the galectin family of animal lectins.  相似文献   

11.
The jack bean lectin concanavalin A (ConA) and the Dioclea grandiflora lectin (DGL) are highly homologous Man/Glc-specific members of the Diocleinae subtribe. Both lectins bind, cross-link, and precipitate with carbohydrates possessing multiple terminal nonreducing Man residues. The present study investigates the binding and cross-linking interactions of ConA and DGL with a series of synthetic divalent carbohydrates that possess spacer groups with increasing flexibility and length between terminal alpha-mannopyranoside residues. Isothermal titration microcalorimetry was used to determine the thermodynamics of binding of the two lectins to the divalent analogs, and kinetic light scattering and electron microscopy studies were used to characterize the cross-linking interactions of the lectins with the carbohydrates. The results demonstrated that divalent analogs with flexible spacer groups between the two terminal Man residues possess higher affinities for the two lectins as compared with those with inflexible spacer groups. Furthermore, despite their high degree of homology, ConA and DGL exhibit differences in their kinetics of cross-linking and precipitation with the divalent analogs. Electron microscopy shows the loss of organized cross-linked lattices of the two lectins with analogs possessing increased distance between the terminal Man residues. The loss of lattice patterns with the analogs is distinct for each lectin. These results have important implications for the interactions of lectins with multivalent carbohydrate receptors in biological systems.  相似文献   

12.
Many biological effects of complex carbohydrates are mediated by lectins that contain discrete carbohydrate-recognition domains. At least seven structurally distinct families of carbohydrate-recognition domains are found in lectins that are involved in intracellular trafficking, cell adhesion, cell-cell signalling, glycoprotein turnover and innate immunity. Genome-wide analysis of potential carbohydrate-binding domains is now possible. Two classes of intracellular lectins involved in glycoprotein trafficking are present in yeast, model invertebrates and vertebrates, and two other classes are present in vertebrates only. At the cell surface, calcium-dependent (C-type) lectins and galectins are found in model invertebrates and vertebrates, but not in yeast; immunoglobulin superfamily (I-type) lectins are only found in vertebrates. The evolutionary appearance of different classes of sugar-binding protein modules parallels a development towards more complex oligosaccharides that provide increased opportunities for specific recognition phenomena. An overall picture of the lectins present in humans can now be proposed. Based on our knowledge of the structures of several of the C-type carbohydrate-recognition domains, it is possible to suggest ligand-binding activity that may be associated with novel C-type lectin-like domains identified in a systematic screen of the human genome. Further analysis of the sequences of proteins containing these domains can be used as a basis for proposing potential biological functions.  相似文献   

13.
1. Pretreatment of cultured human skin fibroblasts with convanavalin A and wheat germ agglutinin inhibited endocytosis of alpha-N-acetylglucosaminidase and increased extracellular accumulation of beta-N-acetylglucosaminidase. 2. These effects were dose-dependent, reversible and could be prevented by haptenic carbohydrates, such as methyl alpha-D-mannoside or N-acetylglucosamine. 3. Pretreatment of fibroblasts with di- and monovalent succinylated concanavalin A inhibited alpha-N-acetylglucosaminidase endocytosis, but had no effect on extracellular beta-N-acetylglucosaminidase accumulation. 4. Concanavalin A-alpha-N-acetylglucosaminidase complexes become internalized via the recognition of the lectin. Complex formation prevents recognition of the phosphorylated carbohydrate on lysosomal enzymes that interacts with cell surface receptors specific for lysosomal enzymes. The inhibitory effect of all lectins tested on lysosomal enzyme endocytosis suggests that the cell surface receptors for lysosomal enzymes interact either directly with lectins or are closely linked to lectin receptors. The effect of polyvalent lectins on extracellular lysosomal enzyme accumulation is ascribed to their alteration of membrane fluidity.  相似文献   

14.
A study of primordial germ cells (PGC) of Amphibia Anura was carried out after treatment of sections by different fluorescein isothiocyanate conjugated lectins (FITC-lectins). Specific labelling on the PGC is obtained with lectins, the activity of which is inhibited by D-galactose or N-acetyl-galactosamine. These osidic groups appear to be located more specifically on the PGC. The same labelling pattern is not obtained with lectins possessing major affinity for mannose, glucose, fucose and N-acetyl-glucosamine. Furthermore, changes in labelling pattern are observed during migration of PGC. It is suggested that D-galactose and N-acetyl-galactosamine might be related to membrane activity of PGC during migration. Ultrastructural study of the visualization of cell surface carbohydrates supplies some information on the localisation of these lectins receptors.  相似文献   

15.
A number of antiviral lectins, small proteins that bind carbohydrates found on viral envelopes, are currently in pre-clinical trials as potential drugs for prevention of transmission of human immunodeficiency virus (HIV) and other enveloped viruses, such as the Ebola virus and the coronavirus responsible for severe acute respiratory syndrome (SARS). Lectins of algal origin whose antiviral properties make them candidate agents for prevention of viral transmission through topical applications include cyanovirin-N, Microcystis viridis lectin, scytovirin, and griffithsin. Although all these proteins exhibit significant antiviral activity, their structures are unrelated and their mode of binding of carbohydrates differs significantly. This review summarizes the current state of knowledge of the structures of algal lectins, their mode of binding of carbohydrates, and their potential medical applications.  相似文献   

16.
The carbohydrates present on the surface of differentiated human embryonic stem cells (hESCs) are not yet well established. Here, we have employed a panel of lectins and several anti-carbohydrate antibodies to determine the carbohydrates that are present at day 12 of hESC differentiation as embryoid bodies (EBs). On the basis of staining with fluorescein-labeled lectins, we have determined the presence of both terminal and internally linked alpha-d-mannopyranosyl groups, poly-N-acetyllactosaminyl chains, both alpha2,3- and alpha2,6-linked N-acetylneuraminic acid (Neu5Ac), alpha1,6-linked l-fucosyl, and beta-D-galactosyl groups, and more specifically, the T, Tn, and sialyl-Tn antigens. However, no alpha1,2-linked l-fucosyl, terminal nonreducing alpha-D-galactosyl, N-acetyl-beta-D-glucosaminyl, nor N-acetyl-alpha-D-galactosaminyl groups were found by this approach. We also established the presence of Neu5Acalpha2,3/2,6-Galbeta1,4 GlcNAc-terminated chains on the surfaces of 12-day-old EBs, as indicated by the great enhancement of staining by Erythrina cristagalli agglutinin (ECA) after treatment with neuraminidase. In each case, inhibition of binding by a haptenic sugar or treatment with neuraminidase was used to eliminate the possibility of nonspecific binding of the lectins. A comparison with undifferentiated cell staining revealed an increase in alpha2,3-linked Neu5Ac as well as a change to exclusively alpha1,6-linked l-fucose upon differentiation.  相似文献   

17.
Gene therapy has emerged as one of the most promising therapeutic methods to treat various diseases. However, inadequate gene transfection efficacy during gene therapy demands further development of more efficient gene delivery strategies. Targeting genetic material to specific sites of action endows numerous advantages over non-targeted delivery. An ample variety of non-viral gene delivery vectors have been developed in recent years owing to the safety issues raised by viral vectors. Non-viral gene delivery vectors containing specific targeting ligands on their surfaces have been reported to enhance the gene transfection efficiency via receptor-mediated endocytosis for gene delivery. Among various targeting moieties investigated, carbohydrates and lectins (carbohydrate-binding proteins) played an essential role in gene delivery via either direct or reverse lectin targeting strategies. Lectins have a specific carbohydrate binding domain that can bind specifically to the carbohydrates. This review sheds light on various gene delivery nanovectors conjugated with either lectins or carbohydrates for enhanced gene transfection.  相似文献   

18.
Vinorama isolectins (VL2-VL4) were purified from seeds of Acacia constricta (vinorama) using affinity chromatography on a fetuin-fractogel column followed by cationic-exchange chromatography. Each isolectin fraction presented a characteristic isoelectric point range from 5.5 to 8.4. Under native conditions, VL containing fractions migrated as tetramers of 133 kDa, while in SDS-PAGE, in presence of 2-mercaptoethanol, a single subunit band with M(r) of 34 kDa was observed. VL was found to be a glycoprotein with a 7.5% neutral sugar content. Antibodies to Phaseolus vulgaris lectins PHA and other wild legume lectins as Olneya tesota (palo fierro) PF2 and PF3, and Parkinsonia aculeate (palo verde) PV reacted with VL, but not with anti Glycine max agglutinin SBA or anti Lotus tetragonolobus agglutinin LTA. Furthermore, direct analysis of VL peptides showed sequences homologous to those reported in different lectins of the Phaseolus genus. VL2-VL4 did not have ABO serological or simple sugar specificity, but were inhibited by complex carbohydrates from fetuin and thyroglobulin. Asialofetuin carbohydrates strongly interacted with VL4 and VL3. Vinorama isolectins could be classified as "complex lectins".  相似文献   

19.
Erythrina lectins possess similar structural and carbohydrate binding properties. Recently, tri- and tetra-antennary complex type carbohydrates with non-reducing terminal galactose residues have been shown to be precipitated as tri- and tetravalent ligands, respectively, with certainErythrina lectins [Bhattacharyya L, Haraldsson M, Brewer CF (1988) Biochemistry 271034-41]. The present work describes a comparative study of the binding and precipitating activities of fourErythrina lectins,viz. E. corallodendron, E. cristagalli, E. flabelliformis, andE. indica, with multi-antennary complex type carbohydrates and synthetic cluster glycosides. The results show that though their binding affinities are very similar, theErythrina lectins show large differences in their precipitating activities with the carbohydrates. The results also indicate significant dependence of the precipitating activities of the lectins on the core structure of the carbohydrates. These findings provide a new dimension to the structure-activity relationship of the lectins and their interactions with asparagine-linked carbohydrates.Abbreviations EAL, ECorL, ECL, EFL, and EIL represent the lectins from the seeds ofErythrina arborescens, - E. corallodendron, E. cristagalli, E. flabelliformis, andE. indica respectively - AFOS thetri-antennary complex type oligosaccharide from asialofetuin - AFGP the tri-antennary glycopeptide from asialofetuin - MeGal methyl -d-galactopyranoside Unless stated otherwise all sugars are in thed-configuration.  相似文献   

20.
Eight lectins specific for different 125I-labelled carbohydrates were employed to study the effect of the neuraminidase, alpha-galactosidase, and beta-galactosidase enzymes on the glycoproteins and terminal carbohydrates of platelet membranes. Neuraminidase was seen to cause a decrease in molecular weight, as measured by polyacrylamide gradient electrophoresis, in glycoproteins IIb and III; this was apparently due to an almost 50% decrease in N-acetyl-D-glucosamine terminals. At the same time, new D-mannose and D-galactose terminals became accessible to the lectins. The alpha- and beta-galactosidases did not seem to affect the molecular weight of the glycoproteins appreciably, though the N-acetyl-D-glucosamine terminals decreased and D-galactose debris increased; differences were observed in the effects of both enzymes. The results confirm that N-acetyl-D-glucosamine, D-mannose and D-galactose are the most abundant membrane carbohydrates and suggest that the first is found as a terminal whereas the others must also be located in the internal zones of the glycoproteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号