首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Research on water exchange in frogs has historically assumed that blood osmotic potential drives water exchange between a frog and its environment, but here we show that the “seat patch” (the primary site of water exchange in many anurans), or other sites of cutaneous water uptake, act as an anatomic “compartment” with a water potential controlled separately from water potential of the blood, and the water potential of that compartment can be the driver of water exchange between the animal and its environment. We studied six frog species (Xenopus laevis, Rana pipiens, Rcatesbeiana, Bufo boreas, Pseudacris cadaverina, and Pregilla) differing in ecological relationships to environmental water. We inferred the water potentials of seat patches from water exchanges by frogs in sucrose solutions ranging in water potential from 0 to 1000‐kPa. Terrestrial and arboreal species had seat patch water potentials that were more negative than the water potentials of more aquatic species, and their seat patch water potentials were similar to the water potential of their blood, but the water potentials of venters of the more aquatic species were different from (and less negative than) the water potentials of their blood. These findings indicate that there are physiological mechanisms among frog species that can be used to control water potential at the sites of cutaneous water uptake, and that some frogs may be able to adjust the hydric conductance of their skin when they are absorbing water from very dilute solutions. Largely unexplored mechanisms involving aquaporins are likely responsible for adjustments in hydric conductance, which in turn, allow control of water potential at sites of cutaneous water uptake among species differing in ecological habit and the observed disequilibrium between sites of cutaneous water uptake and blood water potential in more aquatic species.  相似文献   

3.
1. The emetic response of seven species (four genera) of frogs to apomorphine hydrochloride, copper sulfate, antimonyl potassium tartrate and mechanical stimulation at the esophageal orifice was surveyed. Xenopus laevis and Rhacophorus schlegelii were more sensitive to systemically administered apomorphine than were the other species tested.2. The sensitivity of Rana rugosa to apomorphine varied with the season.3. All of the species showed vigorous vomiting behavior after the oral administration of either copper sulfate or antimonyl potassium tartrate.4. Mechanical stimulation also induced vomiting in all species. Although the species differed in sensitivity to the different emetic stimulants, the adaptive significance of this interspecific variation is not known.5. From the stand point of the mechanics for ejecting gastric contents, there is little difference between frogs and mammals.6. Frogs, particularly Xenopus laevis, may be a useful non-mammalian model for studying emesis.  相似文献   

4.
Male Xenopus laevis frogs have been observed to clasp other males in a sustained, amplectant position, the purpose of which is unknown. We examined three possible hypotheses for this counter-intuitive behavior: 1) clasping males fail to discriminate the sex of the frogs they clasp; 2) male-male clasping is an aggressive or dominant behavior; or 3) that males clasp other males to gain proximity to breeding events and possibly engage in sperm competition. Our data, gathered through a series of behavioral experiments in the laboratory, refute the first two hypotheses. We found that males did not clasp indiscriminately, but showed a sex preference, with most males preferentially clasping a female, but a proportion preferentially clasping another male. Males that clasped another male when there was no female present were less likely to “win” reproductive access in a male-male-female triad, indicating that they did not establish dominance through clasping. However, those males did gain proximity to oviposition by continued male-male clasping in the presence of the female. Thus, our findings are consistent with, but cannot confirm, the third hypothesis of male-male clasping as an alternative reproductive tactic.  相似文献   

5.
  1. Animal movement is a key process that connects and maintains populations on the landscape, yet for most species, we do not understand how intrinsic and extrinsic factors interact to influence individual movement behavior.
  2. Land‐use/land‐cover changes highlight that connectivity among populations will depend upon an individual''s ability to traverse habitats, which may vary as a result of habitat permeability, individual condition, or a combination of these factors.
  3. We examined the effects of intrinsic (body size) and extrinsic (habitat type) factors on desiccation tolerance, movement, and orientation in three anuran species (American toads, Anaxyrus americanus; northern leopard frogs, Lithobates pipiens; and Blanchard''s cricket frogs, Acris blanchardi) using laboratory and field studies to connect the effects of susceptibility to desiccation, size, and movement behavior in single‐habitat types and at habitat edges.
  4. Smaller anurans were more vulnerable to desiccation, particularly for species that metamorphose at relatively small sizes. Habitat type had the strongest effect on movement, while body size had more situational and species‐specific effects on movement. We found that individuals moved the farthest in habitat types that, when given the choice, they oriented away from, suggesting that these habitats are less favorable and could represent barriers to movement.
  5. Overall, our work demonstrated that differences in habitat type had strong impacts on individual movement behavior and influenced choices at habitat edges. By integrating intrinsic and extrinsic factors into our study, we provided evidence that population connectivity may be influenced not only by the habitat matrix but also by the condition of the individuals leaving the habitat patch.
  相似文献   

6.
All neurodegenerative diseases feature aggregates, which usually contain disease‐specific diagnostic proteins; non‐protein constituents, however, have rarely been explored. Aggregates from SY5Y‐APPSw neuroblastoma, a cell model of familial Alzheimer''s disease, were crosslinked and sequences of linked peptides identified. We constructed a normalized “contactome” comprising 11 subnetworks, centered on 24 high‐connectivity hubs. Remarkably, all 24 are nucleic acid‐binding proteins. This led us to isolate and sequence RNA and DNA from Alzheimer''s and control aggregates. RNA fragments were mapped to the human genome by RNA‐seq and DNA by ChIP‐seq. Nearly all aggregate RNA sequences mapped to specific genes, whereas DNA fragments were predominantly intergenic. These nucleic acid mappings are all significantly nonrandom, making an artifactual origin extremely unlikely. RNA (mostly cytoplasmic) exceeded DNA (chiefly nuclear) by twofold to fivefold. RNA fragments recovered from AD tissue were ~1.5‐to 2.5‐fold more abundant than those recovered from control tissue, similar to the increase in protein. Aggregate abundances of specific RNA sequences were strikingly differential between cultured SY5Y‐APPSw glioblastoma cells expressing APOE3 vs. APOE4, consistent with APOE4 competition for E‐box/CLEAR motifs. We identified many G‐quadruplex and viral sequences within RNA and DNA of aggregates, suggesting that sequestration of viral genomes may have driven the evolution of disordered nucleic acid‐binding proteins. After RNA‐interference knockdown of the translational‐procession factor EEF2 to suppress translation in SY5Y‐APPSw cells, the RNA content of aggregates declined by >90%, while reducing protein content by only 30% and altering DNA content by ≤10%. This implies that cotranslational misfolding of nascent proteins may ensnare polysomes into aggregates, accounting for most of their RNA content.  相似文献   

7.
Timely removal of dying or pathogenic cells by phagocytes is essential to maintaining host homeostasis. Phagocytes execute the clearance process with high fidelity while sparing healthy neighboring cells, and this process is at least partially regulated by the balance of “eat‐me” and “don''t‐eat‐me” signals expressed on the surface of host cells. Upon contact, eat‐me signals activate “pro‐phagocytic” receptors expressed on the phagocyte membrane and signal to promote phagocytosis. Conversely, don''t‐eat‐me signals engage “anti‐phagocytic” receptors to suppress phagocytosis. We review the current knowledge of don''t‐eat‐me signaling in normal physiology and disease contexts where aberrant don''t‐eat‐me signaling contributes to pathology.  相似文献   

8.
As hybrid zones exhibit selective patterns of gene flow between otherwise distinct lineages, they can be especially valuable for informing processes of microevolution and speciation. The bumble bee, Bombus melanopygus, displays two distinct color forms generated by Müllerian mimicry: a northern “Rocky Mountain''’ color form with ferruginous mid‐abdominal segments (B. m. melanopygus) and a southern “Pacific''’ form with black mid‐abdominal segments (B. m. edwardsii). These morphs meet in a mimetic transition zone in northern California and southern Oregon that is more narrow and transitions further west than comimetic bumble bee species. To understand the historical formation of this mimicry zone, we assessed color distribution data for B. melanopygus from the last 100 years. We then examined gene flow among the color forms in the transition zone by comparing sequences from mitochondrial COI barcode sequences, color‐controlling loci, and the rest of the nuclear genome. These data support two geographically distinct mitochondrial haplogroups aligned to the ancestrally ferruginous and black forms that meet within the color transition zone. This clustering is also supported by the nuclear genome, which, while showing strong admixture across individuals, distinguishes individuals most by their mitochondrial haplotype, followed by geography. These data suggest the two lineages most likely were historically isolated, acquired fixed color differences, and then came into secondary contact with ongoing gene flow. The transition zone, however, exhibits asymmetries: mitochondrial haplotypes transition further south than color pattern, and both transition over shorter distances in the south. This system thus demonstrates alternative patterns of gene flow that occur in contact zones, presenting another example of mito‐nuclear discordance. Discordant gene flow is inferred to most likely be driven by a combination of mimetic selection, dominance effects, and assortative mating.  相似文献   

9.
The use of animals in neuroscience and biomedical research remains controversial. Policy is built around the “3R” principle of “Refining, Reducing and Replacing” animal experiments, and across the globe, different initiatives stimulate the use of animal‐free methods. Based on an extensive literature screen to map the development and adoption of animal‐free methods in Alzheimer''s and Parkinson''s disease research, we find that at least two in three examined studies rely on animals or on animal‐derived models. Among the animal‐free studies, the relative contribution of innovative models that may replace animal experiments is limited. We argue that the distinction between animal research and alternative models presents a false dichotomy, as the role and scientific value of both animal and animal‐free approaches are intertwined. Calls to halt all animal experiments appear premature, as insufficient non‐animal‐based alternatives are available and their development lags behind. In light of this, we highlight the need for objective, unprejudiced monitoring, and more robust performance indicators of animal‐free approaches.  相似文献   

10.
The SARS‐CoV‐2 infection cycle is a multistage process that relies on functional interactions between the host and the pathogen. Here, we repurposed antiviral drugs against both viral and host enzymes to pharmaceutically block methylation of the viral RNA 2''‐O‐ribose cap needed for viral immune escape. We find that the host cap 2''‐O‐ribose methyltransferase MTr1 can compensate for loss of viral NSP16 methyltransferase in facilitating virus replication. Concomitant inhibition of MTr1 and NSP16 efficiently suppresses SARS‐CoV‐2 replication. Using in silico target‐based drug screening, we identify a bispecific MTr1/NSP16 inhibitor with anti‐SARS‐CoV‐2 activity in vitro and in vivo but with unfavorable side effects. We further show antiviral activity of inhibitors that target independent stages of the host SAM cycle providing the methyltransferase co‐substrate. In particular, the adenosylhomocysteinase (AHCY) inhibitor DZNep is antiviral in in vitro, in ex vivo, and in a mouse infection model and synergizes with existing COVID‐19 treatments. Moreover, DZNep exhibits a strong immunomodulatory effect curbing infection‐induced hyperinflammation and reduces lung fibrosis markers ex vivo. Thus, multispecific and metabolic MTase inhibitors constitute yet unexplored treatment options against COVID‐19.  相似文献   

11.
In the nematode Caenorhabditis elegans, signals derived from bacteria in the diet, the animal''s major nutrient source, can modulate both behavior and healthspan. Here we describe a dual role for trimethylamine (TMA), a human gut flora metabolite, which acts as a nutrient signal and a neurotoxin. TMA and its associated metabolites are produced by the human gut microbiome and have been suggested to serve as risk biomarkers for diabetes and cardiovascular diseases. We demonstrate that the tyramine receptor TYRA‐3, a conserved G protein‐coupled receptor (GPCR), is required to sense TMA and mediate its responses. TMA activates guanylyl cyclase DAF‐11 signaling through TYRA‐3 in amphid neurons (ASK) and ciliated neurons (BAG) to mediate food‐sensing behavior. Bacterial mutants deficient in TMA production enhance dauer formation, extend lifespan, and are less preferred as a food source. Increased levels of TMA lead to neural damage in models of Parkinson''s disease and shorten lifespan. Our results reveal conserved signaling pathways modulated by TMA in C. elegans that are likely to be relevant for its effects in mammalian systems.  相似文献   

12.
Summary Xenopus laevis larvae at stage 52–53 (according to Nieuwkoop and Faber 1956) were subjected to amputation of both limbs at the thigh level as well as to repeated denervations of the right limb. Results obtained in larvae sacrificed during wound healing (1 after amputation), blastema formation (3 days) and blastema growth (5 and 7 days) showed that denervated right limbs have undergone the same histological modifications observed in innervated left limbs and have formed a regeneration blastema consisting of mesenchymal cells with a pattern of DNA synthesis and mitosis very similar to that in presence of nerves. Also, the patterns of cellular density in regenerating right and left limbs were very similar. On the whole, the data here reported show a highly remarkable degree of nerve-independence for regeneration in hindlimbs of larval Xenopus laevis at stage 52–53 and lend some substance to the hypothesis that, in early limbs, there would exist trophic factors capable of replacing those released by nerves, promoting DNA synthesis and mitosis in blastemal cells. Offprint requests to: S. Filoni  相似文献   

13.
14.
Dopamine (DA) signaling via G protein‐coupled receptors is a multifunctional neurotransmitter and neuroendocrine–immune modulator. The DA nigrostriatal pathway, which controls the motor coordination, progressively degenerates in Parkinson''s disease (PD), a most common neurodegenerative disorder (ND) characterized by a selective, age‐dependent loss of substantia nigra pars compacta (SNpc) neurons, where DA itself is a primary source of oxidative stress and mitochondrial impairment, intersecting astrocyte and microglial inflammatory networks. Importantly, glia acts as a preferential neuroendocrine–immune DA target, in turn, counter‐modulating inflammatory processes. With a major focus on DA intersection within the astrocyte–microglial inflammatory network in PD vulnerability, we herein first summarize the characteristics of DA signaling systems, the propensity of DA neurons to oxidative stress, and glial inflammatory triggers dictating the vulnerability to PD. Reciprocally, DA modulation of astrocytes and microglial reactivity, coupled to the synergic impact of gene–environment interactions, then constitute a further level of control regulating midbrain DA neuron (mDAn) survival/death. Not surprisingly, within this circuitry, DA converges to modulate nuclear factor erythroid 2like 2 (Nrf2), the master regulator of cellular defense against oxidative stress and inflammation, and Wingless (Wnt)/βcatenin signaling, a key pathway for mDAn neurogenesis, neuroprotection, and immunomodulation, adding to the already complex “signaling puzzle,” a novel actor in mDAn–glial regulatory machinery. Here, we propose an autoregulatory feedback system allowing DA to act as an endogenous Nrf2/Wnt innate modulator and trace the importance of DA receptor agonists applied to the clinic as immune modifiers.  相似文献   

15.
16.
Bet‐hedging via polyandry (spreading the extinction risk of the female''s lineage over multiple males) may explain the evolution of female multiple mating, which is found in a wide range of animal and plant taxa. This hypothesis posits that females can increase their fitness via polyandrous mating when “unsuitable” males (i.e., males causing reproductive failure for various reasons) are frequent in the population and females cannot discriminate such unsuitable mates. Although recent theoretical studies have shown that polyandry can operate as a bet‐hedging strategy, empirical tests are scarce. In the present study, we tested the bet‐hedging polyandry hypothesis by using the red flour beetle Tribolium castaneum. We compared female reproductive success between monandry and polyandry treatments when females mated with males randomly collected from an experimental population, including 20% irradiated (infertile) males. In addition, we evaluated geometric mean fitness across multiple generations as the index of adaptability of bet‐hedging traits. Polyandrous females showed a significantly higher egg hatching rate and higher geometric mean fitness than monandrous females. These results strongly support the bet‐hedging polyandry hypothesis.  相似文献   

17.
Nest material kleptoparasitism likely evolved in birds to reduce the cost of searching for and collecting material themselves. Although nest material kleptoparasitism has been reported commonly in colonially nesting species, reports for solitary breeding species are infrequent, especially for neotropical migratory species. Here, we report potential and actual nest material kleptoparasitism in the Worm‐eating Warbler (Helmitheros vermivorum). We deployed video camera systems at passerine nests (n = 81) in east‐central Arkansas during summers 2011–2012. In one video, we observed a Worm‐eating Warbler stealing nesting material from a Hooded Warbler (Setophaga citrina) nest. One day later, we later observed a Worm‐eating Warbler landing within 0.5 m of the same warbler nest when the female was incubating, which possibly deterred a second theft of nesting material. In a third video recording, we observed another Worm‐eating Warbler landing within 1 m of an Indigo Bunting (Passerina cyanea) nest. As far as we could determine, neither of these latter two nest visits resulted in nest material kleptoparasitism. Potential benefits of nest material kleptoparasitism include reduced competition for limited nest materials, easy access to suitable material, reduced travel distance, and reduction of nest predation risk; however, costs include risk of attack by host or introducing parasites to one''s nest. Importantly, this behavior could ultimately affect the behavioral and life history evolution of a species. We suggest further work should be conducted to determine the prevalence of nest material kleptoparasitism in Worm‐eating Warblers and other solitary breeding passerines, including efforts to quantify the benefits and costs of this behavior.  相似文献   

18.
The aggregation of β‐amyloid (Aβ) has the neurotoxicity, which is thought to play critical role in the pathogenesis of Alzheimer''s disease (AD). Inhibiting Aβ deposition and neurotoxicity has been considered as an important strategy for AD treatment. 3,6''‐Disinapoyl sucrose (DISS), one of the oligosaccharide esters derived from traditional Chinese medicine Polygalae Radix, possesses antioxidative activity, neuroprotective effect and anti‐depressive activity. This study was to explore whether DISS could attenuate the pathological changes of Aβ1‐42 transgenic Caenorhabditis elegans (C. elegans). The results showed that DISS (5 and 50 μM) treatment significantly prolonged the life span, increased the number of egg‐laying, reduced paralysis rate, decreased the levels of lipofuscin and ROS and attenuated Aβ deposition in Aβ1‐42 transgenic Celegans. Gene analysis showed that DISS could up‐regulate the mRNA expression of sod3, gst4, daf16, bec1 and lgg1, while down‐regulate the mRNA expression of daf2 and daf15 in Aβ1‐42 transgenic Celegans. These results suggested that DISS has the protective effect against Aβ1‐42‐induced pathological damages and prolongs the life span of Celegans, which may be related to the reduction of Aβ deposition and neurotoxicity by regulating expression of genes related to antioxidation and autophagy.  相似文献   

19.
Sequestration, that is, the accumulation of plant toxins into body tissues for defense, was predicted to incur physiological costs and may require resistance traits different from those of non‐sequestering insects. Alternatively, sequestering species could experience a cost in the absence of toxins due to selection on physiological homeostasis under permanent exposure of sequestered toxins in body tissues. Milkweed bugs (Heteroptera: Lygaeinae) sequester high amounts of plant‐derived cardenolides. Although being potent inhibitors of the ubiquitous animal enzyme Na+/K+‐ATPase, milkweed bugs can tolerate cardenolides by means of resistant Na+/K+‐ATPases. Both adaptations, resistance and sequestration, are ancestral traits of the Lygaeinae. Using four milkweed bug species (Heteroptera: Lygaeidae: Lygaeinae) and the related European firebug (Heteroptera: Pyrrhocoridae: Pyrrhocoris apterus) showing different combinations of the traits “cardenolide resistance” and “cardenolide sequestration,” we tested how the two traits affect larval growth upon exposure to dietary cardenolides in an artificial diet system. While cardenolides impaired the growth of P. apterus nymphs neither possessing a resistant Na+/K+‐ATPase nor sequestering cardenolides, growth was not affected in the non‐sequestering milkweed bug Arocatus longiceps, which possesses a resistant Na+/K+‐ATPase. Remarkably, cardenolides increased growth in the sequestering dietary specialists Caenocoris nerii and Oncopeltus fasciatus but not in the sequestering dietary generalist Spilostethus pandurus, which all possess a resistant Na+/K+‐ATPase. We furthermore assessed the effect of dietary cardenolides on additional life history parameters, including developmental speed, longevity of adults, and reproductive success in O. fasciatus. Unexpectedly, nymphs under cardenolide exposure developed substantially faster and lived longer as adults. However, fecundity of adults was reduced when maintained on cardenolide‐containing diet for their entire lifetime but not when adults were transferred to non‐toxic sunflower seeds. We speculate that the resistant Na+/K+‐ATPase of milkweed bugs is selected for working optimally in a “toxic environment,” that is, when sequestered cardenolides are stored in the body.  相似文献   

20.
Helicobacter pylori is a pathogen that colonizes the stomach and causes chronic gastritis. Helicobacter pylori can colonize deep inside gastric glands, triggering increased R‐spondin 3 (Rspo3) signaling. This causes an expansion of the “gland base module,” which consists of self‐renewing stem cells and antimicrobial secretory cells and results in gland hyperplasia. The contribution of Rspo3 receptors Lgr4 and Lgr5 is not well explored. Here, we identified that Lgr4 regulates Lgr5 expression and is required for H. pylori‐induced hyperplasia and inflammation, while Lgr5 alone is not. Using conditional knockout mice, we reveal that R‐spondin signaling via Lgr4 drives proliferation of stem cells and also induces NF‐κB activity in the proliferative stem cells. Upon exposure to H. pylori, the Lgr4‐driven NF‐κB activation is responsible for the expansion of the gland base module and simultaneously enables chemokine expression in stem cells, resulting in gland hyperplasia and neutrophil recruitment. This demonstrates a connection between R‐spondin‐Lgr and NF‐κB signaling that links epithelial stem cell behavior and inflammatory responses to gland‐invading H. pylori.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号