首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cyclophilins, which bind to immunosuppressant cyclosporin A (CsA), are ubiquitous proteins and constitute a multigene family in higher organisms. Several members of this family are reported to catalyze cis-trans isomerisation of the peptidyl-prolyl bond, which is a rate limiting step in protein folding. The physiological role of these proteins in plants, with few exceptions, is still a matter of speculation. Although Arabidopsis genome is predicted to contain 35 cyclophilin genes, biochemical characterization, imperative for understanding their cellular function(s), has been carried only for few of the members. The present study reports the biochemical characterization of an Arabidopsis cyclophilin, AtCyp19-3, which demonstrated that this protein is enzymatically active and possesses peptidyl-prolyl cis-trans isomerase (PPIase) activity that is specifically inhibited by CsA with an inhibition constant (Ki) of 18.75 nM. The PPIase activity of AtCyp19-3 was also sensitive to Cu2+, which covalently reacts with the sulfhydryl groups, implying redox regulation. Further, using calmodulin (CaM) gel overlay assays it was demonstrated that in vitro interaction of AtCyp19-3 with CaM is Ca2+-dependent, and CaM-binding domain is localized to 35–70 amino acid residues in the N-terminus. Bimolecular fluorescence complementation assays showed that AtCyp19-3 interacts with CaM in vivo also, thus, validating the in vitro observations. However, the PPIase activity of the Arabidopsis cyclophilin was not affected by CaM. The implications of these findings are discussed in the context of Ca2+ signaling and cyclophilin activity in Arabidopsis.  相似文献   

2.
Cadmium is a highly toxic metal entering cells by a variety of mechanisms. Its toxic action is far from being completely understood, although specific interaction with the cellular calcium metabolism has been indicated. Metal ions that influence intracellular Ca2+ concentrations or compete with Ca2+ for protein binding sites may exert an effect on actin filaments, whose assembly and disassembly are both regulated by a number of calcium-dependent factors. Cadmium is such a metal. Much evidence demonstrates that cadmium interferes with the dynamics of actin filaments in various types of cells. Here we show that, at high (0.8–1.0 mM) concentrations, CdCl2 causes actin denaturation. At such Cd2+ concentrations, actin precipitates (really actin, as shown by SDS-PAGE, see Fig. 1B) in the form of irregular, disordered clots, clearly appreciable by electron microscopy. Denaturation seems to be reversible since, after Cd2+ removal by dialysis, the polymerizability of sedimented actin is restored almost completely. On the other hand, at concentrations ranging from 0.25 to 0.6 mM, CdCl2 is more effective as an actin polymerizing agent than both MgCl2 and CaCl2. The Cd-related increase in the actin assembly rate is ascribable to an enhanced nucleation rather than to an increased monomer addition to filament growing ends. The latter, in contrast, appears quite slow. Critical concentration measurements revealed that the extent of polymerization of both Mg- and Cd-assembled actin are very close (Cc ranges from 0.25 to 0.5 μM), while Ca-polymerized actin shows a polymerization extent markedly lower (Cc=4.0 μM). By both the fluorescent Ca2+ chelator Quin-2 assay and limited proteolysis of actin by trypsin and α-chymotrypsin, the real substitution of G-actin-bound Ca2+ by Cd2+ has been appreciated. The increase in Quin-2 fluorescence after addition of excess CdCl2 indicates that, in our experimental conditions, Ca2+ tightly-bound to actin is partially (60–70%) replaced by Cd2+, forming Cd-actin. Electrophoretic patterns after limited proteolysis reveal that the trypsin cleavage sites in the segment 61–69 of the actin polypeptide chain are less accessible in Cd-actin than in Ca-actin, although the cation-dependent effect is less pronounced in Cd-actin than in Mg-actin. Our results are consistent with some of the consequences on microfilament organization observed in Cd2+-treated cells; however, considering the positive effect of Cd2+ on actin polymerization in solution we have noticed that this was never observed in vivo. A different indirect effect of Cd2+ on some cellular event(s) influencing cytoplasmic actin polymerization appears to be reasonable. © 1997 Elsevier Science B.V. All rights reserved.  相似文献   

3.
Responses of photosystem I and II activities of Microcystis aeruginosa to various concentrations of Cu2+ were simultaneously examined using a Dual-PAM-100 fluorometer. Cell growth and contents of chlorophyll a were significantly inhibited by Cu2+. Photosystem II activity [Y(II)] and electron transport [rETRmax(II)] were significantly altered by Cu2+. The quantum yield of photosystem II [Y(II)] decreased by 29 % at 100 μg L?1 Cu2+ compared to control. On the contrary, photosystem I was stable under Cu2+ stress and showed an obvious increase of quantum yield [Y(I)] and electron transport [rETRmax(I)] due to activation of cyclic electron flow (CEF). Yield of cyclic electron flow [Y(CEF)] was enhanced by 17 % at 100 μg L?1 Cu2+ compared to control. The contribution of linear electron flow to photosystem I [Y(II)/Y(I)] decreased with increasing Cu2+ concentration. Yield of cyclic electron flow [Y(CEF)] was negatively correlated with the maximal photosystem II photochemical efficiency (F v/F m). In summary, photosystem II was the major target sites of toxicity of Cu2+, while photosystem I activity was enhanced under Cu2+ stress.  相似文献   

4.
Pushie MJ  Vogel HJ 《Biophysical journal》2008,95(11):5084-5091
The prion protein has garnered considerable interest because of its involvement in prion disease as well as its unresolved cellular function. The octarepeat region in the flexible N-domain is capable of binding copper through multiple coordination modes. Under conditions of low pH and low Cu2+ concentration, the four octarepeats (ORs) cooperatively coordinate a single copper ion. Based on the average structure of the PHGG and GWGQ portions of a copper-free OR2 model from molecular dynamics simulations, the starting structures of the OR4 complex could be constructed by assembling the repeating structure of PHGG and GWGQ fragments. The resulting model contains a preformed site suitable for Cu2+ coordination. Molecular dynamics simulations of Cu2+ bound to the assembled OR4 model (Cu:OR4) reveal a close association of specific Trp and Gly residues with the Cu2+ center. This low Cu2+-occupancy form of prion protein is redox-active and can readily initiate cleavage of the OR region, mediated by reactive oxygen species generated by Cu+. The OR region is known to be required for β-cleavage, as are the Trp residues within the OR region. The β-cleaved form of the prion protein accumulates in amyloid fibrils. Hence, the close approach of Trp and Gly residues to the Cu2+ coordination site in the low Cu2+-occupancy form of the OR region may signal an important interaction for the initiation of prion disease.  相似文献   

5.
Addition of 5 micromolar Cu2+, Cd2+, and Zn2+ was inhibitory to 10 micromolar H2O2-supported Hill activity (dichlorophenolindophenol reduction) and O2 evolution in membrane preparation from Anacystis nidulans. The reversal of Cd2+ and Zn2+ inhibition, in contrast to Cu2+, by exogenously added catalase (EC 1.11.1.6) suggested that the former cations were inhibitory to H2O2 degradation. Ascorbic acid (20 micromolar) supported 27% of the Hill activity which was insensitive to DCMU (10 micromolar) and the remaining activity, attributable to the DCMU sensitive process, was sensitive to inhibition by Cu2+ only. It is suggestive that the action site of Cd2+ and Zn2+ is located between the electron donation sites of H2O2 and ascorbic acid, while that of Cu2+ is located beyond it. Electron donation by reduced glutathione was insensitive to DCMU and Cu2+, indicating that the action site of Cu2+ is prior to its electron donation site. Further, the phenanthroline (10 micromolar) reversal of Cu2+ inhibition of Hill activity suggested a tentative action site of Cu2+ at the level of cytochrome.  相似文献   

6.
Uribe EG  Stark B 《Plant physiology》1982,69(5):1040-1045
This study describes a specific Cu2+ and light-dependent inhibition of spinach (Spinacia oleracea L.) chloroplast reactions involving coupling factor 1 function. A primary effect is an inhibition of photophosphorylation induced by illumination of Class II chloroplasts with micromolar Cu2+ and pyocyanine in the absence of ADP, Mg2+, and HPO42−. The inhibition, which is dependent on free Cu2+ as indicated by protection by ethylene diamine tetraacetic acid and dithiothreitol, requires illumination (electron flow) for establishment of the specific inhibition to be noted. Protection is also afforded by uncouplers and some partial protection is provided by micromolar concentrations of ADP and ATP. The data strongly suggest that Cu2+ causes an O2-independent oxidation of sulfhydryl groups on coupling factor 1, which are essential to catalytic function. This conclusion is supported by the reduction of energy-dependent 3H-N-ethylmaleimide labeling of the γ subunit of coupling factor 1 by the Cu2+-light pretreatment.  相似文献   

7.
8.
J.L. Daniel  D.J. Hartshorne 《BBA》1974,347(2):151-159
Myosin reacted with N-ethylmaleimide in the presence of ADP lost its ability to be activated by actin. Subfragment 1 behaved similarly. About 2 moles of N-ethylmaleimide per mole of Subfragment 1 were required to eliminate actin activation of the Mg2+-ATPase activity. At the point at which actin activation was lost the K+-EDTA-ATPase activity was also lost, but the Ca2+-activated ATPase activity was increased. Kinetic measurements indicated that the labelling with N-ethylmaleimide in the presence of ADP reduced V (the ATPase activity at infinite actin concentration) but did not effect Kapp (which is related to the dissociation constant of the actin-Subfragment 1 complex). The Mg2+-activated activity of the reacted myosin alone remained unaltered and the ability to bind actin was retained. We propose that the N-ethylmaleimide labelling blocked the actin activation by preventing the accelerated release of hydrolysis products from the myosin.  相似文献   

9.
Activation of Torpedo presynaptic muscarinic acetylcholine (ACh) receptors with the agonist oxotremorine (20 μM) results in the inhibition of Ca2+-dependent release of endogenous ACh from Torpedo synaptosomes. This effect is reversed by the muscarinic antagonist atropine (1 μM) which, by itself, has no effect. In contrast, under the same conditions the amount of newly synthesized radiolabeled [3H]ACh released is not affected by muscarinic ligands. These findings suggest that presynaptic muscarinic inhibition in the Torpedo is due to interference with the mobilization of ACh from a storage pool.  相似文献   

10.
An indole 2,3-dioxygenase was purified ca 38-fold from maize leaves. The enzyme had an MW of about 98000, an optimum pH of 5.0 and the energy of activation was 9.1 kcal/mol. The Kmax for indole was 1.4 × 10?4 M. The enzyme was inhibited by diethyldithiocarbamate, salicylaldoxime and sodium dithionite. The inhibition by diethyldithiocarbamate was specifically reversed by Cu2+. The dialysed enzyme was stimulated by Cu2+. Four atoms of oxygen were utilized in the disappearance of 1 mole of indole. Inhibition of the enzyme by -SH compounds and -SH group inhibitors, and their partial removal by Cu2+ only, suggested the involvement of -SH groups in binding of Cu2+ at the catalytic site.  相似文献   

11.
Myoglobin of Aplysia brasiliana (MbApB) has been recently purified and characterized and it was shown that the amino acid content is quite different from other myoglobins. A large number of aromatic residues was observed together with the existence of a unique histidine at the proximal heme position. Because of the numerous differences in the amino acid sequence between MbApB and whale myoglobin, it was interesting to investigate the interaction of metal ions like Cu2+ and Mn2+ with MbApB. In the present work Cu2+ complexes with Met-MbApB were studied and show a pH transition between different forms of coordination as revealed by EPR measurements. At high pH the EPR spectrum shows the coordination of the metal to at least four nitrogens from ϵ-NH3 lysine residues. At lower pH in the range 6.0–9.0 the copper binding site shows a pK change of some of the residues involved in metal coordination. Addition of one equivalent Cu2+ per protein does not alter the iron EPR signal. The manganese ion has one binding site in MbApB and a binding constant Ka = ( 11.5 ± 0.8) 103M−1. The binding of Cu2+ to MbApB is stronger than Mn2+, KaCu2+ >KaMn2+.  相似文献   

12.
The interaction of redox-active copper ions with misfolded amyloid β (Aβ) is linked to production of reactive oxygen species (ROS), which has been associated with oxidative stress and neuronal damages in Alzheimer disease. Despite intensive studies, it is still not conclusive how the interaction of Cu+/Cu2+ with Aβ aggregates leads to ROS production even at the in vitro level. In this study, we examined the interaction between Cu+/Cu2+ and Aβ fibrils by solid-state NMR (SSNMR) and other spectroscopic methods. Our photometric studies confirmed the production of ∼60 μm hydrogen peroxide (H2O2) from a solution of 20 μm Cu2+ ions in complex with Aβ(1–40) in fibrils ([Cu2+]/[Aβ] = 0.4) within 2 h of incubation after addition of biological reducing agent ascorbate at the physiological concentration (∼1 mm). Furthermore, SSNMR 1H T1 measurements demonstrated that during ROS production the conversion of paramagnetic Cu2+ into diamagnetic Cu+ occurs while the reactive Cu+ ions remain bound to the amyloid fibrils. The results also suggest that O2 is required for rapid recycling of Cu+ bound to Aβ back to Cu2+, which allows for continuous production of H2O2. Both 13C and 15N SSNMR results show that Cu+ coordinates to Aβ(1–40) fibrils primarily through the side chain Nδ of both His-13 and His-14, suggesting major rearrangements from the Cu2+ coordination via Nϵ in the redox cycle. 13C SSNMR chemical shift analysis suggests that the overall Aβ conformations are largely unaffected by Cu+ binding. These results present crucial site-specific evidence of how the full-length Aβ in amyloid fibrils offers catalytic Cu+ centers.  相似文献   

13.
Oxidative stress and Cu2+ have been implicated in several neurodegenerative diseases and in cataract. Oxidative stress, as well as Cu2+, is also known to induce the expression of the small heat shock proteins α-crystallins. However, the role of α-crystallins in oxidative stress and in Cu2+-mediated processes is not clearly understood. We demonstrate using fluorescence and isothermal titration calorimetry that α-crystallins (αA- and αB-crystallin and its phosphorylation mimic, 3DαB-crystallin) bind Cu2+ with close to picomolar range affinity. The presence of other tested divalent cations such as Zn2+, Mg2+, and Ca2+ does not affect Cu2+ binding, indicating selectivity of the Cu2+-binding site(s) in α-crystallins. Cu2+ binding induces structural changes and increase in the hydrodynamic radii of α-crystallins. Cu2+ binding increases the stability of α-crystallins towards guanidinium chloride-induced unfolding. Chaperone activity of αA-crystallin increases significantly upon Cu2+ binding. α-Crystallins rescue amyloid beta peptide, Aβ1-40, from Cu2+-induced aggregation in vitro. α-Crystallins inhibit Cu2+-induced oxidation of ascorbate and, hence, prevent the generation of reactive oxygen species. Interestingly, α-synuclein, a Cu2+-binding protein, does not inhibit this oxidation process significantly. We find that the Cu2+-sequestering (or redox-silencing) property of α-crystallins confers cytoprotection. To the best of our knowledge, this is the first study to reveal high affinity (close to picomolar) for Cu2+ binding and redox silencing of Cu2+ by any heat shock protein. Thus, our study ascribes a novel functional role to α-crystallins in Cu2+ homeostasis and helps in understanding their protective role in neurodegenerative diseases and cataract.  相似文献   

14.
The inhibition by cupric ions of the hydration of CO2 catalyzed by carbonic anhydrase II is interesting because of the results of Tuet al. obtained at chemical equilibrium, indicating that Cu2+ inhibits specifically a proton transfer in the catalytic pathway. We have measured this inhibition at steady state, using stopped-flow methods. The inhibition by Cu2+ of the hydration of CO2 catalyzed by carbonic anhydrase II had aK I near 1×10?6 M atpH 7.0 and gave inhibition that is noncompetitive atpH 6.0 and mixed, but close to uncompetitive, atpH 6.8. ThepH dependence of this binding is consistent with a binding site for Cu2+ on the enzyme with apK a near 7. The binding interaction between Cu2+ and the fluorescent inhibitor 5-dimethylaminonaphthalene-l-sulfonamide on carbonic anhydrase II was noncompetitive, indicating that the binding site for Cu2+ is distinct from the coordination sphere of zinc in which the actual interconversion of CO2 and HCO 3 ? and the binding of sulfonamides takes place.  相似文献   

15.
Nickel in plants: I. Uptake kinetics using intact soybean seedlings   总被引:1,自引:0,他引:1  
The absorption of Ni2+ by 21-day-old soybean plants (Glycine max cv. Williams) was investigated with respect to its concentration dependence, transport kinetics, and interactions with various nutrient cations. Nickel absorption, measured as a function of concentration (0.02 to 100 μm), demonstrated the presence of multiple absorption isotherms. Each of the three isotherms conforms to Michaelis-Menten kinetics; kinetic constants are reported for uptake by the intact plant and for transfer from root to shoot tissues. The absorption of Ni2+ by the intact plant and its transfer from root to shoot were inhibited by the presence of Cu2+, Zn2+, Fe2+, and Co2+. Competition kinetic studies showed Cu2+ and Zn2+ to inhibit Ni2+ absorption competitively, suggesting that Ni2+, Cu2+, and Zn2+ are absorbed using the same carrier site. Calculated Km and Ki constants for Ni2+ in the presence and absence of Cu2+ were 6.1 and 9.2 μm, respectively, whereas Km and Ki constants were calculated to be 6.7 and 24.4 μm, respectively, for Ni2+ in the presence and absence of Zn2+. The mechanism of inhibition of Ni2+ in the presence of Fe2+ and Co2+ was not resolved by classical kinetic relationships.  相似文献   

16.
In Torpedo, PNS as well as CNS myelines are characterized by clearly separated double intraperiod lines. CNS myelin of Torpedo contains two glycosylated hydrophobic proteins labelled T1 (25,800 Da1) and T2 (29,700 Da1), and two basic proteins BP1 and BP2, migrating like mammalian large basic protein (BP2) and pre-small basic protein (BP1) (Barbarese et al., 1977). PNS myelin of Torpedo carries only BP1 and is characterized by a closely spaced doublet of the glycosylated hydrophobic proteins Con A+ (29,700 Da1) and Con A? (31,000 Da1); the latter does not bind Concanavalin A. These glycosylated proteins (T1, T2, Con A+, Con A?) contain mannose, N-acetylglucosamine and galactose, but lack fucose and sialic acids. They have isoleucine at their amino terminus. They bind anti-rat PNS myelin P0 antibodies but do not react with anti-rat CNS myelin PLP antibodies. Limited proteolyses of isolated proteins suggest sequence homologies between T1 and T2, and possibly between Con A+ and Con A?. The two basic proteins BP1 and BP2 bind antibodies directed against human myelin basic protein. All Torpedo myelin proteins electrofocus in pH regions characteristic of their mammalian counterparts.  相似文献   

17.
18.
In complexes of divalent metals with large exchange rate constant (KH2O) of the coordinated H2O, such as Ca2+ and Cu2+, the cubic structure in the ligand field is usually unstable and conformation changes are easily induced. We observed the molecular motion of phosphatidylserine (PS) in an amphipathic solvent (water / methanol / chloroform) by 1H-NMR and ESR using Ca2+ and / or Cu2+, which has a similar KH2O to that of Ca2+. We found that Ca2+ did not hinder the molecular movements of PS. However, Cu2+ reduced the movements of both headgroups and the double bonds in the fatty acids of PS. By addition of both Ca2+ and Cu2+, phase transition to a soft solid phase in the PS membrane was observed at room temperature. The results indicate that the headgroups are clustered in two-dimensional network with each ligand field displaced from the aqueous phase to the water / oil interface. The structure changes of the polar headgroups after the binding of divalent cations are considered to trigger the phase transition of this acidic phospholipid membrane.  相似文献   

19.
The stabilities of the 1:1 complexes of Mn2+, Cu2+, and Zn2+ with lipoate and its chainshortened catabolites, viz., bisnorlipoate and tetranorlipoate, were studied by potentiometric titrations in water containing 50% dioxane (I = 0.1, NaClO4; 25 °C). A comparison of the stabilities of these complexes with those of simple carboxylates reveals that the catabolite complexes formed with Cu2+ and Zn2+ are more stable than expected from only the basicity of the carboxylate groups. This is evidence that chelates involving the disulfide group are formed. The stability of all Mn2+ complexes is determined by the basicity of the carboxylate groups. The same pattern of stability holds for the mixed-ligand complexes formed by Cu2+ or Zn2+, 2,2′-bipyridyl, and lipoate or one of its derivatives. It is evident that the disulfide group of the 1,2-dithiolane moiety can participate in the formation of binary and ternary complexes. The somewhat less-pronounced coordinating properties of the 1,2-dithiolane moiety compared with the tetrahydrothiophene moiety are discussed. It is apparent that the electron density at S(1) and S(2) in the dithiolane moiety of lipoate is not equivalent: S(1) is favored over S(2) in electrophilic reactions; possible biological implications are indicated.  相似文献   

20.
The red fluorescent protein, DsRed, and a few of its mutants have been shown to bind copper ions resulting in quenching of its fluorescence. The response to Cu2+ is rapid, selective, and reversible upon addition of a copper chelator. DsRed has been employed as an in vitro probe for Cu2+ determination by us and other groups. It is also envisioned that DsRed can serve as an intracellular genetically encoded indicator of Cu2+ concentration, and can be targeted to desired subcellular locations for Cu2+ determination. However, no information has been reported yet regarding the mechanism of the fluorescence quenching of DsRed in the presence of Cu2+. In this work, we have performed spectroscopic investigations to determine the mechanism of quenching of DsRed fluorescence in the presence of Cu2+. We have studied the effect of Cu2+ addition on two representative mutants of DsRed, specifically, DsRed-Monomer and DsRed-Express. Both proteins bind Cu2+ with micromolar affinities. Stern-Volmer plots generated at different temperatures indicate a static quenching process in the case of both proteins in the presence of Cu2+. This mechanism was further studied using absorption spectroscopy. Stern-Volmer constants and quenching rate constants support the observation of static quenching in DsRed in the presence of Cu2+. Circular dichroism (CD)-spectroscopic studies revealed no effect of Cu2+-binding on the secondary structure or conformation of the protein. The effect of pH changes on the quenching of DsRed fluorescence in the presence of copper resulted in pKa values indicative of histidine and cysteine residue involvement in Cu2+-binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号