首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Syntheses of two novel ligand precursors O,O'-diisopropyl- (1a) and O,O'-diisobutyl-(S,S)-ethylenediamine-N,N'-di-2-propanoate dihydrochloride monohydrate (1b) and the corresponding dichloroplatinum(II) (2a and 2b) and tetrachloroplatinum(IV) complexes (3a and 3b) are described here. The substances were characterized by IR, (1)H and (13)C spectroscopy and elemental analysis. Crystal structures were determined for 1a and the corresponding platinum(IV) complex, 3a. In vitro antiproliferative activity was determined against tumor cell lines: human adenocarcinoma HeLa, human myelogenous leukemia K562, human malignant melanoma Fem-x, rested and stimulated normal immunocompetent cells (human peripheral blood mononuclear PBMC cells) using KBR test (Kenacid Blue Dye binding test). The IC(50)(microM) values for the most active compound 3a were: 30.48+/-2.54; 12.26+/-2.60; 13.68+/-3.22; 80.18+/-24.07 and 71.30+/-21.70, respectively.  相似文献   

2.
The complexes Pt(pq)Cl2(1) and Pt(pq)(bdt) (2) (where pq = 2-(2'pyridyl)quinoxaline and bdt=benzene-1,2-dithiolate) have been synthesized and fully characterized by UV-visible (UV-Vis), Fourier Transformer Infrared Spectra (FTIR), 1 and 2D NMR and cyclic voltammetry (CV). Interactions of the tested systems (the aforementioned complexes 1 and 2) and the free ligands pq and bdt with double stranded calf thymus DNA (CT-DNA) were studied by UV-spectrophotometric (melting curves) and circular dichroism (CD) measurements. The results suggest that both complexes 1 and 2, are able to form adducts with DNA and to distort the double helix by changing the base stacking. Complex 2 forms stronger adducts to CT-DNA than complex 1 and this is probably due to the substitution of the chlorine atoms of 1 by the 1,2-dithiolate ligand (bdt) in 2. The latter induces an extensive distortion in the planarity of 2 as density functional theory (DFT) calculations reveal. Besides, the light absorbing complex 2 possess intense mixed metal ligand to ligand charge transfer (MM'LLCT) transition in the visible region of the spectrum and could act as photoluminescent metal-based probe for the study of DNA binding. Thus, the photocleavage of DNA by 2 has been studied by UV-Vis and CD spectra and monitored by agarose gel electrophoresis. Under our experimental conditions, it is unclear that complex 2 can photocleave DNA. Furthermore, the ability of 2 to inhibit proliferation of human tumor cell lines was tested and the results indicate some cytoxytic effect on the SF-286 cells.  相似文献   

3.
The reaction of the monoalkyl complex trans-[Pt(DMSO)2Cl(CH3)] with a large variety of heterocyclic nitrogen bases L, in chloroform solution, leads to the formation of uncharged complexes of the type [Pt(DMSO)(L)Cl(CH3)], containing four different groups coordinated to the metal center. Only two out of the three different possible isomers were detected in solution. These two trans(C,N) and cis(C,N) species can be unambiguously identified through 1H NMR spectroscopy. For the trans(C,N) isomers, average values of 2JPtH=75±4 Hz and 3JPtH=36±4 Hz have been observed for the coordinated methyl and DMSO ligands, respectively. In the case of the cis(C,N) isomers, these values increase to 2JPtH=83±2 Hz, and decrease to 3JPtH=26±3 Hz due to the mutual exchange of ligands in trans position to CH3 and DMSO. In the case of bulky asymmetric ligands, such as quinoline, 2-quinolinecarboxaldehyde, 2-methylquinoline, 5-aminoquinoline, 2-phenylpyridine and 2-chloropyridine, slow rotation of the hindered group around the Pt---N bond makes the coordinated DMSO ligand prochiral. NMR experiments have shown that the first reaction product is the trans(C,N) isomer as a consequence of the very fast removal of one DMSO ligand by the nitrogen bases from the starting complex trans-[Pt(DMSO)2Cl(CH3)]. This trans kinetic product undergoes a geometrical conversion into the more stable cis(C,N) isomer through the intermediacy of fast exchanging aqua-species. The rate of isomerization and the relative stability of the two isomers depends essentially on the rate of aquation and on the steric congestion imposed by the new L ligand on the metal.  相似文献   

4.
Reactions of [PtMe3(bpy)(Me2CO)][BF4] (2) with the thionucleobases 2-thiouracil (s2Ura), 4-thiouracil (s4Ura) and 2,4-dithiouracil (s2s4Ura) resulted in the formation of complexes of the type [PtMe3(bpy)(L-κS)][BF4] (L = s2Ura, 3; s4Ura, 4; s2s4Ura, 5). The complexes were characterized by NMR spectroscopy (1H, 13C, 195Pt), IR spectroscopy as well as microanalyses. The coordination through the C4S groups (4, 5) was additionally confirmed by DFT calculations, where it was shown that these complexes [PtMe3(bpy)(L-κS4)]+ (L = s4Ura, s2s4Ura) are about 5.8 (4b) and 3.3 kcal/mol (5b), respectively, more stable than the respective complexes, having thiouracil ligands bound through the C2X groups (X = O, 4a; S, 5a). For [PtMe3(bpy)(s2Ura-κS2)][BF4] (3) no preferred coordination mode could be assigned solely based on DFT calculations. Analysis of NMR spectra showed the κS2 coordination. In vitro cytotoxic studies of complexes 3−5 on nine different cell lines (8505C, A253, FaDu, A431, A549, A2780, DLD-1, HCT-8, HT-29) revealed in most cases moderate activities. However, 3 and 5 showed significant activity towards A549 and A2780, respectively, possessing IC50 values comparable to those of cisplatin. Cell cycle perturbations and trypan blue exclusion test on cancer cell line A431 using [PtMe3(bpy)(s2s4Ura-κS4)][BF4] (5) showed induction of apoptotic cell death. Furthermore, the reaction of [PtMe3(OAc-κ2O,O′)(Me2CO)] (6) with 4-thiouracil yielded the dinuclear complex [(PtMe3)2(μ-s4Ura-H)2] (7), which has been characterized by microanalysis, NMR (1H, 13C, 195Pt) and IR spectroscopy as well as ESI mass spectrometry. X-ray diffraction analysis of crystals yielded in an isolated case exhibited the presence of a hexanuclear thiouracilato platinum(IV) complex, possessing each three different kinds of methyl platinum(IV) moieties and 4-thiouracilato ligands. This exhibited the ability of 4-thiouracil platinum(IV) complexes to form multinuclear complexes.  相似文献   

5.
Four dipeptide complexes of the type [PtX(2)(dipeptide)] x H(2)O (X=Cl, I, dipeptide=l-methionylglycine, l-methionyl-l-leucine) were prepared. The complexes were characterized by (1)H, (13)C, (195)Pt NMR and infrared spectroscopy, DTG and elemental analysis. From the infrared, (1)H and (13)C NMR spectroscopy it was concluded that dipeptides coordinate bidentately via sulfur and amine nitrogen donor atoms. Confirmed with (13)C and (195)Pt NMR spectroscopy, each of the complexes exists in two diastereoisomeric forms, which are related by inversion of configuration at the sulfur atom. The (1)H NMR spectrum for the platinum(II) complex with l-methionylglycine and chloro ligands exhibited reversible, intramolecular inversion of configuration at the S atom; DeltaG( not equal)=72 kJ mol(-1) at coalescence temperature 349 K was calculated. In vitro cytotoxicity studies using the human tumor cell lines liposarcoma, lung carcinoma A549 and melanoma 518A2 revealed considerable activity of the platinum(II) complex with l-methionylglycine and chloro ligands. Further in vitro cytotoxic evaluation using human testicular germ cell tumor cell lines 1411HP and H12.1 and colon carcinoma cell line DLD-1 showed moderate cytotoxic activity for all platinum(II) complexes only in the cisplatin-sensitive cell line H12.1. Platinum uptake studies using atomic absorption spectroscopy indicated no relationship between uptake and activity. Potential antitumoral activity of this class of platinum(II) complexes is dependent on the kind of ligands as well as on tumor cell type.  相似文献   

6.
The aim of this study was to synthesize and evaluate plasmid DNA interaction of new platinum(II) complexes with some 2-substituted benzimidazole derivatives as carrier ligands which may have potent anticancer activity and low toxicity. Twelve benzimidazole derivatives carrying indole, 2-/or 3-/or 4-methoxyphenyl, 4-methylphenyl, 3,4-dimethoxyphenyl, 3,4,5-trimethoxyphenyl, 4-methoxybenzyl, 3,4,5-trimethoxybenzyl, 3,4,5-trimethoxystyryl, 3,4,5-trimethoxybenzylthio or dimethylamino ethyl groups in their position 2 and twelve platinum(II) complexes with these carrier ligands were synthesized. The chemical structure of the platinum complexes have been characterized by their elemental analysis and FIR, 1H NMR and mass spectra and their 1H NMR and FIR spectra were interpreted by comparison with those of the ligands. The interaction of all the ligands and their complexes with plasmid DNA and their restriction endonuclease reactions by BamHI and HindIII enzymes were studied by agarose gel electrophoresis. It was determined that complex 1 [dichloro-di(2-(1H-indole-3-yl)benzimidazole)platinum(II)·2H2O] has stronger interaction than carboplatin and complex 10 [dichloro-di(2-(3,4,5-trimethoxystyryl)benzimidazole)platinum(II)·2H2O] has stronger interaction than both carboplatin and cisplatin with plasmid DNA.  相似文献   

7.
(OC-6-33)-Dichlorido(ethane-1,2-diamine)dihydroxidoplatinum(IV) (1) was carboxylated using succinic- or 3-methylglutaric anhydride. The resulting bis(carboxylato)platinum(IV) complexes display free, uncoordinated carboxylic acid groups which were further derivatized with primary aliphatic alcohols. The complexes were characterized in detail by elemental analysis, ESI-MS, FT-IR, as well as multinuclear (1H, 13C, 15N, 195Pt) NMR spectroscopy. Cytotoxic properties were evaluated in four human tumor cell lines originating from ovarian carcinoma (CH1, SK-OV-3), cervical carcinoma (HeLa) and colon carcinoma (SW480) by means of the MTT assay (MTT = 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide). Structure-activity relationships showed that the cytotoxicity increased with increasing lipophilicity of the alcoholate moiety yielding IC50 values in the low micromolar or even low nanomolar range.  相似文献   

8.
Based on their MP2 optimized structures in the ground states, we obtained solution absorption spectra for trans-[PtII(CCR)2(PH3)2] (R = H (1) and Ph (2)) and trans-[PtII(CCH)2(PH2CH2PH2)]2 (3) under the time-dependent density functional theory calculations. These absorptions agree with experimental observations. The unrestricted MP2 optimization performed for 3 in the lowest-energy triplet excited state shows that upon excitation the PtPt distance shortens about 0.347 Å with respect to the 3.188 Å one in the ground state. The UMP2 calculations estimated that its 3(dz2)σ(pz)] excited state produces the 531 nm emission, corresponding to the 580 nm one of trans-[PtII(CCPh)2(PPh2CH2PPh2)]2 in the solid state at 298 K.  相似文献   

9.
Four platinum(IV) complexes, trans,trans-dichlorobis(N,N-dimethylglycinato)platinum(IV), trans,trans-[Pt(dmgly)2Cl2] (1) and trans,trans-dibromobis(N,N-dimethylglycinato)platinum (IV), trans,trans-[Pt(dmgly)2Br2] (2), as well as, trans,trans-dichlorobis(N-methylglycinato)platinum(IV), trans,trans-[Pt(sar)2Cl2] (3) and trans,trans-dibromobis(N-methylglycinato)platinum(IV), trans,trans-[Pt(sar)2Br2] (4) (with configuration index for all complexes OC-6-14), were synthesized and characterized by elemental analysis, infrared and 1H NMR spectroscopy. In the aim to assess the selectivity in the antitumor action of these complexes, the antiproliferative action of these compounds was determined to human adenocarcinoma HeLa cells; to human myelogenous leukemia K562 cells and to normal immunocompetent cells; i.e., on human PBMC. The details of the crystal structure synthesized trans,trans-[Pt(sar)2Br2] complex were also reported here. In the crystal structure of trans,trans-[Pt(sar)2Br2], the Pt(IV) ion had a deformed octahedral coordination with both N-methylglycinates and bromides bonded trans to one another and with the N-Pt-Br bond angles of 84.1(4) and 95.9(4)°. The trans,trans-[Pt(sar)2Br2] complex molecules form 2D-layers with multiple N-H?O and C-H?O hydrogen bonds.  相似文献   

10.
The ligands 3,3′-dimethylene-2,2′-bibenzo[g]quinoline and bisbenzo[2,3:9,8]-1,10-phenanthroline have been coordinated with Ru(II) to form both tris- and mixed ligand complexes. These species are highly congested about the metal center but can be formed through the use of microwave irradiation. Shielding and deshielding effects on the chemical shifts of the aryl as well as the bridge protons reveal important conformational effects. Bathochromic shifts are observed in the electronic absorption spectra, associated with increased delocalization of the ligand and lowering of the π*-energy level. Similar effects are observed for the reduction potentials while the oxidation potentials are much less sensitive to ligand structure.  相似文献   

11.
Two new 3,5-dimethylpyrazolic derived ligands that are N1-substituted by diamine chains, 1-[2-(diethylamino)ethyl]-3,5-dimethylpyrazole (L1) and 1-[2-(dioctylamino)ethyl]-3,5-dimethylpyrazole (L2) were synthesised. Reaction of the ligands, L1 and L2, with [MCl2(CH3CN)2] yielded [MCl2(L)] (M = Pd(II), Pt(II)) complexes. These complexes were characterised by elemental analyses, conductivity measurements, IR, 1H, 13C{1H} and 195Pt{1H} NMR spectroscopies. The crystal structure of [PdCl2(L1)] was determined by single-crystal X-ray diffraction methods. The structure consists of mononuclear units. The Pd(II) atom is coordinated by a pyrazolic nitrogen, an amine nitrogen and two chlorine atoms in a cis disposition. In this structure, C-H?Cl, C-H?H-C and C-H?C-H intermolecular interactions have been identified.  相似文献   

12.
Three novel cisplatin analogues were synthesized, designed according to an approach which violates the “classical” structure-activity relationship, by replacing the diamine ligands with a planar N donor heterocycle giving a sterically hindered complex. Moreover, the sterical hindrance of antitumor drug candidates potentially makes them less susceptible to deactivation by sulphur-containing proteins and helping to overcome resistance mechanisms. The resulting mononuclear complexes of sterically hindered polidentate heterocyclic N ligands [PtCl(bbp)]Cl (1) [bbp = 2,6-bis(2-benzimidazolyl)pyridine], [PtCl2(dptdn)](H2O) (2) [dptdn = sodium 5,6-diphenyl-3-(2′-pyridyl)-1,2,4-triazine-4″,4″′-disulfonate] and [(dptdn)(dpt)Pt]Cl2(H2O) (3) [dpt = 5,6-diphenyl-3-(2′-pyridyl)-1,2,4-triazine] have been prepared and structurally characterised. Both neutral and ionic complexes are present, with monofunctional (1) and bifunctional Pt(II) moieties (2) and coordinatively saturated Pt(II) ions in the mixed ligand complex (3), whose size and shape enable them to behave as novel scaffolds for DNA binding. All complexes were tested “in vitro” for their biological activity on human HT29 colorectal carcinoma and HepG2 hepatoma cells. The complexes (1) and (3), endowed with a positive charge, showed a potent cytotoxic activity and reduced cell viability with an efficacy higher than that of cisplatin; whilst the neutral bifunctional compound (2) was inactive. IC50 values have been calculated for the active compounds. The cytotoxic effects were confirmed by the accumulation of treated cells in subG0/G1 phase of cell cycle, by the loss of mitochondrial potential (Δψm) and by the chromatin condensation or fragmentation observed by means of fluorescence microscopy after Hoechst 33258 nuclear staining. A study on intracellular platinum uptake in HT29 cell line has been also performed and data obtained strongly suggest that the cytotoxicity of new tested complexes reported in this work is based on a different pharmacodynamic pattern with respect to cisplatin.  相似文献   

13.
From the reaction between dihydroxoplatinum(II) and l-ascorbic acid, two types of platinum(II) ascorbate complexes were obtained and structurally characterized with ethylenediamine (en), N,N-dimethylethylenediamine (dmen) and N,N,N′-trimethylethylenediamine (trimen) as stabilizing ligands. In [Pt(en)(asc-C,O)] (1), [Pt(dmen)(asc-C,O)] (2) and [Pt(trimen)(asc-C,O)] (4), the ascorbate dianion forms a five-membered chelate ring, coordinating to the Pt(II) ion at the 2-carbon and the 5-oxygen atoms (C,O-chelate). From the same mother solution, crystals of [Pt(trimen)(asc-O,O′)] (3) were obtained during the precipitation of 4; in 3 the ascorbate is bound to the Pt at the 2- and 3-oxygen atoms (O,O′-chelate). Compounds 3 and 4 are the first well-characterized linkage isomers among the transition-metal ascorbate complexes. The O,O′-chelated 3 slowly changes to the C,O-chelated 4 in an aqueous solution. Bulkiness of the stabilizing ligand, i.e. en, dmen and trimen has an influence on the formation of the C,O-chelated species, 1, 2 and 4.  相似文献   

14.
The fluoroquinolones constitute an important class of synthetic antimicrobial agents. The interaction between these compounds and metallic cations has been investigated primarily with the goal of identifying the functional groups directly linked to the metal. Furthermore, there has been some additional work investigating the effect of metal ions upon antibacterial activity. The vast majority of the metallic complexes reported in the literature show coordination of the fluoroquinolone through the carboxylate and the carbonyl oxygen atoms. In this work, we report the synthesis and characterization of platinum(II) complexes with ciprofloxacin, levofloxacin, ofloxacin, sparfloxacin, and gatifloxacin. The resulting complexes present the fluoroquinolone coordinated through the nitrogen atoms of the piperazine ring, which is unusual. The proposed structures were supported by spectroscopic evidence (IR, NMR, and mass spectra) as well as by theoretical studies.  相似文献   

15.
Treatment of the ligands 1,8-bis(3,5-dimethyl-1-pyrazolyl)-3,6-dithiaoctane (bddo), 1,9-bis(3,5-dimethyl-1-pyrazolyl)-3,7-dithianonane (bddn), and 1,6-bis(3,5-dimethyl-1-pyrazolyl)-2,5-dithiahexane (bddh) with several platinum starting materials as K2PtCl4, PtCl2, [PtCl2(CH3CN)2] and [PtCl2(PhCN)2] was developed under different conditions. The reactions did not yield pure products. The ratio of the NSSN, NS, SS, NN, and 2NS isomers has been calculated through NMR experiments. Treatment of the mixtures of complexes with NaBPh4 affords [Pt(NSSN)](BPh4)2 (NSSN = bddo, bddn). These Pt(II) complexes have been characterised by elemental analyses, conductivity measurements, IR and 1H and 13C NMR spectroscopy. The X-ray structures of the complexes [Pt(NSSN)](BPh4)2 (NSSN = bddo, bddn) have also been determined. In these complexes, the metal atom is tetracoordinated by the two azine nitrogen atoms of the pyrazole rings and two thioether sulfur atoms. When the [Pt(NSSN)](BPh4)2 (NSSN = bddo, bddn) complexes were heated under reflux in a solution of Et4NBr in CH2Cl2/CH3OH (1:1), a mixture of isomers was obtained.  相似文献   

16.
The Pt(II) complexes of 2N1O-donor ligands containing a pendent indole, 3-[N-2-pyridylmethyl-N-2-hydroxy-3,5-di(tert-butyl)benzylamino]ethylindole (Htbu-iepp), and 1-methyl-3-[N-2-pyridylmethyl-N-2-hydroxy-3,5-di(tert-butyl)benzylamino]ethylindole (Htbu-miepp) (H denotes an ionizable hydrogen), were synthesized, and the structure of [Pt(tbu-iepp)Cl] (1) was determined by X-ray analysis. Complex 1 prepared in CH3CN was revealed to have the C2 atom of the indole ring bound to Pt(II) with the Pt(II)-C2 distance of 1.981(3) Å. On the other hand, [Pt(tbu-miepp)Cl] (2) was concluded to have a phenolate coordination instead of the C2 atom of the indole ring by 1H NMR spectra. Reaction of 1 with 1 equiv. of Ce(IV) in DMF gave the corresponding one-electron oxidized species, which exhibited an ESR signal at g = 2.004 and an absorption peak at 567 nm, indicating the formation of the Pt(II)-indole-π-cation radical species. The half-life, t1/2, of the radical species at −60 °C was calculated to be 43 s (kobs = 1.6 × 10−2 s−1).  相似文献   

17.
The speciation of several insulin-mimetic/enhancing VO(IV) and Zn(II) complexes in human blood serum was studied and a comparison was made concerning the ability of the serum components to interact with the original metal complexes and the distribution of the metal ions between the low and the high molecular fractions of the serum. It was found that the low molecular mass components may play a larger role in transporting Zn(II) than in the case with VO(IV). Among the high molecular mass serum proteins, transferrin is the primary binder of VO(IV), and albumin is that of Zn(II). The results revealed that protein-ligand interactions may influence the metal ion distribution in the serum.  相似文献   

18.
A new series of glucose-conjugated Pt(IV) complexes that target tumor-specific glucose transporters (GLUTs) was designed, synthesized, and evaluated for their anticancer activities. All six compounds, namely, A1-A6, exhibited increased cytotoxicity that were almost six fold higher than that of oxaliplatin to MCF-7 cells. These Pt(IV) complexes can be reduced to release Pt(II) complexes and cause the death of tumor cells. Simultaneously, the glycosylated Pt(IV) complexes (30.21–91.33?μM) showed lower cytotoxicity that normal LO2 cells compared with cisplatin (5.25?μM) and oxaliplatin (8.34?μM). The intervention of phlorizin as a GLUTs inhibitor increased the IC50 value of the glycosylated Pt(IV) complexes, thereby indicating the potential GLUT transportability. The introduction of glucose moiety to Pt(IV) complexes can effectively enhance the Pt cellular uptake and DNA platination. Results suggested glucose-conjugated Pt(IV) complexes had potential for further study as new anticancer agents.  相似文献   

19.
Pt(II) and Pd(II) compounds containing the free radical 4-aminoTEMPO (4amTEMPO) were synthesized and characterised by X-ray diffraction methods. The disubstituted complexes cis- and trans-Pt(4amTEMPO)2I2 were studied. The trans isomer was prepared from the isomerisation of the cis analogue. The two Pd(II) compounds trans-Pd(4amTEMPO)2X2 (X = Cl and I) were also characterised by crystallographic methods. A mixed-ligand complex cis-Pt(DMSO)(4amTEMPO)Cl2 was synthesized from the isomerisation of the trans isomer in hot water. Its crystal structure was also determined. In all the complexes, the 4amTEMPO ligand is bonded to the metal through the -NH2 group, since the nitroxide O atom is not a good donor atom for the soft Pt(II) and Pd(II) metals. The conformation of the 4-aminoTEMPO ligand was compared to those of the few reported structures in the literature.  相似文献   

20.
The substitution behaviour of [PtCl(R)(COD)] (R = Me and Fc) complexes, by the stepwise addition of phosphine ligands, L (L = PPh3, PEt3 and P(NMe2)3), were investigated in situ by 1H and 31P NMR spectroscopy. Addition of less than two equivalents of the phosphine ligand results in the formation of dimeric molecules with the general formula trans-[Pt(R)(μ-Cl)(L)]2 for the sterically demanding systems where R = Me/L = P(NMe2)3 and R = Fc/L = PEt3, PPh3 and P(NMe2)3 while larger quantities resulted in cis- and trans mixtures of mononuclear complexes being formed. In the case of the relatively small steric demanding, strongly coordinating, PEt3 ligand the trans-[PtCl(R)(PEt3)2] mononuclear complexes were exclusively observed in both cases. The crystal structures of the two substrates, [PtCl(R)(COD)] (R = Me or Fc), as well as the cis-[PtCl(Fc)(PPh3)2] substitution product are reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号