首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Small Ruminant Research》2010,90(2-3):225-233
Although it may not be important in certain parts of the world, the contribution of goat milk to the economic and nutritional wellbeing of humanity is undeniable in many developing countries, especially in the Mediterranean, Middle East, Eastern Europe and South American countries. Goat milk has played a very important role in health and nutrition of young and elderly. Goat milk has also been known for its beneficial and therapeutic effects on the people who have cow milk allergy. These nutritional, health and therapeutic benefits enlighten the potentials and values of goat milk and its specialty products. The chemical characteristics of goat milk can be used to manufacture a wide variety of products, including fluid beverage products (low fat, fortified, or flavored) and UHT (ultra high temperature) milk, fermented products such as cheese, buttermilk or yogurt, frozen products such as ice cream or frozen yogurt, butter, condensed/dried products, sweets and candies. In addition, other specialty products such as hair, skin care and cosmetic products made from goat milk recently have gained a further attention. Nevertheless, high quality products can only be produced from good quality goat milk. The quality milk should have the potential to tolerate technological treatment and be transformed into a product that satisfies the expectations of consumers, in terms of nutritional, hygienic and sensory attributes. Taste is the main criteria used by consumers to make decisions to purchase and consume goat milk and its products. Typical goat taste is considered as a quality component in certain goat cheese products. Farmers can produce more value-added products for the economic sustainability of their business and the dairy goat industry in general.  相似文献   

2.
生物制品专刊序言   总被引:2,自引:0,他引:2  
生物制品是一类预防、诊断和治疗疫病的特殊制剂。生物制品的研发是融合微生物学、免疫学、分子生物学、细胞学、基因工程及发酵工艺等学科知识的综合技术体现。生物制品产业是整个生物技术产业的核心和热点。近年来,我国在生物制品研发方面取得了较大进步,为促进我国生物制品研究的交流,本期“生物制品”专刊集中展现了我国生物制品研究人员在预防生物制品、诊断制品、治疗生物制品领域所取得的最新进展。  相似文献   

3.
糖类物质在食品、医药、日化、发酵领域有着广泛应用,对人类健康和社会发展有着重要意义。发展新型糖类物质合成技术有利于解决传统植物生物质“采集-炼制”产糖模式所面临的高成本、长周期、时空限制等风险和问题。蓝藻是一类重要的光自养微生物,也是极具潜力的新型微生物光合平台,发展蓝藻光驱固碳产糖技术有望实现二氧化碳向特定糖类产物的一站式定向转化,实现糖类物质合成的模式变革。糖类物质本身在蓝藻天然光合代谢网络中发挥重要作用,特别是卡尔文循环、糖原代谢、相容性物质代谢等几个重要生理模块的运转都是以不同糖类物质的转化来驱动的;而合成生物技术的发展又为光合产糖网络重塑和扩展注入了新的驱动力,在产品类型、合成模式及生产效率上显著提升了蓝藻光驱固碳产糖技术的发展和应用潜力。针对蓝藻光驱固碳产糖技术的发展应用,从模式、策略、产物等不同维度总结了相关进展和风险挑战,并对其未来前景和方向进行了展望。  相似文献   

4.
Tailor‐made microorganisms Microbial diversity provides unlimited resources for the development of novel industrial processes and products. Since the beginning of the 20th century microorganisms have been successfully applied for the large scale production of bio‐based products. In recent years, modern methods of strain development and Synthetic Biology have enabled biotech engineers to design even more sophisticated and tailor‐made microorganisms. These microbes serve industrial processes for the production of bulk chemicals, enzymes, polymers, biofuels as well as plant‐derived ingredients such as Artemisinin in an ecologically and economically sustainable and attractive fashion. In the future, production of advanced biofuels, microbial fuel cells, CO2 as feedstock and microbial cellulose are research topics as well as challenges of global importance. Continuous efforts in microbiology and biotechnology research will be pivotal for white biotechnology to gain more momentum in transforming the chemical industry towards a knowledge based bio‐economy.  相似文献   

5.
Han MJ  Lee JW  Lee SY 《Proteomics》2011,11(4):721-743
The abilities of microorganisms to produce a wide variety of products ranging from human therapeutics to chemicals and to tolerate or detoxify exogenous stresses such as toxic compounds and pollutants are of great importance in fundamental and applied research. Proteomics has become an indispensable tool for large-scale protein analyses and can be used to understand the resulting physiological changes and uncover the mechanisms responsible for the cellular processes under various genetic and environmental conditions. Recent development of a multi-omic approach that combines proteomics with one or more of other omics is allowing us to better understand cellular physiology and metabolism at the systems-wide level, and consequently paving a way toward more efficient metabolic engineering. In this review, we describe the use of proteomics and its combination with other omics to broaden our knowledge on microorganisms in the field of bioscience and biotechnology. With the increasing interest in practical applications, the strategies of employing proteomics for the successful metabolic engineering of microorganisms toward the enhanced production of desired products as well as the approaches taken to identify novel bacterial components are reviewed with corresponding examples.  相似文献   

6.
The biological resources of the oceans have been exploited since ancient human history, mainly by catching fish and harvesting algae. Research on natural products with special emphasis on marine animals and also algae during the last decades of the 20th century has revealed the importance of marine organisms as producers of substances useful for the treatment of human diseases. Though a large number of bioactive substances have been identified, some many years ago, only recently the first drugs from the oceans were approved. Quite astonishingly, the immense diversity of microbes in the marine environments and their almost untouched capacity to produce natural products and therefore the importance of microbes for marine biotechnology was realized on a broad basis by the scientific communities only recently. This has strengthened worldwide research activities dealing with the exploration of marine microorganisms for biotechnological applications, which comprise the production of bioactive compounds for pharmaceutical use, as well as the development of other valuable products, such as enzymes, nutraceuticals and cosmetics. While the focus in these fields was mainly on marine bacteria, also marine fungi now receive growing attention. Although culture-dependent studies continue to provide interesting new chemical structures with biological activities at a high rate and represent highly promising approaches for the search of new drugs, exploration and use of genomic and metagenomic resources are considered to further increase this potential. Many efforts are made for the sustainable exploration of marine microbial resources. Large culture collections specifically of marine bacteria and marine fungi are available. Compound libraries of marine natural products, even of highly purified substances, were established. The expectations into the commercial exploitation of marine microbial resources has given rise to numerous institutions worldwide, basic research facilities as well as companies. In Europe, recent activities have initiated a dynamic development in marine biotechnology, though concentrated efforts on marine natural product research are rare. One of these activities is represented by the Kieler Wirkstoff-Zentrum KiWiZ, which was founded in 2005 in Kiel (Germany).  相似文献   

7.
本文回顾了近十余年来轻工、食品领域生物技术取得的重大成就,结合产业发展计划提出了今后研究和开发的重点。积极采用现代生物技术与食品加工技术相结合,加速改造传统工艺、开发具天然、营养、生理功能的新一代食品。  相似文献   

8.
Summary Bioengineering approaches provide unprecedented opportunities for reducing poverty, food insecurity, child malnutrition, and natural resource degradation. Genetic engineering offers outstanding potential to increase the efficiency of crop improvement. Thus agricultural biotechnology could enhance global food production and availability in a sustainable way. Small farmers in developing countries are faced with many problems and constraints which biotechnology may assist. Yet, there are varying levels of opposition to the use of this technology in most countries and it is especially intense in Europe. While there is certain public apprehension with the use of bioengineering in food improvement, the primary hurdles facing this technology are the stringent and burdensome regulatory requirements for commercialization, opposition from the special interest groups, apprehension by the food industry especially with the whole foods, and trade barriers including rigid policies on traceability and labeling. Bioengineered crops such as soybean, maize, cotton, and canola with a few traits have already made a remarkable impaet on food production and environmental quality. But, in the developing world, bioengineering of crops such as bananas, cassava, yams, sweet potatoes, sorghum, rice, maize, wheat, millet, and legumes, along with livestock, can elearly contribute to global food security. However, the integration of biotechnology into agricultural research in developing countries faces many challenges which must be addressed: financial, technical, political, environmental, activism, intellectual-property, biosafety, and trade-related issues. To ensure that developing countries can harness the benefit of this technology with minimal problems, concerted efforts must be pursued to create an awareness of its potential benefits and to address the concerns related to its use through dialog among the various stakeholders: policy makers, scientists, trade groups, food industry, consumer organizations, farmer groups, media, and non-governmental organizations. Biotechnology holds great promise as a new tool in the scientific toolkit for generating applied agricultural technologies; however, per se it is not a panacea for the worlds problems of hunger and poverty.  相似文献   

9.
Foresti  F. 《Hydrobiologia》2000,420(1):45-47
Biotechnology can currently be considered of importance in aquaculture. The increase in the production of aquatic organisms over the last two decades through the use of biotechnology indicates that in a few generations biotechnology may overtake conventional techniques, at least for the commercially more valuable species. In the last few years, genetics has contributed greatly to fish culture through the application of the more recent techniques developed in biotechnology and in genetic engineering. At present, the most commonly used methods in fish biotechnology are chromosome manipulation and hormonal treatments, which can be used to produce triploid, tetraploid, haploid, gynogenetic and androgenetic fish. These result in the production of individuals and lineages of sterile, monosex or highly endogamic fish. The use of such strategies in fish culture has as a practical objective the control of precocious sexual maturation in certain species; other uses are the production of larger specimens by control of the reproductive process and the attainment of monosex lines containing only those individuals of greater commercial value. The use of new technologies, such as those involved in gene transfer in many species, can result in modified individuals of great interest to aquaculturists and play important roles in specific programmes of fish production in the near future.  相似文献   

10.
植物源二萜类天然产物结构复杂且功能多样,具有抗癌、抗炎和抗菌等多种药理活性,在药品、化妆品和食品添加剂等方面广泛应用。近年来,基于植物源二萜类化合物(diterpenoids)生物合成途径中功能基因的逐步揭示和合成生物技术的发展,科研人员采用代谢工程技术构建了多种二萜类化合物的微生物细胞工厂,且多个化合物达到克级产量。本文对植物源二萜类化合物微生物细胞工厂的构建情况进行综述,介绍并探讨植物源二萜类化合物微生物合成的研究进展和改造策略,为高产二萜类化合物细胞工厂构建和工业化生产提供参考。  相似文献   

11.
The use of probiotics in shrimp aquaculture   总被引:1,自引:0,他引:1  
Shrimp aquaculture, as well as other industries, constantly requires new techniques in order to increase production yield. Modern technologies and other sciences such as biotechnology and microbiology are important tools that could lead to a higher quality and greater quantity of products. Feeding and new practices in farming usually play an important role in aquaculture, and the addition of various additives to a balanced feed formula to achieve better growth is a common practice of many fish and shrimp feed manufacturers and farmers. Probiotics, as 'bio-friendly agents' such as lactic acid bacteria and Bacillus spp., can be introduced into the culture environment to control and compete with pathogenic bacteria as well as to promote the growth of the cultured organisms. In addition, probiotics are nonpathogenic and nontoxic microorganisms without undesirable side-effects when administered to aquatic organisms. These strains of bacteria have many other positive effects, which are described in this article.  相似文献   

12.
Carps are the mainstay of Indian aquaculture, contributing over 90% to the total fish production, which was estimated to be 1.77 million metric tonnes in 1996. Carp culture has a great potential for waste utilization and thus for pollution abatement. Many wastes such as cow, poultry, pig, duck, goat, and sheep excreta, biogas slurry, effluents from different kinds of factories/industries have been efficiently used for enhancing the productivity of natural food of carps and related species. Besides, several organic wastes/byproducts such as plant products, wastes from animal husbandry, and industrial by-products have been used as carp feed ingredients to lower the cost of supplementary feeding. However, to ensure the continued expansion of fish ponds and the pollution control, there must be a market for the fish (carps) produced in these ponds. The carps have, however, a low market value due to the presence of intra-muscular bones, which reduces their consumer acceptability. Thus, a need was felt to develop some boneless convenience products for enhancing the consumer acceptability of the carps. Efforts were made to prepare three value-added fish products, namely fish patty, fish finger and fish salad from carp flesh and were compared with a reference product ('fish pakoura'). Sensory evaluation of these products gave highly encouraging results. The methods of preparation of these products were transferred to some progressive farmers of the region who prepared and sold these products at very attractive prices. Carp processing has a great potential for the establishment of a fish ancillary industry and thus for boosting the production of these species. In Punjab alone, there is a potential of consuming 32,448 metric tonnes per annum of such value-added products (which would require 54,080 metric tonnes of raw fish). The development of value-added products has a significant role in raising the socio-economic status of the people associated with carp culture. The average cost of production of these products was estimated to be INR 80 per kg. With a sale price of INR 110 per kg, and a sale of 50 kg per day of the value-added products (26 days a month), the average monthly income of a carp-processing unit comes to be INR 39,000 (929 USD, approximately).  相似文献   

13.
Microalgae as source of biofuel,food, fodder,and medicines   总被引:1,自引:0,他引:1  
Current status and future prospects of such problem as the production of microalgae and their application for biofuel generation (biodiesel, biohydrogen, bioethanol), as well as other products, is discussed in the review. The use of microalgae in human food, fodder, cosmetics, dyes, polysaccharides, antioxidants, medicines, and other products is quite promising. Presently, microalgae are noncompetitive with plant materials, due to economic reasons, in serving as a source of biofuel. Thereby, it is urgently necessary in modern biotechnology to improve the methods for the production of microalgae and search for new ways of their processing.  相似文献   

14.
The numerous uses of the grapevine fruit, especially for wine and beverages, have made it one of the most important plants worldwide. The phytochemistry of grapevine is rich in a wide range of compounds. Many of them are renowned for their numerous medicinal uses. The production of grapevine metabolites is highly conditioned by many factors like environment or pathogen attack. Some grapevine phytoalexins have gained a great deal of attention due to their antimicrobial activities, being also involved in the induction of resistance in grapevine against those pathogens. Meanwhile grapevine biotechnology is still evolving, thanks to the technological advance of modern science, and biotechnologists are making huge efforts to produce grapevine cultivars of desired characteristics. In this paper, important metabolites from grapevine and grape derived products like wine will be reviewed with their health promoting effects and their role against certain stress factors in grapevine physiology.  相似文献   

15.
刘长秋 《生命科学》2012,(11):1351-1356
20世纪下半叶以来,生命科技的发展极大地增进了人类的福祉,但也引生了大量伦理与法律问题,使得生命科技的伦理调整与法律规范成为必然。在生命科技发展的过程中,生命伦理发挥了重要的引领作用,它以其自身特定的机制保障着生命科技的健康发展。生命伦理与生命法存在着明显区别,这些区别使得生命伦理在现代生命科技社会中无法独立承担引领生命科技健康发展的使命,而必须与生命法共同在生命科技社会治理中发挥作用。在现代生命科技社会中,生命法具有不可取代的重要作用,正是基于此,20世纪70年代以来,各国兴起了一场生命伦理法律化的运动,纷纷强化了本国的生命法制建设,改变了以往单纯依赖生命伦理调整生命科技活动的历史,使法律也参与到生命科技的规制中来。人类生命科技治理必然要经历一个由单纯依赖生命伦理到依赖生命法与生命伦理相结合的发展阶段。当前,我国生命立法还存在诸多不足,难以适应生命科技发展的现实需要,需要采取相应的完善对策。  相似文献   

16.
Developing treatments that inhibit skin aging is an important research project. Rejuvenation, which focuses on prevention of skin aging, is one of the major issues. Recent studies suggested that mesenchymal stem cells (MSCs) secrete many cytokines, which are important in wound healing. In this study, we investigated the effect of human umbilical cord blood-derived mesenchymal stem cells conditioned media (USC-CM) in cutaneous wound healing and collagen synthesis. We found that USC-CM has many useful growth factors associated with skin rejuvenation, such as Epithelial Growth Factor (EGF), basic Fibroblast Growth Factor (bFGF), Platelet Derived Growth Factor (PDGF), Hepatocyte Growth Factor (HGF), Collagen type 1, and especially, one of the rejuvenation factors, the growth differentiation factor-11 (GDF-11). Our in vitro results showed that USC-CM stimulate growth and extracellular matrix (ECM) production of Human Dermal Fibroblasts (HDFs) compared to those of other MSCs conditioned media (CM) from different origins. Moreover, we evaluated the roles of GDF-11. The results showed that GDF-11 accelerates growth, migration and ECM production of HDFs. Our In vivo results showed that topical treatment of USC-CM showed anti-wrinkle effect and significantly increased dermal density in women. In conclusion, USC-CM has various useful growth factors including GDF-11 that can stimulate skin rejuvenation by increasing growth and ECM production of HDFs.  相似文献   

17.
In a practical sense, biotechnology is concerned with the production of commercial products generated by biological processes. More formally, biotechnology may be defined as "the application of scientific and engineering principles to the processing of material by biological agents to provide goods and services" (Cantor, 2000). From a historical perspective, biotechnology dates back to the time when yeast was first used for beer or wine fermentation, and bacteria were used to make yogurt. In 1972, the birth of recombinant DNA technology moved biotechnology to new heights and led to the establishment of a new industry. Progress in biotechnology has been truly remarkable. Within four years of the discovery of recombinant DNA technology, genetically modified organisms (GMOs) were making human insulin, interferon, and human growth hormone. Now, recombinant DNA technology and its products--GMOs are widely used in environmental biotechnology (Glick and Pasternak, 1988; Cowan, 2000). Bioremediation is one of the most rapidly growing areas of environmental biotechnology. Use of bioremediation for environmental clean up is popular due to low costs and its public acceptability. Indeed, bioremediation stands to benefit greatly and advance even more rapidly with the adoption of molecular techniques developed originally for other areas of biotechnology. The 1990s was the decade of molecular microbial ecology (time of using molecular techniques in environmental biotechnology). Adoption of these molecular techniques made scientists realize that microbial populations in the natural environments are much more diverse than previously thought using traditional culture methods. Using molecular ecological methods, such as direct DNA isolation from environmental samples, denaturing gradient gel electrophoresis (DGGE), PCR methods, nucleic acid hybridization etc., we can now study microbial consortia relevant to pollutant degradation in the environment. These techniques promise to provide a better understanding and better control of environmental biotechnology processes, thus enabling more cost effective and efficient bioremediation of our toxic waste and contaminated environments.  相似文献   

18.
Aspergilli have a long history in biotechnology as expression platforms for the production of food ingredients, pharmaceuticals and enzymes. The achievements made during the last years, however, have the potential to revolutionize Aspergillus biotechnology and to assure Aspergillus a dominant place among microbial cell factories. This mini-review will highlight most recent breakthroughs in fundamental and applied Aspergillus research with a focus on new molecular tools, techniques and products. New trends and concepts related to Aspergillus genomics and systems biology will be discussed as well as the challenges that have to be met to integrate omics data with metabolic engineering attempts.  相似文献   

19.
Many animals exhibit different behaviors in different seasons. The photoperiod can have effects on migration, breeding, fur growth, and other processes. The cyclic growth of the fur and feathers of some species of mammals and birds, respectively, is stimulated by the photoperiod as a result of hormone-dependent regulation of the nervous system. To further examine this phenomenon, we evaluated the Arbas Cashmere goat (Capra hircus), a species that is often used in this type of research. The goats were exposed to an experimentally controlled short photoperiod to study the regulation of cyclic cashmere growth. Exposure to a short photoperiod extended the anagen phase of the Cashmere goat hair follicle to increase cashmere production. Assessments of tissue sections indicated that the short photoperiod significantly induced cashmere growth. This conclusion was supported by a comparison of the differences in gene expression between the short photoperiod and natural conditions using gene chip technology. Using the gene chip data, we identified genes that showed altered expression under the short photoperiod compared to natural conditions, and these genes were found to be involved in the biological processes of hair follicle growth, structural composition of the hair follicle, and the morphogenesis of the surrounding skin appendages. Knowledge about differences in the expression of these genes as well as their functions and periodic regulation patterns increases our understanding of Cashmere goat hair follicle growth. This study also provides preliminary data that may be useful for the development of an artificial method to improve cashmere production by controlling the light cycle, which has practical significance for livestock breeding.  相似文献   

20.
The current utility of 3D skin equivalents is limited by the fact that existing models fail to recapitulate the cellular complexity of human skin. They often contain few cell types and no appendages, in part because many cells found in the skin are difficult to isolate from intact tissue and cannot be expanded in culture. Induced pluripotent stem cells (iPSCs) present an avenue by which we can overcome this issue due to their ability to be differentiated into multiple cell types in the body and their unlimited growth potential. We previously reported generation of the first human 3D skin equivalents from iPSC-derived fibroblasts and iPSC-derived keratinocytes, demonstrating that iPSCs can provide a foundation for modeling a complex human organ such as skin. Here, we have increased the complexity of this model by including additional iPSC-derived melanocytes. Epidermal melanocytes, which are largely responsible for skin pigmentation, represent the second most numerous cell type found in normal human epidermis and as such represent a logical next addition. We report efficient melanin production from iPSC-derived melanocytes and transfer within an entirely iPSC-derived epidermal-melanin unit and generation of the first functional human 3D skin equivalents made from iPSC-derived fibroblasts, keratinocytes and melanocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号