首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Cell》2022,185(22):4067-4081.e21
  1. Download : Download high-res image (362KB)
  2. Download : Download full-size image
  相似文献   

2.
Pathogens must steal iron from their hosts to establish infection. In mammals, hemoglobin (Hb) represents the largest reservoir of iron, and pathogens express Hb-binding proteins to access this source. Here, we show how one of the commonest and most significant human pathogens, Staphylococcus aureus, captures Hb as the first step of an iron-scavenging pathway. The x-ray crystal structure of Hb bound to a domain from the Isd (iron-regulated surface determinant) protein, IsdH, is the first structure of a Hb capture complex to be determined. Surface mutations in Hb that reduce binding to the Hb-receptor limit the capacity of S. aureus to utilize Hb as an iron source, suggesting that Hb sequence is a factor in host susceptibility to infection. The demonstration that pathogens make highly specific recognition complexes with Hb raises the possibility of developing inhibitors of Hb binding as antibacterial agents.  相似文献   

3.
4.
Mobile genetic elements such as phages and plasmids have evolved anti-CRISPR proteins (Acrs) to suppress CRISPR-Cas adaptive immune systems. Recently, several phage and non-phage derived Acrs including AcrIIA17 and AcrIIA18 have been reported to inhibit Cas9 through modulation of sgRNA. Here, we show that AcrIIA17 and AcrIIA18 inactivate Cas9 through distinct mechanisms. AcrIIA17 inhibits Cas9 activity through interference with Cas9-sgRNA binary complex formation. In contrast, AcrIIA18 induces the truncation of sgRNA in a Cas9-dependent manner, generating a shortened sgRNA incapable of triggering Cas9 activity. The crystal structure of AcrIIA18, combined with mutagenesis studies, reveals a crucial role of the N-terminal β-hairpin in AcrIIA18 for sgRNA cleavage. The enzymatic inhibition mechanism of AcrIIA18 is different from those of the other reported type II Acrs. Our results add new insights into the mechanistic understanding of CRISPR-Cas9 inhibition by Acrs, and also provide valuable information in the designs of tools for conditional manipulation of CRISPR-Cas9.  相似文献   

5.
The Cas9 nuclease from Staphylococcus aureus (SaCas9) holds great potential for use in gene therapy, and variants with increased fidelity have been engineered. However, we find that existing variants have not reached the greatest accuracy to discriminate base mismatches and exhibited much reduced activity when their mutations were grafted onto the KKH mutant of SaCas9 for editing an expanded set of DNA targets. We performed structure-guided combinatorial mutagenesis to re-engineer KKH-SaCas9 with enhanced accuracy. We uncover that introducing a Y239H mutation on KKH-SaCas9’s REC domain substantially reduces off-target edits while retaining high on-target activity when added to a set of mutations on REC and RuvC domains that lessen its interactions with the target DNA strand. The Y239H mutation is modelled to have removed an interaction from the REC domain with the guide RNA backbone in the guide RNA-DNA heteroduplex structure. We further confirmed the greatly improved genome-wide editing accuracy and single-base mismatch discrimination of our engineered variants, named KKH-SaCas9-SAV1 and SAV2, in human cells. In addition to generating broadly useful KKH-SaCas9 variants with unprecedented accuracy, our findings demonstrate the feasibility for multi-domain combinatorial mutagenesis on SaCas9’s DNA- and guide RNA- interacting residues to optimize its editing fidelity.  相似文献   

6.
Dihydroneopterin aldolase (DHNA) catalyzes the conversion of 7,8-dihydroneopterin (DHNP) to 6-hydroxymethyl-7,8-dihydropterin (HP) and the epimerization of DHNP to 7,8-dihydromonopterin (DHMP). Although crystal structures of the enzyme from several microorganisms have been reported, no structural information is available about the critical interactions between DHNA and the trihydroxypropyl moiety of the substrate, which undergoes bond cleavage and formation. Here, we present the structures of Staphylococcus aureus DHNA (SaDHNA) in complex with neopterin (NP, an analog of DHNP) and with monapterin (MP, an analog of DHMP), filling the gap in the structural analysis of the enzyme. In combination with previously reported SaDHNA structures in its ligand-free form (PDB entry 1DHN) and in complex with HP (PDB entry 2DHN), four snapshots for the catalytic center assembly along the reaction pathway can be derived, advancing our knowledge about the molecular mechanism of SaDHNA-catalyzed reactions. An additional step appears to be necessary for the epimerization of DHMP to DHNP. Three active site residues (E22, K100, and Y54) function coordinately during catalysis: together, they organize the catalytic center assembly, and individually, each plays a central role at different stages of the catalytic cycle.  相似文献   

7.
Grb14, a member of the Grb7 adaptor protein family, possesses a pleckstrin homology (PH) domain, a C-terminal Src homology-2 (SH2) domain, and an intervening stretch of approximately 45 residues known as the BPS region, which is unique to this adaptor family. Previous studies have demonstrated that Grb14 is a tissue-specific negative regulator of insulin receptor signaling and that inhibition is mediated by the BPS region. We have determined the crystal structure of the Grb14 BPS region in complex with the tyrosine kinase domain of the insulin receptor. The structure reveals that the N-terminal portion of the BPS region binds as a pseudosubstrate inhibitor in the substrate peptide binding groove of the kinase. Together with the crystal structure of the SH2 domain, we present a model for the interaction of Grb14 with the insulin receptor, which indicates how Grb14 functions as a selective protein inhibitor of insulin signaling.  相似文献   

8.
The aquaporin family of channels was defined based on the inhibition of water transport by mercurial compounds. Despite the important role of mercurials, little is known about the structural changes involved upon mercury binding leading to channel inhibition. To elucidate the mechanism we designed a mutant, T183C, of aquaporin Z (AqpZ) patterned after the known mercury-sensitive site of aquaporin 1 (AQP1) and determined the X-ray crystal structures of the unbound and mercury blocked states. Superposition of the two structures shows no conformational rearrangement upon mercury binding. In the blocked structure, there are two mercury sites, one bound to Cys183 and occluding the pore, and a second, also bound to the same cysteine but found buried in an interstitial cavity. To test the mechanism of blockade we designed a different mutant, L170C, to produce a more effective mercury block at the pore site. In a dose-response inhibition study, this mutant was 20 times more sensitive to mercury than wild-type AqpZ and four times more sensitive than T183C. The X-ray structure of L170C shows four mercury atoms at, or near, the pore site defined in the T183C structure and no structural change upon mercury binding. Thus, we elucidate a steric inhibition mechanism for this important class of channels by mercury.  相似文献   

9.
10.
11.
Bacteria were thought to be devoid of tyrosine-phosphorylating enzymes. However, several tyrosine kinases without similarity to their eukaryotic counterparts have recently been identified in bacteria. They are involved in many physiological processes, but their accurate functions remain poorly understood due to slow progress in their structural characterization. They have been best characterized as copolymerases involved in the synthesis and export of extracellular polysaccharides. These compounds play critical roles in the virulence of pathogenic bacteria, and bacterial tyrosine kinases can thus be considered as potential therapeutic targets. Here, we present the crystal structures of the phosphorylated and unphosphorylated states of the tyrosine kinase CapB from the human pathogen Staphylococcus aureus together with the activator domain of its cognate transmembrane modulator CapA. This first high-resolution structure of a bacterial tyrosine kinase reveals a 230-kDa ring-shaped octamer that dissociates upon intermolecular autophosphorylation. These observations provide a molecular basis for the regulation mechanism of the bacterial tyrosine kinases and give insights into their copolymerase function.  相似文献   

12.
Structural basis of caspase-7 inhibition by XIAP   总被引:33,自引:0,他引:33  
Chai J  Shiozaki E  Srinivasula SM  Wu Q  Datta P  Alnemri ES  Shi Y  Dataa P 《Cell》2001,104(5):769-780
The inhibitor of apoptosis (IAP) proteins suppress cell death by inhibiting the catalytic activity of caspases. Here we present the crystal structure of caspase-7 in complex with a potent inhibitory fragment from XIAP at 2.45 A resolution. An 18-residue XIAP peptide binds the catalytic groove of caspase-7, making extensive contacts to the residues that are essential for its catalytic activity. Strikingly, despite a reversal of relative orientation, a subset of interactions between caspase-7 and XIAP closely resemble those between caspase-7 and its tetrapeptide inhibitor DEVD-CHO. Our biochemical and structural analyses reveal that the BIR domains are dispensable for the inhibition of caspase-3 and -7. This study provides a structural basis for the design of the next-generation caspase inhibitors.  相似文献   

13.
14.
15.
Acetylcholinesterase plays a crucial role in the metabolism of neurotransmitter, acetylcholine. Inhibition of Torpedo californica acetylcholinesterase by triterpenoidal alkaloids buxamine-B (1) and buxamine-C (2) has been studied by enzyme kinetics and molecular docking experiments. Buxamine-C (2) has been found to be 20-fold potent than buxamine-B (1) (Ki = 5.5 and 110 microM, respectively). The ligand docking experiments predicted that the cyclopentanophenanthrene skeleton of both inhibitors properly fits into the aromatic gorge of the enzyme. The C-3 and C-20 amino groups of both alkaloids mimic the well-known bis-quaternary ammonium inhibitors such as decamethonium and interact with Trp84 and Trp279 residues of the enzyme, respectively. The C-3 amino group in buxamine-C (2) appears to be better positioned at the bottom of the aromatic gorge and thus seems to be crucial for the inhibitory activity of such inhibitors.  相似文献   

16.
The multiple antibiotic resistance of methicillin-resistant strains of Staphylococcus aureus (MRSA) has become a major clinical problem worldwide. The key determinant of the broad-spectrum beta-lactam resistance in MRSA strains is the penicillin-binding protein 2a (PBP2a). Because of its low affinity for beta-lactams, PBP2a provides transpeptidase activity to allow cell wall synthesis at beta-lactam concentrations that inhibit the beta-lactam-sensitive PBPs normally produced by S. aureus. The crystal structure of a soluble derivative of PBP2a has been determined to 1.8 A resolution and provides the highest resolution structure for a high molecular mass PBP. Additionally, structures of the acyl-PBP complexes of PBP2a with nitrocefin, penicillin G and methicillin allow, for the first time, a comparison of an apo and acylated resistant PBP. An analysis of the PBP2a active site in these forms reveals the structural basis of its resistance and identifies features in newly developed beta-lactams that are likely important for high affinity binding.  相似文献   

17.
In washed cells of cadmium-sensitive Staphylococcus aureus 17810S oxidizing glutamate, initial Cd2+++ influx via the Mn2+ porter down membrane potential () was fast due to involvement of energy generated by two proton pumps—the respiratory chain and the ATP synthetase complex working in the hydrolytic direction. Such an unusual energy drain for rapid initial Cd2+ influx is suggested to be due to a series of toxic events elicited by Cd2+ accumulation down generated via the redox proton pump: (i) strong inhibition of glutamate oxidation accompanied by a decrease of electrochemical proton gradient ( H +) formation via the respiratory chain, (ii) automatic reversal of ATP synthetase from biosynthetic to hydrolytic mode, which was monitored by a decrease of H +-dependent ATP synthesis, (iii) acceleration of the initial Cd2+ influx down generated the reversed ATP synthetase, the alternative proton pump hydrolyzing endogenous ATP. The primary, cadmium-sensitive targets in strain 17810S seem to be dithiols located in the cytoplasmic glutamate oxidizing system, prior to the membrane-embedded NADH oxidation system. Inhibition by Cd2+ of H +-dependent ATP synthesis and of pH gradient (pH)-linked [14C]glutamate transport is a secondary effect due to cadmium-mediated inhibition of H + generation at the cytoplasmic level. In washed cells of cadmium-resistant S. aureus 17810R oxidizing glutamate, Cd2+ accumulation was prevented due to activity of the plasmid-coded Cd2+ efflux system. Consequently, H +-producing and -requiring processes were not affected by Cd2+.  相似文献   

18.
19.
In this study, we investigated the relationship between carbohydrate metabolism and repression of staphylococcus enterotoxin A (SEA) in Staphylococcus aureus 196E and a pleiotrophic mutant derived from strain 196E. The mutant, designated at strain 196E-MA, lacked a functional phosphoenolpyruvate phosphotransferase system (PTS). The mutant produced acid, under aerobic conditions, from only glucose and glycerol. The parent strain contained an active PTS, and aerobically produced acid from a large number of carbohydrates. Prior growth in glucose led to repression of SEA synthesis in the parent strain; addition to the casamino acids enterotoxin production medium (CAS) led to more severe repression of toxin synthesis. The repression was not related to pH decreases produced by glucose metabolism. When S. aureus 196E was grown in the absence of glucose, there was inhibition of toxin production as glucose level was increased in CAS. The inhibition was related to pH decrease and was unlike the repression observed with glucose-grown strain 196E. The inhibition of SEA synthesis in mutant strain 196E-MA was approximately the same in cells grown with or without glucose and was pH related. Repression of SEA synthesis similar to that seen with glucose-grown S. aureus 196E could not be demonstrated in the mutant. In addition, glucose-grown S. aureus 196E neither synthesized -galactosidase nor showed respiratory activity with certain tricarboxylic acid (TCA) cycle compounds. Glucose-grown strain 196E-MA, however, did not show supressed respiration of TCA cycle compounds; -galactosidase was not synthesized because the mutant lacked a functional PTS. Cyclic adenosine-3, 5-monophosphate did not reverse the repression by glucose of SEA or -galactosidase synthesis in glucose-grown S. aureus 196E. An active PTS appears to be necessary to demonstrate glucose (catabolite) repression in S. aureus.Abbreviations SEA staphylococcal enterotoxin A - SEB staphylococcal enterotoxin B - SEC staphylococcal enterotoxin C - PTS phosphoenolpyruvate phosphotransferase system - CAS casamino acids salts medium - TCA tricarboxylic acid cycle  相似文献   

20.
The aim of the study was to evaluate an influence of Cd++ on 14C-glucose uptake by two strains of S. aureus resistant and sensitive to cadmium in 0.1 M phosphate buffer, pH 7.0. Uptake of this sugar in both strains is an active process in which energy comes from oxidation of endogenous substrates, what was shown in aerobic condition, anaerobic condition at temperatures of 37 degrees C and 4 degrees C, and with p-CMB and CCCP. In the resistant strains Cd++ at 10 microM concentration did not inhibit endogenous respiration, 14C-glucose uptake and its oxidation. This is due to presence of energy-dependent system of 2H+/Cd++ antiport coded by cadA genes located on penicillinase pII17810 plasmid, which eliminated Cd++ from bacterial cell. In the case of plasmid free variant deprived of this system, Cd++ is retained in cytoplasm and blocks endogenous respiration uptake, and oxidation of glucose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号