首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dong  Zhanqi  Qin  Qi  Hu  Zhigang  Chen  Peng  Huang  Liang  Zhang  Xinling  Tian  Ting  Lu  Cheng  Pan  Minhui 《中国病毒学》2019,34(4):444-453
Recently the developed single guide(sg)RNA-guided clustered regularly interspaced short palindromic repeats/associated protein 9 nuclease(CRISPR/Cas9) technology has opened a new avenue for antiviral therapy. The CRISPR/Cas9 system uniquely allows targeting of multiple genome sites simultaneously. However, there are relatively few applications of CRISPR/Cas9 multigene editing to target insect viruses. To address the need for sustained delivery of a multiplex CRISPR/Cas9-based genome-editing vehicle against insect viruses, we developed a one-vector(pSL1180-Cas9-U6-sgRNA) system that expresses multiple sgRNA and Cas9 protein to excise Bombyx mori nucleopolyhedrovirus(BmNPV) in insect cells.We screened the immediate-early-1 gene(ie-1), the major envelope glycoprotein gene(gp64), and the late expression factor gene(lef-11), and identified multiple sgRNA editing sites through flow cytometry and viral DNA replication analysis. In addition, we constructed a multiplex editing vector(PSL1180-Cas9-sgIE1-sgLEF11-sgGP64, sgMultiple) to efficiently regulate multiplex gene-editing and inhibit BmNPV replication after viral infection. This is the first report of the application of a multiplex CRISPR/Cas9 system to inhibit insect virus replication. This multiplex system can significantly enhance the potential of CRISPR/Cas9-based multiplex genome engineering in insect virus.  相似文献   

2.
CRISPR/Cas系统广泛存在于细菌及古生菌中, 是机体长期进化形成的RNA指导的降解入侵病毒或噬菌体DNA的适应性免疫系统。对Ⅱ型CRISPR/Cas系统的改造使其成为继锌指核酸酶(ZFNs)和TALE核酸酶(TALENs)以来的另一种对基因组进行高效定点修饰的新技术, 与ZFNs和TALENs相比, CRISPR/Cas系统更简单, 并且更容易操作。文章重点介绍了Ⅱ型CRISPR/Cas系统的基本结构、作用原理及这一技术在基因组定点修饰中的应用, 剖析了该技术可能存在的问题, 展望了CRISPR/Cas系统的应用前景, 为开展这一领域的研究工作提供参考。  相似文献   

3.
Li  Lina  Duan  Canxing  Weng  Jianfeng  Qi  Xiantao  Liu  Changlin  Li  Xinhai  Zhu  Jinjie  Xie  Chuanxiao 《中国科学:生命科学英文版》2022,65(7):1456-1465

For some Cas nucleases, trans-cleavage activity triggered by CRISPR/Cas-mediated cis-cleavage upon target nucleic acid recognition has been explored for diagnostic detection. Portable single and multiplex nucleic acid-based detection is needed for crop pathogen management in agriculture. Here, we harnessed and characterized RfxCas13d as an additional CRISPR/Cas nucleic acid detection tool. We systematically characterized AsCas12a, LbCas12a, LwaCas13a, and RfxCas13d combined with isothermal amplification to develop a CRISPR/Cas nucleic acid-based tool for single or multiplex pathogen detection. Our data indicated that sufficient detection sensitivity was achieved with just a few copies of DNA/RNA targets as input. Using this tool, we successfully detected DNA from Fusarium graminearum and Fusarium verticillioides and RNA from rice black-streaked dwarf virus in crude extracts prepared in the field. Our method, from sample preparation to result readout, could be rapidly and easily deployed in the field. This system could be extended to other crop pathogens, including those that currently lack a detection method and have metabolite profiles that make detection challenging. This nucleic acid detection system could also be used for single-nucleotide polymorphism genotyping, transgene detection, and qualitative detection of gene expression in the field.

  相似文献   

4.
Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)-based technology has revolutionized the field of biomedicine with broad applications in genome editing, therapeutics and diagnostics. While a majority of applications involve the RNA-guided site-specific DNA or RNA cleavage by CRISPR enzymes, recent successes in nucleic acid detection rely on their collateral and non-specific cleavage activated by viral DNA or RNA. Ranging in enzyme composition, the mechanism for distinguishing self- from foreign-nucleic acids, the usage of second messengers, and enzymology, the CRISPR enzymes provide a diverse set of diagnosis tools in further innovations. Structural biology plays an important role in elucidating the mechanisms of these CRISPR enzymes. Here we summarize and compare structures of three types of CRISPR enzymes used in nucleic acid detection captured in their respective functional forms and illustrate the current understanding of their activation mechanism.  相似文献   

5.
Recently, CRISPR‐Cas (clustered, regularly interspaced short palindromic repeats–CRISPR‐associated proteins) system has been used to produce plants resistant to DNA virus infections. However, there is no RNA virus control method in plants that uses CRISPR‐Cas system to target the viral genome directly. Here, we reprogrammed the CRISPR‐Cas9 system from Francisella novicida to confer molecular immunity against RNA viruses in Nicotiana benthamiana and Arabidopsis plants. Plants expressing FnCas9 and sgRNA specific for the cucumber mosaic virus (CMV) or tobacco mosaic virus (TMV) exhibited significantly attenuated virus infection symptoms and reduced viral RNA accumulation. Furthermore, in the transgenic virus‐targeting plants, the resistance was inheritable and the progenies showed significantly less virus accumulation. These data reveal that the CRISPR/Cas9 system can be used to produce plant that stable resistant to RNA viruses, thereby broadening the use of such technology for virus control in agricultural field.  相似文献   

6.
Prokaryotic adaptive immune systems use Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) and CRISPR-associated (Cas) proteins for RNA-guided cleavage of foreign genetic elements. The focus of this review, Type VI CRISPR–Cas systems, contain a single protein, Cas13 (formerly C2c2) that when assembled with a CRISPR RNA (crRNA) forms a crRNA-guided RNA-targeting effector complex. Type VI CRISPR–Cas systems can be divided into four subtypes (A–D) based on Cas13 phylogeny. All Cas13 proteins studied to date possess two enzymatically distinct ribonuclease activities that are required for optimal interference. One RNase is responsible for pre-crRNA processing to form mature Type VI interference complexes, while the other RNase activity provided by the two Higher Eukaryotes and Prokaryotes Nucleotide-binding (HEPN) domains, is required for degradation of target-RNA during viral interference. In this review, I will compare and contrast what is known about the molecular architecture and behavior of Type VI (A–D) CRISPR–Cas13 interference complexes, how this allows them to carry out their RNA-targeting function, how Type VI accessory proteins are able to modulate Cas13 activity, and how together all of these features have led to the rapid development of a range of RNA-targeting applications. Throughout I will also discuss some of the outstanding questions regarding Cas13's molecular behavior, and its role in bacterial adaptive immunity and RNA-targeting applications.  相似文献   

7.
CRISPR (clustered regularly interspaced short palindromic repeats), an ancient defense mechanism used by prokaryotes to cleave nucleic acids from invading viruses and plasmids, is currently being harnessed by researchers worldwide to develop new point-of-need diagnostics. In CRISPR diagnostics, a CRISPR RNA (crRNA) containing a “spacer” sequence that specifically complements with the target nucleic acid sequence guides the activation of a CRISPR effector protein (Cas13a, Cas12a or Cas12b), leading to collateral cleavage of RNA or DNA reporters and enormous signal amplification. CRISPR function can be disrupted by some types of sequence mismatches between the spacer and target, according to previous studies. This poses a potential challenge in the detection of variable targets such as RNA viruses with a high degree of sequence diversity, since mismatches can result from target variations. To cover viral diversity, we propose in this study that during crRNA synthesis mixed nucleotide types (degenerate sequences) can be introduced into the spacer sequence positions corresponding to viral sequence variations. We test this crRNA design strategy in the context of the Cas13a-based SHERLOCK (specific high-sensitivity enzymatic reporter unlocking) technology for detection of Crimean–Congo hemorrhagic fever virus (CCHFV), a biosafety level 4 pathogen with wide geographic distribution and broad sequence variability. The degenerate-sequence CRISPR diagnostic proves functional, sensitive, specific and rapid. It detects within 30–40 minutes 1 copy/μl of viral RNA from CCHFV strains representing all clades, and from more recently identified strains with new mutations in the CRISPR target region. Also importantly, it shows no cross-reactivity with a variety of CCHFV-related viruses. This proof-of-concept study demonstrates that the degenerate sequence-based CRISPR diagnostic is a promising tool of choice for effective detection of highly variable viral pathogens.  相似文献   

8.
CRISPR-Cas9基因编辑技术在病毒感染疾病治疗中的应用   总被引:1,自引:0,他引:1  
殷利眷  胡斯奇  郭斐 《遗传》2015,37(5):412-418
CRISPR-Cas9基因编辑技术是基于细菌或古细菌CRISPR介导的获得性免疫系统衍生而来,由一段RNA通过碱基互补配对识别DNA,指导Cas9核酸酶切割识别的双链DNA,诱发同源重组或非同源末端链接,进而实现在目的DNA上进行编辑。病毒通过特异的受体侵染细胞,其基因组在细胞内发生复制、转录、翻译等过程完成其生活周期,某些DNA病毒或逆转录病毒基因组会整合到宿主基因组中。基因治疗是病毒感染疾病治疗的新趋势。因此,基因编辑技术在持续感染的病毒或潜伏感染病毒疾病治疗中具有重大的潜在意义。文章主要从CRISPR-Cas9作用机制以及在病毒感染疾病治疗中的应用等方面进行了综述。  相似文献   

9.
Hepatitis B virus(HBV) infection remains a major global health problem because current therapies rarely eliminate HBV infections to achieve a complete cure. A different treatment paradigm to effectively clear HBV infection and eradicate latent viral reservoirs is urgently required. In recent years, the development of a new RNA-guided gene-editing tool, the CRISPR/Cas9(clustered regularly interspaced short palindromic repeats/CRISPR-associated nuclease 9) system, has greatly facilitated site-specific mutagenesis and represents a very promising potential therapeutic tool for diseases, including for eradication of invasive pathogens such as HBV. Here, we review recent advances in the use of CRISPR/Cas9, which is designed to target HBV specific DNA sequences to inhibit HBV replication and to induce viral genome mutation, in cell lines or animal models. Advantages, limitations and possible solutions, and proposed directions for future research are discussed to highlight the opportunities and challenges of CRISPR/Cas9 as a new, potentially curative therapy for chronic hepatitis B infection.  相似文献   

10.
The 2′,5′-oligoadenylate (2-5A) system is an RNA degradation pathway which plays an important role in the antipicornavirus effects of interferon (IFN). RNase L, the terminal component of the 2-5A system, is thought to mediate this antiviral activity through the degradation of viral RNA; however, the capacity of RNase L to selectively target viral RNA has not been carefully examined in intact cells. Therefore, the mechanism of RNase L-mediated antiviral activity was investigated following encephalomyocarditis virus (EMCV) infection of cell lines in which expression of transfected RNase L was induced or endogenous RNase L activity was inhibited. RNase L induction markedly enhanced the anti-EMCV activity of IFN via a reduction in EMCV RNA. Inhibition of endogenous RNase L activity inhibited this reduction in viral RNA. RNase L had no effect on IFN-mediated protection from vesicular stomatitis virus. RNase L induction reduced the rate of EMCV RNA synthesis, suggesting that RNase L may target viral RNAs involved in replication early in the virus life cycle. The RNase L-mediated reduction in viral RNA occurred in the absence of detectable effects on specific cellular mRNAs and without any global alteration in the cellular RNA profile. Extensive rRNA cleavage, indicative of high levels of 2-5A, was not observed in RNase L-induced, EMCV-infected cells; however, transfection of 2-5A into cells resulted in widespread degradation of cellular RNAs. These findings provide the first demonstration of the selective capacity of RNase L in intact cells and link this selective activity to cellular levels of 2-5A.  相似文献   

11.
12.
13.
张道微  张超凡  董芳  黄艳岚  张亚  周虹 《遗传》2016,38(9):811-820
随着CRISPR/Cas9系统在基因组编辑技术上的开发和完善,CRISPR/Cas9系统在应用于动物病毒感染性疾病防治并取得相当成效的同时,也逐步被应用到对植物病毒基因组进行高效靶向修饰的研究中。CRISPR/Cas9系统对基因组靶向修饰作用不仅实现了对植物DNA病毒基因组序列的编辑,还展示了其有效作用于植物RNA病毒基因组的潜力,同时CRISPR/Cas9系统还能在基因转录和转录后调控水平发挥作用,说明该系统具有通过多种途径调控植物病毒复制的潜能。相对其他植物病毒病防治策略,该系统对病毒基因组的编辑更精准、对基因表达的调控更稳定,对病毒病的抗性也更为广谱。本文将CRISPR/Cas9系统与其他植物病毒病防治策略进行了比较,概述了该系统在培育植物抗病毒病新种质中的优势,分析了其具体应用在该领域中面临的主要问题,讨论了该系统在培育抗病毒植物新种质应用中的发展趋势。  相似文献   

14.
15.
16.
17.
CRISPR-Cas12a (Cpf1) is a bacterial RNA-guided nuclease that cuts double-stranded DNA (dsDNA) at sites specified by a CRISPR RNA (crRNA) guide. Additional activities have been ascribed to this enzyme in vitro: site-specific (cis) single-stranded DNA (ssDNA) cleavage and indiscriminate (trans) degradation of ssDNA, RNA, and dsDNA after activation by a complementary target. The ability of Cas12a to cleave nucleic acids indiscriminately has been harnessed for many applications, including diagnostics, but it remains unknown if it contributes to bacterial immunity. Here, we provide evidence that cleavage of ssDNA in cis or in trans by Cas12a is insufficient to impact immunity. Using LbCas12a expressed in either Pseudomonas aeruginosa or Escherichia coli, we observed that cleavage of dsDNA targets did not elicit cell death or dormancy, suggesting insignificant levels of collateral damage against host RNA or DNA. Canonical immunity against invasive dsDNA also had no impact on the replicative fitness of co-infecting dsDNA phage, ssDNA phage or plasmid in trans. Lastly, crRNAs complementary to invasive ssDNA did not provide protection, suggesting that ssDNA cleavage does not occur in vivo or is insignificant. Overall, these results suggest that CRISPR-Cas12a immunity predominantly occurs via canonical targeting of dsDNA, and that the other activities do not significantly impact infection outcomes.  相似文献   

18.
19.
近年来,CRISPR/Cas系统因其效率高、靶向性强、易操作等优势,已被广泛应用于多种病毒研究中。本文首先简单介绍了CRISPR/Cas系统的分类,并比较了Cas9和Cas12a与Cas13a的特点;其次重点介绍了CRISPR/Cas9通过靶向破坏病毒基因组,或编辑宿主关于病毒生命周期的关键因子的策略在抗病毒方面的各种应用,CRISPR/Cas13a采用靶向破坏病毒基因组方法在抗病毒中的应用,以及CRISPR/Cas12a和CRISPR/Cas13a在病毒基因检测中的应用。最后讨论了CRISPR/Cas在病毒研究中面临的挑战,并讨论了CRISPR/Cas12a作为抗病毒工具的潜在应用前景。由于CRISPR/Cas系统自身的优势,预计该系统将会给病毒相关的疾病诊断和控制带来革命性的变化。  相似文献   

20.
Clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (Cas) systems, especially type II (Cas9) systems, have been widely used in gene/genome targeting. Modifications of Cas9 enable these systems to become platforms for precise DNA manipulations. However, the utilization of CRISPR-Cas systems in RNA targeting remains preliminary. The discovery of type VI CRISPR-Cas systems (Cas13) shed light on RNA-guided RNA targeting. Cas13d, the smallest Cas13 protein, with a length of only ~930 amino acids, is a promising platform for RNA targeting compatible with viral delivery systems. Much effort has also been made to develop Cas9, Cas13a and Cas13b applications for RNA-guided RNA targeting. The discovery of new RNA-targeting CRISPR-Cas systems as well as the development of RNA-targeting platforms with Cas9 and Cas13 will promote RNA-targeting technology substantially. Here, we review new advances in RNA-targeting CRISPR-Cas systems as well as advances in applications of these systems in RNA targeting, tracking and editing. We also compare these Cas protein-based technologies with traditional technologies for RNA targeting, tracking and editing. Finally, we discuss remaining questions and prospects for the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号