首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The plasma membrane of cells contains enzymes whose active sites face the external medium rather than the cytoplasm. The activities of these enzymes, referred to as ecto-enzymes, can be measured using living cells. Cell membrane ecto-ATPases are integral membrane glycoproteins that are millimolar divalent cation-dependent, low specificity enzymes that hydrolyze all nucleoside triphosphates. Their physiological role is still unknown. However, several hypotheses have been suggested such as; (i). protection from cytolytic effects of extracellular ATP, (ii). regulation of ectokinase substrate concentration, (iii). termination of purinergic signaling, (iv). involvement in signal transduction, and (v). involvement in cellular adhesion. In this review, the biochemical properties and possible functions of the ecto-ATPases of different protozoa are summarized.  相似文献   

2.
The use of nucleotides and their analogs in the pharmacological studies of nucleotide receptors (P2 class) should be preceded by detailed studies on their degradation connected with ecto-enzymes of a given cell type. In the present studies we have analyzed stability of some phosphorothioate and phosphonate analogs of ATP and ADP in the HeLa epitheloid carcinoma and endothelial HUVEC cells cultures. Our studies have revealed that ecto-nucleotide pyrophosphatase (E-NPP) is one of the main enzymes involved in the extracellular degradation of ATP and other nucleotides in the HeLa cells. On the other hand, the ecto-ATPDase is responsible for the hydrolysis of extracellular nucleotides in human endothelial cell cultures, while the E-NPP-like enzymes of the HUVEC cells are not essential to this degradation. The concerted action of the aforementioned ecto-enzymes and nucleotide pyrophosphatase, 5'-nucleotidase and adenosine deaminase present in fetal bovine serum (FBS) supplied to the culture medium, results in partial or complete degradation of the phosphorothioate (ATPgammaS) and phosphonate analogs of adenosine nucleotides (alpha,beta-methylene-ATP and beta,gamma-methylene-ATP) in the cell cultures. Only ADPbetaS appears to be resistant to these enzymes. The influence of some nucleotides and their analogs on the proliferation of the HeLa cells in presence or absence of FBS is also discussed.  相似文献   

3.
The characteristics and distribution of nucleotide phosphohydrolases of hamster embryo cells were examined. The hydrolysis of ATP and ADP by monolayers of hamster embryo cells was stimulated by Mg2+ and Ca2+ ions. In contrast, the hydrolysis of AMP was not increased by these ions. These observations suggest that the enzyme hydrolyzing AMP (ecto-AMPase) is different from the enzymes hydrolyzing ATP and ADP. About 70–90% of the total activity of the nucleotide phosphohydrolases of hamster embryo cells was localized on the surface of the cell membrane. These ecto-enzymes hydrolyzed a variety of nucleotides at rates comparable to those observed for the hydrolysis of AMP, ADP, and ATP. These findings indicated that the ecto-enzymes of hamster embryo cells have a low substrate specificity. The activities of the ecto-enzymes of tumor cells induced in the hamster by Rous sarcoma virus were greatly diminished or abolished in comparison to those of normal hamster embryo cells. This suggests that the ecto-nucleotide phosphohydrolases of hamster embryo cells may be suitable biochemical markers of transformation.  相似文献   

4.
It had been proposed that sialyl-residues on the surface of the cell control the activity of certain plasma membrane ecto-enzymes. We have tested the effects of several established (or presumptive) ecto-enzymes in tissue cultures of CNS-derived cells. Application of neuraminidases to cultured mouse neuroblastoma (N-18), neonatal Syrian hamster astrocytes (NN), human astrocytoma (Cox clone) and two lines of primary mouse astroblasts failed to change the activity of ecto-ATPase and 5′-nucleotidase. Only two of the seven neuraminidase preparations produced marked or moderate increases in inorganic pyrophosphatase, p-nitrophenylphosphatase and cholinesterase. We have concluded that the stimulation of these enzymes was not due to removal of sialyl-residues. We suggest that contaminants (haemolysins?) in neuraminidase preparations of Clostridium perfringens increased membrane permeability and facilitated substrate-product translocation.  相似文献   

5.
Phosphohydrolysis of extracellular ATP and ADP is an essential step in purinergic signaling that regulates key pathophysiological processes, such as those linked to inflammation. Classically, this reaction has been known to occur in the pericellular milieu catalyzed by membrane bound cellular ecto-nucleotidases, which can be released in the form of both soluble ecto-enzymes as well as being associated with exosomes. Circulating ecto-nucleoside triphosphate diphosphohydrolase 1 (NTPDase 1/CD39) and adenylate kinase 1 (AK1) activities have been shown to be present in plasma. However, other ecto-nucleotidases have not been characterized in depth. An in vitro ADPase assay was developed to probe the ecto-enzymes responsible for the ecto-nucleotidase activity in human platelet-free plasma, in combination with various specific biochemical inhibitors. Identities of ecto-nucleotidases were further characterized by chromatography, immunoblotting, and flow cytometry of circulating exosomes. We noted that microparticle-bound E-NTPDases and soluble AK1 constitute the highest levels of ecto-nucleotidase activity in human plasma. All four cell membrane expressed E-NTPDases are also found in circulating microparticles in human plasma, inclusive of: CD39, NTPDase 2 (CD39L1), NTPDase 3 (CD39L3), and NTPDase 8. CD39 family members and other ecto-nucleotidases are found on distinct microparticle populations. A significant proportion of the microparticle-associated ecto-nucleotidase activity is sensitive to POM6, inferring the presence of NTPDases, either −2 or/and −3. We have refined ADPase assays of human plasma from healthy volunteers and have found that CD39, NTPDases 2, 3, and 8 to be associated with circulating microparticles, whereas soluble AK1 is present in human plasma. These ecto-enzymes constitute the bulk circulating ADPase activity, suggesting a broader implication of CD39 family and other ecto-enzymes in the regulation of extracellular nucleotide metabolism.  相似文献   

6.
Phosphatidic acid phosphatase (PAP) converts phosphatidic acid to diacylglycerol, thus regulating the de novo synthesis of glycerolipids and also signal transduction mediated by phospholipase D. We initially succeeded in the cDNA cloning of the mouse 35 kDa PAP bound to plasma membranes (type 2 enzyme). This work subsequently led us to the identification of two human PAP isozymes designated 2a and 2b. A third human PAP isozyme (2c) has also been described. The cloned enzymes are, in common, N-glycosylated and possess six transmembrane domains. The transmembrane dispositions of these enzymes are predicted and the catalytic sites are tentatively located in the 2nd and 3rd extracellular loops, thus suggesting that the type 2 PAPs may act as ecto-enzymes dephosphorylating exogenous substrates. Furthermore, the type 2 PAPs have been proposed to belong to a novel phosphatase superfamily consisting of a number of soluble and membrane-bound enzymes. In vitro enzyme assays show that the type 2 PAPs can dephosphorylate lyso-phosphatidate, ceramide-1-phosphate, sphingosine-1-phosphate and diacylglycerol pyrophosphate. Although the physiological implications of such a broad substrate specificity need to be further investigated, the type 2 PAPs appear to metabolize a wide range of lipid mediators derived from both glycero- and sphingolipids.  相似文献   

7.
Molecular, biochemical and genetic characterization of ornithine decarboxylase, S -adenosylmethionine decarboxylase and spermidine synthase establishes that these polyamine-biosynthetic enzymes are essential for growth and survival of the agents that cause African sleeping sickness, Chagas' disease, leishmaniasis and malaria. These enzymes exhibit features that differ significantly between the parasites and the human host. Therefore it is conceivable that exploitation of such differences can lead to the design of new inhibitors that will selectively kill the parasites while exerting minimal, or at least tolerable, effects on the parasite-infected patient.  相似文献   

8.
Methylglyoxal is a toxic by-product of glycolysis and other metabolic pathways. In mammalian cells, the principal route for detoxification of this reactive metabolite is via the glutathione-dependent glyoxalase pathway forming d-lactate, involving lactoylglutathione lyase (GLO1; EC 4.4.1.5) and hydroxyacylglutathione hydrolase (GLO2; EC 3.2.1.6). In contrast, the equivalent enzymes in the trypanosomatid parasites Trypanosoma cruzi and Leishmania spp. show >200-fold selectivity for glutathionylspermidine and trypanothione over glutathione and are therefore sensu stricto lactoylglutathionylspermidine lyases (EC 4.4.1.-) and hydroxyacylglutathionylspermidine hydrolases (EC 3.2.1.-). The unique substrate specificity of the parasite glyoxalase enzymes can be directly attributed to their unusual active site architecture. The African trypanosome differs from these parasites in that it lacks GLO1 and converts methylglyoxal to l-lactate rather than d-lactate. Since Trypanosoma brucei is the most sensitive of the trypanosomatids to methylglyoxal toxicity, the absence of a complete and functional glyoxalase pathway in these parasites is perplexing. Alternative routes of methylglyoxal detoxification in T. brucei are discussed along with the potential of exploiting trypanosomatid glyoxalase enzymes as targets for anti-parasitic chemotherapy.  相似文献   

9.
The folate pathway represents a powerful target for combating rapidly dividing systems such as cancer cells, bacteria and malaria parasites. Whereas folate metabolism in mammalian cells and bacteria has been studied extensively, it is understood less well in malaria parasites. In two articles, we attempt to reconstitute the malaria folate pathway based on available information from mammalian and microbial systems, in addition to Plasmodium-genome-sequencing projects. In part I, we focused on folate enzymes that are already used clinically as anticancer drug targets or that are under development in drug-discovery programs. In this article, we discuss mammalian folate enzymes that have not yet been exploited as potential drug targets, and enzymes that function in the de novo folate-synthesis pathway of the parasite--a particularly attractive area of attack because of its absence from the mammalian host.  相似文献   

10.
Peroxidoxins are a recently described family of antioxidants. They have an ancient origin, being present in organisms as primitive as the archaea, and they appear to be ubiquitous in living cells. Here, Sharon McGonigle, John Dalton and Eric James review the present understanding of the functions and mechanism of action of these enzymes and suggest that these antioxidants may represent the ;missing link' in the metabolism of reactive oxygen species by some protozoan and helminth parasites. Also, by performing sequence comparisons of homologues entered in the public databases, they have classified the parasite peroxidoxins as 1-cys or 2-cys enzymes. The discovery of these antioxidants may change our understanding of how reactive oxygen species, of parasite or host origin, are managed by parasites.  相似文献   

11.
Protozoan Kinetoplastida, including the pathogenic trypanosomatids of the genera Trypanosoma and Leishmania, compartmentalize several important metabolic systems in their peroxisomes which are designated glycosomes. The enzymatic content of these organelles may vary considerably during the life-cycle of most trypanosomatid parasites which often are transmitted between their mammalian hosts by insects. The glycosomes of the Trypanosoma brucei form living in the mammalian bloodstream display the highest level of specialization; 90% of their protein content is made up of glycolytic enzymes. The compartmentation of glycolysis in these organelles appears essential for the regulation of this process and enables the cells to overcome short periods of anaerobiosis. Glycosomes of all other trypanosomatid forms studied contain an extended glycolytic pathway catalyzing the aerobic fermentation of glucose to succinate. In addition, these organelles contain enzymes for several other processes such as the pentose-phosphate pathway, beta-oxidation of fatty acids, purine salvage, and biosynthetic pathways for pyrimidines, ether-lipids and squalenes. The enzymatic content of glycosomes is rapidly changed during differentiation of mammalian bloodstream-form trypanosomes to the forms living in the insect midgut. Autophagy appears to play an important role in trypanosomatid differentiation, and several lines of evidence indicate that it is then also involved in the degradation of old glycosomes, while a population of new organelles containing different enzymes is synthesized. The compartmentation of environment-sensitive parts of the metabolic network within glycosomes would, through this way of organelle renewal, enable the parasites to adapt rapidly and efficiently to the new conditions.  相似文献   

12.
A proposal for the role of ecto-enzymes and adenylates in traumatic shock   总被引:10,自引:0,他引:10  
It is proposed that the biochemical mechanisms which lead to the pathology of irreversible traumatic shock are based on the vasodilatory action of adenylates and failure of ecto-enzymes to clear these substances from the vascular bed. Following massive injury, or another assault which produces significant cytolysis, cytoplasmic ATP is released into the circulation. Ecto-phosphoesterhydrolases on erythrocytes normally control plasma adenylate concentrations to be maintained below 10?7 M. If a critical ATP (or ADP) concentration between 10?5 and 10?4 M is reached, erythrocytes become semi-permeable and themselves release additional ATP into the plasma compartment. When ecto-ATPase activity becomes insufficient in metabolizing plasma ATP at rates which are needed to compensate for the release of cytoplasmic ATP, the vasodilatory effects of adenylates will manifest themselves in a sustained manner. It is suggested that ecto-phosphoesterhydrolases on blood formed elements and endothelial cells serve a protective function. Circulatory shock ensues under conditions when these ecto-enzymes are rendered incompetent or when plasma adenylate concentrations exceed their catabolic capacity.  相似文献   

13.
Following their release from cells, ATP and NAD, the universal currencies of energy metabolism, function as extracellular signalling molecules. Mammalian cells express numerous purinoceptors, i.e., the nucleotide-gated P2X ion channels and the G-protein-coupled P2Y receptors. Signalling through purinoceptors is controlled by nucleotide-metabolizing ecto-enzymes, which regulate the availability of extracellular nucleotides. These enzymes include ecto-nucleoside triphosphate diphosphohydrolases (ENTPD, CD39 family) and ecto-nucleotide pyrophosphatase/phosphodiesterases (ENPP, CD203 family). Investigation of these receptors and enzymes has been hampered by the lack of available antibodies, especially ones that recognize these proteins in their native conformation. This study reports the use of genetic immunization to generate such antibodies against P2X(1), P2X(4), P2X(7), ENTPD1, ENPTD2, ENPTD5, ENPTD6, ENPP2, ENPP3, ENPP4, ENPP5, and ENPP6. Genetic immunization ensures expression of the native protein by the cells of the immunized animal and yields antibodies directed against proteins in native conformation (ADAPINCs). Such antibodies are especially useful for immunofluorescence and immunoprecipitation analyses, whereas antibodies against synthetic peptides usually function well only in Western-blot analyses. Here we illustrate the utility of the new antibodies to monitor the cell surface expression of and to purify some key players of purinergic signalling.  相似文献   

14.
Formation and excretion of acetate as a metabolic end product of energy metabolism occurs in many protist and helminth parasites, such as the parasitic helminths Fasciola hepatica, Haemonchus contortus and Ascaris suum, and the protist parasites, Giardia lamblia, Entamoeba histolytica, Trichomonas vaginalis as well as Trypanosoma and Leishmania spp. In all of these parasites acetate is a main end product of their energy metabolism, whereas acetate formation does not occur in their mammalian hosts. Acetate production might therefore harbour novel targets for the development of new anti-parasitic drugs. In parasites, acetate is produced from acetyl-CoA by two different reactions, both involving substrate level phosphorylation, that are catalysed by either a cytosolic acetyl-CoA synthetase (ACS) or an organellar acetate:succinate CoA-transferase (ASCT). The ACS reaction is directly coupled to ATP synthesis, whereas the ASCT reaction yields succinyl-CoA for ATP formation via succinyl-CoA synthetase (SCS). Based on recent work on the ASCTs of F. hepatica, T. vaginalis and Trypanosoma brucei we suggest the existence of three subfamilies of enzymes within the CoA-transferase family I. Enzymes of these three subfamilies catalyse the ASCT reaction in eukaryotes via the same mechanism, but the subfamilies share little sequence homology. The CoA-transferases of the three subfamilies are all present inside ATP-producing organelles of parasites, those of subfamily IA in the mitochondria of trypanosomatids, subfamily IB in the mitochondria of parasitic worms and subfamily IC in hydrogenosome-bearing parasites. Together with the recent characterisation among non-parasitic protists of yet a third route of acetate formation involving acetate kinase (ACK) and phosphotransacetylase (PTA) that was previously unknown among eukaryotes, these recent developments provide a good opportunity to have a closer look at eukaryotic acetate formation.  相似文献   

15.
Nucleotide pyrophosphatases/phosphodiesterases (NPPs) release nucleoside 5'-monophosphates from nucleotides and their derivatives. They exist both as membrane proteins, with an extracellular active site, and as soluble proteins in body fluids. The only well-characterized NPPs are the mammalian ecto-enzymes NPP1 (PC-1), NPP2 (autotaxin) and NPP3 (B10; gp130(RB13-6)). These are modular proteins consisting of a short N-terminal intracellular domain, a single transmembrane domain, two somatomedin-B-like domains, a catalytic domain, and a C-terminal nuclease-like domain. The catalytic domain of NPPs is conserved from prokaryotes to mammals and shows remarkable structural and catalytic similarities with the catalytic domain of other phospho-/sulfo-coordinating enzymes such as alkaline phosphatases. Hydrolysis of pyrophosphate/phosphodiester bonds by NPPs occurs via a nucleotidylated threonine. NPPs are also known to auto(de)phosphorylate this active-site threonine, a process accounted for by an intrinsic phosphatase activity, with the phosphorylated enzyme representing the catalytic intermediate of the phosphatase reaction. NPP1-3 have been implicated in various processes, including bone mineralization, signaling by insulin and by nucleotides, and the differentiation and motility of cells. While it has been established that most of these biological effects of NPPs require a functional catalytic site, their physiological substrates remain to be identified.  相似文献   

16.
Topoisomerases are enzymes that mediate topological changes in DNA that are essential for nucleic acid biosynthesis and for cell survival. The kinetoplastid protozoa, which include pathogenic trypanosomes and Leishmania, have yielded an interesting variety of purified topoisomerase activities as well as several topoisomerase genes. In these parasites, topoisomerases are involved in the metabolism of both nuclear and mitochondrial (kinetoplast) DNA. In this review, Christian Burri, Armette Bodley and Theresa Shapiro summarize what is known about topoisomerases in kinetoplastids, and consider the intriguing possibility that these enzymes may act as valuable antiparasite drug targets.  相似文献   

17.
Nucleotide pyrophosphatases/phosphodiesterases (NPPs) release nucleoside 5′-monophosphates from nucleotides and their derivatives. They exist both as membrane proteins, with an extracellular active site, and as soluble proteins in body fluids. The only well-characterized NPPs are the mammalian ecto-enzymes NPP1 (PC-1), NPP2 (autotaxin) and NPP3 (B10; gp130RB13-6). These are modular proteins consisting of a short N-terminal intracellular domain, a single transmembrane domain, two somatomedin-B-like domains, a catalytic domain, and a C-terminal nuclease-like domain. The catalytic domain of NPPs is conserved from prokaryotes to mammals and shows remarkable structural and catalytic similarities with the catalytic domain of other phospho-/sulfo-coordinating enzymes such as alkaline phosphatases. Hydrolysis of pyrophosphate/phosphodiester bonds by NPPs occurs via a nucleotidylated threonine. NPPs are also known to auto(de)phosphorylate this active-site threonine, a process accounted for by an intrinsic phosphatase activity, with the phosphorylated enzyme representing the catalytic intermediate of the phosphatase reaction. NPP1-3 have been implicated in various processes, including bone mineralization, signaling by insulin and by nucleotides, and the differentiation and motility of cells. While it has been established that most of these biological effects of NPPs require a functional catalytic site, their physiological substrates remain to be identified.  相似文献   

18.
Paul RE  Doerig C  Brey PT 《IUBMB life》2000,49(4):245-248
Malaria parasites proliferate asexually within the vertebrate host but must undergo sexual reproduction for transmission to mosquitoes and hence infection of new hosts. The developmental pathways controlling gametocytogenesis are not known, but several protein kinases and other putative signal transduction elements possibly involved in this phenomenon have been found in Plasmodium. Recently, another developmental pathway, that of Plasmodium sex determination (male or female), has been shown to be triggered by erythropoiesis in the host. Rapid progress is being made in our understanding of the molecular basis of mammalian erythropoiesis, revealing kinase pathways that are essential to cellular responses triggered by the hormone erythropoietin. Although the molecular mechanisms whereby this hormone modulates the sex ratio of malaria parasites remain to be elucidated, it probably activates, within the parasite, transduction pathways similar to those found in other eukaryotes. Indeed, enzymes belonging to protein kinase families known to be involved in the response of mammalian cells to erythropoietin (such as the mitogen-activated protein kinases) have been identified in P. falciparum gametocytes. Some of these enzymes differ markedly from their mammalian homologs; therefore, identification of the transduction pathways of the parasite that are responsible for its developmental response to erythropoietin opens the way to the development of transmission-blocking drugs based on kinase inhibitors.  相似文献   

19.
20.
The release of plasma membrane ecto-enzymes by a phosphatidylinositol-specific phospholipase C from Staphylococcus aureus was investigated. There was no effect on l-leucyl-β-naphthylamidase, alkaline phosphodiesterase I and Ca2+- or Mg2+-ATPase, but substantial proportions of the alkaline phosphatase and 5′-nucleotidase were released. There was no simultaneous release of phospholipid and the solubilized enzymes were not excluded from Sepharose 6-B. It was therefore concluded that release was not a secondary consequence of membrane vesiculation but occurred as a result of the disruption of specific interactions involving the phosphatidylinositol molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号