首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
2.
Differentiation of Arabidopsis epidermal cells into root hairs and trichomes is a functional model system for understanding plant cell development. Previous studies showed that one of the Arabidopsis basic-helix-loop-helix (AtbHLH) proteins, GLABRA3 (GL3), is involved in root-hair and trichome differentiation. We analyzed 11 additional AtbHLH genes with homology to GL3. Estimation of the phylogeny based on amino acid sequences of the bHLH region suggests that 11 AtbHLH genes used in this study evolved by duplications of a single common GL3 ancestor. Promoter-GUS analysis showed that AtbHLH006, AtbHLH013, AtbHLH017 and AtbHLH020 were expressed in roots. Among them, AtbHLH006 and AtbHLH020 were preferentially expressed in root epidermal non-hair cells. Consistent with the expression patterns from promoter-GUS analysis, GFP fluorescence was observed in the nuclei of root epidermal non-hair cells of AtbHLH006p::AtbHLH006:GFP and AtbHLH020p::AtbHLH020:GFP transgenic plants. However, AtbHLH006 and AtbHLH0020 proteins did not interact with epidermis-specific MYB proteins and TTG1. Taken together, AtbHLH006 and AtbHLH020 may function in root epidermal cells, but other GL3-like bHLH proteins may have evolved to regulate different processes.  相似文献   

3.
Parasitic plants exchange various types of RNAs with their host plants, including mRNA, and small non-coding RNA. Among small non-coding RNAs, miRNA production is known to be induced at the haustorial interface. The induced miRNAs transfer to the host plant and activate secondary siRNA production to silence target genes in the host. In addition to interfacial transfer, long-distance movement of the small RNAs has also been known to mediate signaling and regulate biological processes. In this study, we tested the long-distance movement of trans-species small RNAs in a parasitic-plant complex. Small RNA-Seq was performed using a complex of a stem parasitic plant, Cuscuta campestris, and a host, Arabidopsis thaliana. In the host plant’s parasitized stem, genes involved in the production of secondary siRNA, AtSGS3 and AtRDR6, were upregulated, and 22-nt small RNA was enriched concomitantly, suggesting the activation of secondary siRNA production. Stem-loop RT-PCR and subsequent sequencing experimentally confirmed the mobility of the small RNAs. Trans-species mobile small RNAs were detected in the parasitic interface and also in distant organs. To clarify the mode of long-distance translocation, we examined whether C. campestris-derived small RNA moves long distances in A. thaliana sgs3 and rdr6 mutants or not. Mobility of C. campestris-derived small RNA in sgs3 and rdr6 mutants suggested the occurrence of direct long-distance transport without secondary siRNA production in the recipient plant.  相似文献   

4.
5.
6.
Leaf epidermal features are considered to be taxonomically important in Fagaceae. In this study, we examined and compared leaf epidermal features of 112 specimens, representing 105 species and one variety of Lithocarpus from China and adjacent areas and Notholithocarpus densiflorus. As a result of the different interpretations of terms in previous studies, trichome terminology in Lithocarpus and its relatives was re-assessed aiming to reveal the trichome evolutionary patterns in Fagaceae. Twelve types of trichomes and five types of trichome bases were detected in Lithocarpus, among which the broad-based trichome (BBT) is newly reported. Stomata in Lithocarpus are restricted to the cyclocytic type and their size range is 28.6 ± 8.2 μm × 26.5 ± 9.3 μm. The distribution of epidermal features in Lithocarpus revealed three distinct morphological groups: glabrous, BBT, and appressed parallel tufts (APT). The importance of epidermal features across Fagaceae for taxon delimitation is evaluated. Species of Lithocarpus can be accurately identified by the presence of APT or flat epidermal cells combined with non-dark stained subsidiary cells and non-cutinized trichome bases only, or in addition, fasciculate trichome bases. The phylogenetic distribution of epidermal features and their evolutionary trends in Fagaceae is also discussed.  相似文献   

7.
Tillandsia spp. (Bromeliaceae) use their epidermal trichomes for absorbing atmospheric water, mineral and organic nutrients. The absorbing trichome in Tillandsia has a nail-like shape, formed by an axis (stem) connected to the internal tissues of the leaf, and by an external shield. Water and aqueous liquids coming from the external environment go through the shield cells and then run through the stem, finally reaching the underlying mesophyll parenchyma along a symplastic route.  相似文献   

8.
9.
10.
Association of Azospirillum with Grass Roots   总被引:20,自引:13,他引:7       下载免费PDF全文
The association between grass roots and Azospirillum brasilense Sp 7 was investigated by the Fahraeus slide technique, using nitrogen-free medium. Young inoculated roots of pearl millet and guinea grass produced more mucilaginous sheath (mucigel), root hairs, and lateral roots than did uninoculated sterile controls. The bacteria were found within the mucigel that accumulated on the root cap and along the root axes. Adherent bacteria were associated with granular material on root hairs and fibrillar material on undifferentiated epidermal cells. Significantly fewer numbers of azospirilla attached to millet root hairs when the roots were grown in culture medium supplemented with 5 mM potassium nitrate. Under these growth conditions, bacterial attachment to undifferentiated epidermal cells was unaffected. Aseptically collected root exudate from pearl millet contained substances which bound to azospirilla and promoted their adsorption to the root hairs. This activity was associated with nondialyzable and proteasesensitive substances in root exudate. Millet root hairs adsorbed azospirilla in significantly higher numbers than cells of Rhizobium, Pseudomonas, Azotobacter, Klebsiella, or Escherichia. Pectolytic activities, including pectin transeliminase and endopolygalacturonase, were detected in pure cultures of A. brasilense when this species was grown in a medium containing pectin. These studies describe colonization of grass root surfaces by A. brasilense and provide a possible explanation for the limited colonization of intercellular spaces of the outer root cortex.  相似文献   

11.
12.
CAPRICE (CPC) encodes a small protein with an R3 MYB motif and promotes root hair cell differentiation in Arabidopsis thaliana. Three additional CPC-like MYB genes, TRY (TRIPTYCHON), ETC1 (ENHANCER OF TRY AND CPC 1) and ETC2 (ENHANCER OF TRY AND CPC 2) act in a redundant manner with CPC in trichome and root hair patterning. In this study, we identified an additional homolog, CPC-LIKE MYB 3 (CPL3), which has high sequence similarity to CPC, TRY, ETC1 and ETC2. Overexpression of CPL3 results in the suppression of trichomes and overproduction of root hairs, as has been observed for CPC, TRY, ETC1 and ETC2. Morphological studies with double, triple and quadruple homolog mutants indicate that the CPL3 gene cooperatively regulates epidermal cell differentiation with other CPC homologs. Promoter-GUS analyses indicate that CPL3 is specifically expressed in leaf epidermal cells, including stomate guard cells. Notably, the CPL3 gene has pleiotropic effects on flowering development, epidermal cell size and trichome branching through the regulation of endoreduplication.  相似文献   

13.
This study examines the response of tuber moth, Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae), during the initial stages of attack, to variability in trichome density and composition on foliage of Solanum berthaultii (Hawkes) and Solanum tarijense (Hawkes) (Solanaceae). Solanum berthaultii bears two types of glandular trichome (type A and type B) that together reduced oviposition by the moth. Females were often completely deterred from ovipositing on foliage with >300 trichomes per cm2. In contrast, neonate establishment on S. berthaultii was generally positively related to trichome densities, indicating that trichomes may be a poor defense against P. operculella when the moth oviposits in soil and neonate larvae select the host plant. Solanum tarijense has only one type of glandular trichome (type A) and eglandular hairs. Most eggs were deposited on the adaxial leaf surfaces that had lower trichome densities. Although the density of type A trichomes was negatively related to oviposition, high densities of hairs on the abaxial and adaxial leaf surfaces appeared to stimulate oviposition, leading to stronger positive relations between hair densities and oviposition. Larvae generally established on the abaxial surface where hair densities were greatest. Relationships between the abaxial densities of leaf hairs and neonate establishment on S. tarijense were positive. The results indicate that the responses by P. operculella to the types and density of trichomes are complex. Whereas type A and type B trichomes may act synergistically to reduce oviposition by the moth, leaf hairs do not defend against oviposition and neither leaf hairs nor type A and B trichomes reduce neonate establishment by this herbivore species.  相似文献   

14.
Trichomes are small hairs that originate from the epidermal cells of nearly all land plants, and they exist in unicellular and multicellular forms. The regulatory pathway of unicellular trichomes in Arabidopsis is well characterized. However, little is known about the multicellular trichome formation in tomato (Solanum lycopersicum). The woolly (Wo) gene controls multicellular trichome initiation and leads to embryonic lethality when homozygous in tomato. To clone and characterize Wo, the gene was fine-mapped to a DNA fragment of ~200 kb using the map-based cloning strategy. A series of sequence-based molecular markers, including simple sequence repeat, sequence characterized amplified region, and cleaved amplified polymorphic sequence were utilized in this study. Analysis of the sequence indicated that this region carries 19 putative open reading frames. These results will provide not only the important information for the isolation and characterization of Wo but also the starting point for studying the regulatory pathway responsible for trichome formation and embryonic lethality in tomato.  相似文献   

15.
16.
Root hairs are tubular outgrowths of specialized epidermal cells called trichoblasts. They affect anchoring plants in soil, the uptake of water and nutrients and are the sites of the interaction between plants and microorganisms. Nineteen root hair mutants of barley representing different stages of root hair development were subjected to detailed morphological and genetic analyses. Each mutant was monogenic and recessive. An allelism test revealed that nine loci were responsible for the mutated root hair phenotypes in the collection and 1–4 mutated allelic forms were identified at each locus. Genetic relationships between the genes responsible for different stages of root hair formation were established. The linkage groups of four loci rhl1, rhp1, rhi1 and rhs1, which had previously been mapped on chromosomes 7H, 1H, 6H and 5H, respectively, were enriched with new markers that flank the genes at a distance of 0.16 cM to 4.6 cM. The chromosomal position of three new genes – two that are responsible for the development of short root hairs (rhs2 and rhs3) and the gene that controls an irregular root hair pattern (rhi2) – were mapped on chromosomes 6H, 2H and 1H, respectively. A comparative analysis of the agrobotanical parameters between some mutants and their respective parental lines showed that mutations in genes responsible for root hair development had no effect on the agrobotanical performance of plants that were grown under controlled conditions. The presented mutant collection is a valuable tool for further identification of genes controlling root hair development in barley.  相似文献   

17.
18.
19.
Toh E  Kurtz HD  Brun YV 《Journal of bacteriology》2008,190(21):7219-7231
Caulobacter crescentus cells adhere to surfaces by using an extremely strong polar adhesin called the holdfast. The polysaccharide component of the holdfast is comprised in part of oligomers of N-acetylglucosamine. The genes involved in the export of the holdfast polysaccharide and the anchoring of the holdfast to the cell were previously discovered. In this study, we identified a cluster of polysaccharide biosynthesis genes (hfsEFGH) directly adjacent to the holdfast polysaccharide export genes. Sequence analysis indicated that these genes are involved in the biosynthesis of the minimum repeat unit of the holdfast polysaccharide. HfsE is predicted to be a UDP-sugar lipid-carrier transferase, the glycosyltransferase that catalyzes the first step in polysaccharide biosynthesis. HfsF is predicted to be a flippase, HfsG is a glycosyltransferase, and HfsH is similar to a polysaccharide (chitin) deacetylase. In-frame hfsG and hfsH deletion mutants resulted in severe deficiencies both in surface adhesion and in binding to the holdfast-specific lectin wheat germ agglutinin. In contrast, hfsE and hfsF mutants exhibited nearly wild-type levels of adhesion and holdfast synthesis. We identified three paralogs to hfsE, two of which are redundant to hfsE for holdfast synthesis. We also identified a redundant paralog to the hfsC gene, encoding the putative polysaccharide polymerase, and present evidence that the hfsE and hfsC paralogs, together with the hfs genes, are absolutely required for proper holdfast synthesis.  相似文献   

20.
碱蒿营养器官的扫描电镜观察研究   总被引:1,自引:0,他引:1  
用扫描电子显微镜对碱蒿(Artemisia anethifolia)营养器官的解剖学特征进行了观察与研究。结果表明:碱蒿属于典型的泌盐盐生植物。叶肉质化,表皮上气孔为无规则型气孔,密集下陷,有较多的盐囊泡和分杈腺毛分布,表皮细胞外壁加厚,外壁的外层角质化,为等面叶,栅栏组织细胞排列疏松,叶中央为发达的储水组织,木质部有多束维管束;茎表皮上有少许气孔,并分布有腺毛和众多盐囊泡,表皮细胞外壁加厚形成角质层,皮层宽度较小,皮层薄壁组织细胞内可见淀粉粒,中柱后生木质部为口径大的导管,原生木质部为口径小的导管,管内充满盐晶体,中间有发达的贮水薄壁细胞;根的表皮细胞排列疏松,外皮层细胞排列紧密而整齐,中部皮层薄壁细胞层数较多,细胞中贮藏有许多淀粉粒,内皮层细胞排列紧密,初生木质部导管发达,内部周围存在大量盐晶体,根的次生木质部有通气组织。这些解剖结构均表现出碱蒿具有适应盐碱、干旱生境的结构特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号