首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As industrial development increases in the range of barren-ground caribou (Rangifer tarandus granti) across the warming Arctic, the need to understand the responses of caribou to development and to assess the effectiveness of mitigation measures increase accordingly. The Central Arctic Herd (CAH) of caribou ranges across northern Alaska, USA, and the herd's summer range includes the Prudhoe Bay and Kuparuk oilfields, where the herd has been exposed to oil development for >4 decades. We used location data from global positioning system (GPS) radio-collars deployed on female CAH caribou for 106 collar-years, recording locations every 2 hours during 2008–2019, to examine caribou distribution and movements during 7 different seasons of the year in relation to infrastructure in the Kuparuk oilfield, which is characterized by more design improvements and mitigation measures than the older Prudhoe Bay oilfield. We examined movement metrics in terms of distance to gravel infrastructure (roads and pads) and time before and after movements across infrastructure (crossings). We also employed integrated step-selection analysis to compare caribou movements with random movements. Caribou distribution was influenced by insect activity, distance to coast, landcover, and terrain ruggedness, and we found large seasonal differences in caribou responses to infrastructure. Consistent with previous research findings, avoidance of areas near roads and pads was strongest during the calving season and some caribou used roads and pads as insect-relief habitat when oestrid flies (warble fly [Hypoderma tarandi] and nose bot fly [Cephenemyia trompe]) were active. Caribou moved through the Kuparuk oilfield repeatedly during summer, averaging >2 road or pad crossings a day when harassment by mosquitoes (Aedes [Ochlerotatus] spp.) and oestrid flies were the predominant factors influencing caribou movements. Caribou moved faster while crossing roads and pads but showed little pattern in speed or turn angle with distance to roads and pads. These results demonstrate that the effects of petroleum development on a caribou herd with long-term exposure to industrial activity vary widely by season. Maternal caribou avoid active roads and pads during calving, but the incorporation of appropriate mitigation measures in oilfield design allows caribou to move through the Kuparuk oilfield during other snow-free seasons. © 2020 The Wildlife Society.  相似文献   

2.
In western Canada, anthropogenic disturbances resulting from resource extraction activities are associated with habitat loss and altered predator–prey dynamics. These habitat changes are linked to increased predation risk and unsustainable mortality rates for caribou (Rangifer tarandus caribou). To inform effective habitat restoration, our goal was to examine whether specific linear disturbance features were associated with caribou predation in central mountain caribou ranges. We used predation‐caused caribou mortalities and caribou GPS‐collar data collected between 2008 and 2015 to assess caribou predation risk within and outside of protected areas at four spatio‐temporal scales: habitat use during the (a) 30 days, (b) 7 days, and (c) 24 hours prior to caribou being killed, and (d) characteristics at caribou kill site locations. Outside of protected areas, predation risk increased closer to pipelines, seismic lines, and streams. Within protected areas, predation risk increased closer to alpine habitat. Factors predicting predation risk differed among spatio‐temporal scales and linear feature types: predation risk increased closer to pipelines during the 30 and 7 days prior to caribou being killed and closer to seismic lines during the 30 days, 7 days, and 24 hours prior, but decreased closer to roads during the 30 days prior to being killed. By assessing habitat use prior to caribou being killed, we identified caribou predation risk factors that would not have been detected by analysis of kill site locations alone. These results provide further evidence that restoration of anthropogenic linear disturbance features should be an immediate priority for caribou recovery in central mountain caribou ranges.  相似文献   

3.
Barren ground caribou (Rangifer tarandus granti) are distributed in herds that seasonally use specific geographic regions within an annual range, with varying levels of fidelity during different periods (e.g., calving, insect relief, wintering). As a result, caribou management is generally tailored to individual herds that often range across administrative boundaries. Herd ranges can shift over time, seasonal ranges of adjacent herds often overlap, herds merge, and there is often little genetic differentiation among adjacent herds. If substantial herd interchange occurs, it would have important management implications by influencing estimates of herd size, herd composition, and harvest rates. We compiled satellite telemetry data from 2003–2015 for 4 large arctic caribou herds to quantify herd interchange rates. We calculated a metric of herd interchange based on the relationship of caribou locations to typical weekly herd ranges (all yrs combined) and the distance to other radio-collared caribou from each of the 4 herds (yr specific). Although herd membership cannot always be clearly defined based on location, this metric provides an objective measure of the strength of evidence of herd membership that can be used to make comparisons among herds and time periods. We also calculated herd overlap and quantified how it varied throughout the year. Herd interchange was rare in the 2 larger herds, generally occurring when caribou overwintered with an adjacent herd, whereas herd interchange from the 2 smaller herds was more frequent and could last longer than a year. Although sample sizes were limited, there were no clear patterns in herd interchange with year or annual herd size. The 2 smaller herds had large seasonal overlap with adjacent herds, suggesting that herd interchange may be related to spatiotemporal herd overlap and relative herd size. Our results can help managers understand herd interchange and overlap to make management decisions, interpret research results, and develop more accurate population models. © 2020 The Authors. The Journal of Wildlife Management published by Wiley Periodicals LLC on behalf of The Wildlife Society.  相似文献   

4.
Understanding patterns of animal space use and range fidelity has important implications for species and habitat conservation. For species that live in highly seasonal environments, such as mountain goats (Oreamnos americanus), spatial use patterns are expected to vary in relation to seasonal changes in environmental conditions and sex‐ or age‐specific selection pressures. To address hypotheses about sex, age, and seasonality influence on space‐use ecology, we collected GPS location data from 263 radio‐collared mountain goats (males, n = 140; females, n = 123) in coastal Alaska during 2005–2016. Location data were analyzed to derive seasonal and sex‐specific fixed‐kernel home range estimates and to quantify the degree of seasonal range and utilization distribution overlap. Overall, we determined that home range size was smallest during winter, expanded coincident with the onset of green‐up and parturition, and was largest during summer. Home range size of males and females did not differ significantly during winter, but females had larger home ranges than males during summer, a relationship that was switched during the mating season. Pairwise comparisons involving individual females across subsequent years indicated home ranges were significantly smaller during years when they gave birth to offspring. Mountain goats exhibited a strong degree of range fidelity, and 99% (n = 138) of individual animals returned to their previous year''s seasonal range with an average annual Bhattacharyya''s affinity utilization distribution overlap index of 68%. Similarity of seasonal home range utilization distributions varied in relation to sex and season in some respects. Home range overlap was highest during the summer vegetation growing season, particularly among females. These findings advance our understanding about how environmental variation and sex‐ and age‐related reproductive constraints influence space use and range fidelity among alpine ungulates. Documentation of the high degree of range fidelity among mountain goats has important conservation implications in landscapes increasingly altered by anthropogenic activities.  相似文献   

5.
Habitat selection is a hierarchical process that may yield various patterns depending on the scales of investigation. We employed satellite radio‐telemetry to examine patterns of habitat selection by female woodland caribou in central Saskatchewan at both coarse (seasonal range) and fine (daily area) scales. At each scale, we converted spatial data describing compositions of available and used habitat to standardised resource selection indices and examined them with multivariate analyses of variance. Seasonal ranges generally showed preferential inclusion of peatlands and black spruce dominated stands relative to recently disturbed stands and early seral stage forests. In all populations, caribou preferred peatlands and black spruce forests to all other habitat types at the daily area scale, in general, these patterns may reveal the effective avoidance of wolves, the primary factor limiting caribou throughout the boreal forest. In three populations where seasonal ranges showed the selective inclusion of either young jack pine stands or clearcuts along with peatlands and black spruce forests, we found a relative avoidance of the clearcuts and young jack pine stands at the daily area scale. As all caribou populations in the area are thought to be relics of a once more continuous distribution, the seasonal range selection by animals in disturbed areas may better describe historic rather than current habitat selection. We found inter‐annual variation in selection at the coarser spatial scale in one population, and inter‐seasonal variation in selection at the finer spatial scale in three populations, indicating that the relative grains of the spatial and temporal scales coincide. We were better able to explain the seasonal variations in finer scale selection by considering available forage, a factor less likely than predation to limit woodland caribou populations. The data agree with the theory that the spatial and temporal hierarchy of habitat selection reflects the hierarchy of factors potentially limiting individual fitness.  相似文献   

6.
Arctic ecosystems are especially vulnerable to global climate change as temperature and precipitation regimes are altered. An ecologically and socially highly important northern terrestrial species that may be impacted by climate change is the caribou, Rangifer tarandus . We predicted the current and potential future occurrence of two migratory herds of caribou [Rivière George herd (RG) and Rivière-aux-Feuilles (RAF) herd] under a Canadian General Circulation Model climate change scenario, across all seasons in the Québec–Labrador peninsula, using climatic and habitat predictor variables. Argos satellite-tracking collars have been deployed on 213 caribou between 1988 and 2003 with locations recorded every 4–5 days. In addition, we assembled a database of climate (temperature, precipitation, snowfall, timing and length of growing season) and habitat data obtained from the SPOT VEGETATION satellite sensor. Logistic regression models indicated that both climatic and physical habitat variables were significant predictors of current migratory caribou occurrence. Migratory caribou appeared to prefer regions with higher snowfall and lichen availability in the fall and winter. In the summer, caribou preferred cooler areas likely corresponding to a lower prevalence of insects, and they avoided disturbed and recently burnt areas. Climate change projections using climate data predicted an increased range for the RAF herd and decreased range for the RG herd during 2040–2069, limiting the herds to northeastern regions of the Québec–Labrador peninsula. Direct and indirect consequences of climate change on these migratory caribou herds possibly include alteration in habitat use, migration patterns, foraging behaviour, and demography, in addition to social and economic stress to arctic and subarctic native human populations.  相似文献   

7.
ABSTRACT In many vertebrates size is one of the most influential and variable individual characteristics and a strong determinant of reproductive success. Body size is generally density dependent and decreases when intraspecific competition increases. Frequent and long-distance movements increase energy expenditures and, therefore, may also influence body size, particularly in highly mobile species. Caribou (Rangifer tarandus, also known as reindeer) exhibit tremendous variation in size and movements and thus represent an excellent candidate species to test the relationships between body size, population size, and movements. We analyzed body measurements of adult female caribou from 7 herds of the Québec-Labrador Peninsula, Canada, and we related their morphology to population size, movements, and annual ranges. The herds represented 3 ecotypes (migratory, montane, and sedentary). Ecotypes and herds differed in size (length), shape (roundness), and movements. The sedentary ecotype was larger and moved 4 to 7 times less than the migratory ecotype in the 1990s. At the start of a demographic growth period in the early 1960s, migratory caribou from the Rivière-George (hereafter George) herd had longer mandibles than caribou of the sedentary ecotype. Mandible length in the George herd declined in the 1980s after rapid population growth, while individuals performed extensive movements and the herd's annual range increased. Migratory caribou then became shorter than sedentary caribou. After the George herd decline in the 1990s, mandible length increased again near levels of the 1980s. Caribou from the migratory Rivière-aux-Feuilles herd later showed a similar decline in mandible length during a period of population growth, associated with longer movements and increasing annual range. We hypothesize that the density-dependent effect observed on body size might have been exerted through summer habitat degradation and movement variations during herd growth. Our study has 2 important implications for caribou management: the distinctiveness of different populations and ecotypes, and the correlations between population trajectories and changes in body condition and habitat.  相似文献   

8.
Migration is an important component of the life history of many animals, but persistence of large-scale terrestrial migrations is being challenged by environmental changes that fragment habitats and create obstacles to animal movements. In northern Alaska, the Central Arctic herd (CAH) of barren-ground caribou (Rangifer tarandus granti) is known to migrate over large distances, but the herd’s seasonal distributions and migratory movements are not well documented. From 2003–2007, we used GPS radio-collars to determine seasonal ranges and migration routes of 54 female caribou from the CAH. We calculated Brownian bridges to model fall and spring migrations for each year and used the mean of these over all 4 years to identify areas that were used repeatedly. Annual estimates of sizes of seasonal ranges determined by 90% fixed kernel utilization distributions were similar between summer and winter (X̅ = 27,929 SE = 1,064 and X̅ = 26,585 SE = 4912 km2, respectively). Overlap between consecutive summer and winter ranges varied from 3.3–18.3%. Percent overlap between summer ranges used during consecutive years (X̅ = 62.4% SE = 3.7%) was higher than for winter ranges (X̅ = 42.8% SE = 5.9%). Caribou used multiple migration routes each year, but some areas were used by caribou during all years, suggesting that these areas should be managed to allow for continued utilization by caribou. Restoring migration routes after they have been disturbed or fragmented is challenging. However, prior knowledge of movements and threats may facilitate maintenance of migratory paths and seasonal ranges necessary for long-term persistence of migratory species.  相似文献   

9.
Wolf JB  Trillmich F 《Oecologia》2007,152(3):553-567
Site fidelity has been widely discussed, but rarely been related explicitly to a species’ social context. This is surprising, as fine-scale site fidelity constitutes an important structural component in animal societies by setting limits to an individual’s social interaction space. The study of fine-scale site fidelity is complicated by the fact that it is inextricably linked to patterns of habitat use. We here document fine-scale site fidelity in the Galapagos sea lion (Zalophus wollebaeki) striving to disentangle these two aspects of spatial behaviour. Regardless of sex and age, all individuals used small, cohesive home ranges, which were stable in size across the reproductive and non-reproductive season. Home ranges showed a large individual component and did not primarily reflect age- or sex-specific habitat requirements. Site specificity could be illustrated up to a resolution of several metres. Long-term site fidelity was indicated by home range persistence over 3 years and the degree of site fidelity was unaffected by habitat, but showed seasonal differences: it was lower between reproductive and non-reproductive periods than between reproductive seasons. We further examined static and social interaction within mother–offspring pairs, which constitute a central social unit in most mammalian societies. Regardless of the occupied habitat type, adult females with offspring had smaller home range sizes than non-breeding females, demonstrating the importance of spatial predictability for mother–offspring pairs that recurrently have to reunite after females’ foraging sojourns. While social interaction with the mother dropped to naught in both sexes after weaning, analysis of static interaction suggested female-biased home range inheritance. Dispersal decisions were apparently not based on habitat quality, but determined by the offspring’s sex. We discuss the implication of observed fine-scale site fidelity patterns on habitat use, dispersal decisions and social structure in colonial breeding pinnipeds.  相似文献   

10.
1.?In migratory populations, the degree of fidelity and dispersal among seasonal ranges is an important population process with consequences for demography, management, sensitivity to habitat change and adaptation to local environmental conditions. 2.?Characterizing patterns of range fidelity in ungulates, however, has remained challenging because of the difficulties of following large numbers of marked individuals across multiple migratory cycles and of identifying the appropriate scale of analysis. 3.?We examined fidelity to wet season (i.e. breeding) ranges in a recently declining population of wildebeest Connochaetes taurinus Burchell in northern Tanzania across 3 years. We used computer-assisted photographic identification and capture-recapture to characterize return patterns to three wet season ranges that were ecologically discrete and topographically isolated from one another. 4.?Among 2557 uniquely identified adult wildebeest, we observed 150 recaptures across consecutive wet seasons. Between the two migratory subpopulations, the probability of remaining faithful to wet season areas ranged between 0·82 and 1·00. Animals from a non-migratory segment of the population (near Lake Manyara National Park) were rarely observed in other wet season ranges, despite proximity to one of the migratory pathways. 5.?We found no effect of sex on an individuals' probability of switching wet season ranges. However, the breeding status of females in year i had a strong influence on patterns of range selection in year i + 1, with surviving breeders over three times as likely to switch ranges as non-breeders. 6.?Social-group associations between pairs of recaptured animals were random with respect to an individual's wet season range during the previous or forthcoming wet seasons, suggesting that an individual's herd identity during the dry season does not predict wet season range selection. 7.?Examining fidelity and dispersal in terrestrial migrations improves our understanding of the constraints that migrants experience when they face rapid habitat changes or fluctuations in environmental conditions.  相似文献   

11.
The spatial–temporal patterns of fish assemblages in lotic systems can provide useful information in developing effective conservation measures. This study aimed to explore the spatial and seasonal changes in fish assemblages and their association with environmental factors in mountain streams of the Ren River, southwest China. Field investigations were conducted at 18 sites during the rainy and dry seasons in 2017. A total of 1,330 individuals, belonging to three orders, eight families, 19 genera, and 21 species, were collected. Analysis of similarities (ANOSIM) showed that the structure of fish assemblages varied significantly at the spatial scale, but not at the seasonal scale. In low‐order sites, fish assemblages were mainly dominated by cold‐water and rheophilic species (e.g., Rhynchocypris oxycephalus, Scaphesthes macrolepis, Metahomaloptera omeiensis, and Gnathopogon herzensteini), while those in high‐order sites were predominated by warm‐water and eurytopic or stagnophilic species (e.g., Squalidus argentatus, Hemiculter leucisculus, and Zacco platypus). Canonical correspondence analysis (CCA) showed that the fish assemblages were structured by a combination of large‐scale landscape factors (e.g., altitude and C‐link) and small‐scale habitat features (e.g., channel width, water temperature, and depth). Among these factors, landscape had the greatest influence on fish assemblages, while local habitat variables were less important or were only significant in certain seasons.  相似文献   

12.
Mountain hares (Lepus timidus) show high site fidelity even though they are non-territorial and sometimes make long excursions to new areas outside their home range. This study investigates how far apart consecutive annual and seasonal home ranges of the same individual are situated, how much they overlap and if habitat preference can explain the observed high site fidelity. The results show that hares usually overlap their previous home range, both between seasons and years, although the seasonal overlap is smaller, indicating that hares show a more pronounced change of areas between seasons than between years. The seasonal habitat selection was very distinct, tracking changing resource availability between seasons, while the annual selection was difficult to interpret as it mixed the seasonal patterns. Consequently, the annual selection seems to be merely an artefact from the more important seasonal selection. I therefore caution that results from habitat selection studies based on annual home ranges that are estimated from animals in seasonally differing environments should be treated with care. It appears that while seasonal home ranges are selected on the basis of resource availability, there is sufficient variation in the strength of this response to suggest that a mountain hares local knowledge of an area could also explain fidelity to their annual home ranges.  相似文献   

13.
Human enterprise has led to large‐scale changes in landscapes and altered wildlife population distribution and abundance, necessitating efficient and effective conservation strategies for impacted species. Greater sage‐grouse (Centrocercus urophasianus; hereafter sage‐grouse) are a widespread sagebrush (Artemisia spp.) obligate species that has experienced population declines since the mid‐1900s resulting from habitat loss and expansion of anthropogenic features into sagebrush ecosystems. Habitat loss is especially evident in North Dakota, USA, on the northeastern fringe of sage‐grouse’ distribution, where a remnant population remains despite recent development of energy‐related infrastructure. Resource managers in this region have determined a need to augment sage‐grouse populations using translocation techniques that can be important management tools for countering species decline from range contraction. Although translocations are a common tool for wildlife management, very little research has evaluated habitat following translocation, to track individual behaviors such as habitat selection and fidelity to the release site, which can help inform habitat requirements to guide selection of future release sites. We provide an example where locations from previously released radio‐marked sage‐grouse are used in a resource selection function framework to evaluate habitat selection following translocation and identify areas of seasonal habitat to inform habitat management and potential restoration needs. We also evaluated possible changes in seasonal habitat since the late 1980s using spatial data provided by the Rangeland Analysis Platform coupled with resource selection modeling results. Our results serve as critical baseline information for habitat used by translocated individuals across life stages in this study area, and will inform future evaluations of population performance and potential for long‐term recovery.  相似文献   

14.
Animals use a variety of proximate cues to assess habitat quality when resources vary spatiotemporally. Two nonmutually exclusive strategies to assess habitat quality involve either direct assessment of landscape features or observation of social cues from conspecifics as a form of information transfer about forage resources. The conspecific attraction hypothesis proposes that individual space use is dependent on the distribution of conspecifics rather than the location of resource patches, whereas the resource dispersion hypothesis proposes that individual space use and social association are driven by the abundance and distribution of resources. We tested the conspecific attraction and the resource dispersion hypotheses as two nonmutually exclusive hypotheses explaining social association and of adult female caribou (Rangifer tarandus). We used location data from GPS collars to estimate interannual site fidelity and networks representing home range overlap and social associations among individual caribou. We found that home range overlap and social associations were correlated with resource distribution in summer and conspecific attraction in winter. In summer, when resources were distributed relatively homogeneously, interannual site fidelity was high and home range overlap and social associations were low. Conversely, in winter when resources were distributed relatively heterogeneously, interannual site fidelity was low and home range overlap and social associations were high. As access to resources changes across seasons, caribou appear to alter social behavior and space use. In summer, caribou may use cues associated with the distribution of forage, and in winter caribou may use cues from conspecifics to access forage. Our results have broad implications for our understanding of caribou socioecology, suggesting that caribou use season‐specific strategies to locate forage. Caribou populations continue to decline globally, and our finding that conspecific attraction is likely related to access to forage suggests that further fragmentation of caribou habitat could limit social association among caribou, particularly in winter when access to resources may be limited.  相似文献   

15.
A better understanding of habitat use and home range size for an exotic fallow deer (Dama dama L.) population in coastal Georgia is needed to understand the relationship between this introduced species and the barrier island ecosystem. These spatial requirements will aid in management decisions to limit negative impacts to the deer or sensitive habitats. We describe annual and seasonal home range and habitat use of seven fallow deer fitted with GPS collars. Home ranges of females averaged 130.3 ± 0.45 ha based on a 95% local convex hull (LoCoH) nonparametric kernel method. Home ranges of adult males were highly variable, ranging from 56.9 to 354.8 ha. We examined site fidelity by analyzing shifts in core areas and percent overlap across seasons. Only one individual exhibited a seasonal range shift; all other deer demonstrated a high level of site fidelity. Based on compositional analysis of habitat use versus availability, fallow deer avoided salt marshes but showed individual variation in selection of other habitats. Maritime shrub was the most commonly preferred habitat type on the barrier island. Fallow deer have adapted to effectively use available habitats on the barrier island and have successfully excluded native white-tailed deer from recolonizing LSSI.  相似文献   

16.
Mapping suitable habitat is an important process in wildlife conservation planning. Species distribution reflects habitat selection processes occurring across multiple spatio‐temporal scales. Because habitat selection may be driven by different factors at different scales, conservation planners require information at the scale of the intervention to plan effective management actions. Previous research has described habitat selection processes shaping the distribution of greater sage‐grouse (Centrocercus urophasianus; sage‐grouse) at the range‐wide scale. Finer‐scale information for applications within jurisdictional units inside the species range is lacking, yet necessary, because state wildlife agencies are the management authority for sage‐grouse in the United States. We quantified seasonal second‐order habitat selection for sage‐grouse across the state of Utah to produce spatio‐temporal predictions of their distribution at the southern periphery of the species range. We used location data obtained from sage‐grouse marked with very‐high‐frequency radio‐transmitters and lek location data collected between 1998 and 2013 to quantify species habitat selection in relation to a suite of topographic, edaphic, climatic, and anthropogenic variables using random forest algorithms. Sage‐grouse selected for greater sagebrush (Artemisia spp.) cover, higher elevations, and gentler slopes and avoided lower precipitations and higher temperatures. The strength of responses to habitat variables varied across seasons. Anthropogenic variables previously reported as affecting their range‐wide distribution (i.e., roads, powerlines, communication towers, and agricultural development) were not ranked as top predictors at our focal scale. Other than strong selection for sagebrush cover, the responses we observed differed from what has been reported at the range‐wide scale. These differences likely reflect the unique climatic, geographic, and topographic context found in the southern peripheral area of the species distribution compared to range‐wide environmental gradients. Our results highlight the importance of considering appropriateness of scale when planning conservation actions for wide‐ranging species.  相似文献   

17.
Competitive relationships among mobile animals may be expressed through dynamically changing spatial relationships over different time frames. Less common species that are apparently inferior competitors may be able to coexist with more abundant species by concentrating in regions of the landscape little utilized by the former at spatio‐temporal scales from annual or seasonal ranges to the specific foraging localities exploited at different stages of the annual cycle. Spatial relationships may be influenced further by dependencies on other resources, predation risks and facilitatory interactions under certain conditions. Our study aimed to determine whether competition with more abundant zebra and buffalo restricted the abundance of sable antelope in a region where these three tall‐grass grazers overlapped in their herd distributions. We tracked the simultaneous movements of animals representing herds of these species over two dry seasons and one wet season using GPS‐GSM collars, and estimated seasonal or monthly range extents and their overlap. We also compared daily separation distances between these animals against the null pattern expected if their movements had been independent, and assessed how prior grazing by buffalo influenced the subsequent use of these localities by sable. The range of the sable herd was mostly separated from the seasonal range of the buffalo herd during the late dry season of 2006 and throughout the dry season of 2007. Seasonal home ranges of zebra herds overlapped partially with the range of the sable herd during most of the year. Even during times when their ranges overlapped, sable were rarely recorded within <1 km of the buffalo herd. Prior grazing by buffalo beyond a threshold level inhibited later use of these localities by sable, but the sable were nevertheless able to exploit places that were little utilized by buffalo at that time. Sable were less able to evade overlap with the small, mobile zebra herds, and hence more vulnerable to competitive exclusion by zebra than by buffalo. Our findings demonstrate how less abundant species can restrict competition from more abundant competitors through dynamic spatial partitioning in regions where their home ranges overlap.  相似文献   

18.
Climatic warming has direct implications for fire-dominated disturbance patterns in northern ecosystems. A transforming wildfire regime is altering plant composition and successional patterns, thus affecting the distribution and potentially the abundance of large herbivores. Caribou (Rangifer tarandus) are an important subsistence resource for communities throughout the north and a species that depends on terrestrial lichen in late-successional forests and tundra systems. Projected increases in area burned and reductions in stand ages may reduce lichen availability within caribou winter ranges. Sufficient reductions in lichen abundance could alter the capacity of these areas to support caribou populations. To assess the potential role of a changing fire regime on winter habitat for caribou, we used a simulation modeling platform, two global circulation models (GCMs), and a moderate emissions scenario to project annual fire characteristics and the resulting abundance of lichen-producing vegetation types (i.e., spruce forests and tundra >60 years old) across a modeling domain that encompassed the winter ranges of the Central Arctic and Porcupine caribou herds in the Alaskan-Yukon Arctic. Fires were less numerous and smaller in tundra compared to spruce habitats throughout the 90-year projection for both GCMs. Given the more likely climate trajectory, we projected that the Porcupine caribou herd, which winters primarily in the boreal forest, could be expected to experience a greater reduction in lichen-producing winter habitats (−21%) than the Central Arctic herd that wintered primarily in the arctic tundra (−11%). Our results suggest that caribou herds wintering in boreal forest will undergo fire-driven reductions in lichen-producing habitats that will, at a minimum, alter their distribution. Range shifts of caribou resulting from fire-driven changes to winter habitat may diminish access to caribou for rural communities that reside in fire-prone areas.  相似文献   

19.
Understanding the spatial ecology of small populations at the periphery of their range is important for identifying factors limiting population growth and developing sound management strategies. Bighorn sheep were reintroduced to Nebraska in 1981 and persist in a small population at the easternmost extent of the distribution of the species, where 1 of the 2 subpopulations is declining. Bighorn sheep space use and movement has been studied extensively in mountain and desert populations, but information is sparse from prairie populations in the Northern Great Plains. We investigated the spatial ecology of female bighorn sheep in Nebraska, USA, with global positioning system (GPS) telemetry. We tested the hypothesis that space use and movements would vary across seasons, years, and individuals but predicted that migration would involve relatively short distances in this translocated population (relative to native populations) occupying a fragmented landscape. Overall, females used smaller seasonal home ranges (3.3–7.8 km2) than most of those reported previously for the species and exhibited a high degree of variability in space use and movements across seasons, subpopulations, and individuals. Most females (92–100%) exhibited fidelity to their home ranges across seasons and years. Six females migrated between spatially distinct core lambing and winter ranges, although the distances (range = 7.9–8.7 km) and mean elevations (range = 31–41 m) between these core seasonal ranges were less than those reported for most native, migratory bighorn sheep populations. After accounting for variation in season, subpopulation, and years, home range size was positively associated with road density in both subpopulations (P < 0.001), suggesting that females incur greater energetic costs associated with greater space use in areas of higher fragmentation. Our results establish the basic spatial ecology of female bighorn sheep in Nebraska where their behavior appears to reflect the isolated nature of suitable habitat in this fragmented prairie landscape.  相似文献   

20.
Forest logging has contributed to the decline of several woodland caribou populations by causing the fragmentation of mature coniferous stands. Such habitat alterations could be worsened by spruce budworm (SBW) outbreaks. Using 6201 vegetation plots from provincial inventories conducted after the last SBW outbreak (1968–1992) in boreal forests of Québec (Canada), we investigated the influence of SBW‐caused tree defoliation and mortality on understory vegetation layers relevant to woodland caribou and its main predators. We found a positive association between severe outbreaks and the cover of most groups of understory plant species, especially in stands that were dominated by balsam fir before the outbreak, where a high canopy openness particularly benefited relatively fast‐growing deciduous plants. Such increases in early successional vegetation could provide high‐quality forage for moose, which is likely to promote higher wolf densities and increase predation pressure on caribou. SBW outbreaks may thus negatively affect woodland caribou by increasing predation risk, the main factor limiting caribou populations in managed forests. For the near future, we recommend updating the criteria used to define critical caribou habitat to consider the potential impacts of spruce budworm defoliation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号