首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genomic sequencing was used to localise 5-methylcytosine residues in individual DNA strands of 5S rRNA genes in tobacco. The density of methylation along the sequence was high in both strands, exceeding the average methylation density of the tobacco genome. Besides methylation of CG and CNG sequences, considerable amounts of mC were found in non-symmetrical sites. Among 69 sequenced clones obtained from leaf DNA we did not detect any non-methylated clone, and Southern blot hybridisation analysis also failed to suggest the presence of methylation-free 5S rDNA units in the tobacco genome. Differences were observed among methylation patterns of individual sequenced clones. This heterogeneity reflects either heterogeneity among individual members of 5S rRNA gene cluster or differences among individual cells. Methylation of CNG and non-symmetrical sites can be efficiently reduced by treatment with dihydroxypropyladenine, an inhibitor of S-adenosylhomocysteine hydrolase. Received: 28 January 1998 / Accepted: 29 April 1998  相似文献   

2.
3.
We crossed a male-sterile, Agrobacterium-transformed Nicotiana tabacum plant that contains a silent, hypermethylated T-DNA ipt oncogene with a normal tobacco plant and found that the methylated state of the ipt gene was stably inherited through meiosis in the offspring. However, when tissues of these plants were placed in cell culture, the ipt gene was spontaneously reactivated in a very small fraction of the cells; if 5-azacytidine was added to the culture medium, ipt gene reactivation occurred at high frequency. We analyzed the pattern of DNA methylation in a region spanning the ipt gene in a line that does not express the ipt gene, in five derivatives of this line that reexpressed the ipt gene either spontaneously or after 5-azacytidine treatment, and in tissues of a sibling of this line that reexpressed ipt spontaneously. We found that the ipt locus was highly methylated in the unexpressed state but that spontaneous or 5-azacytidine-induced reexpression always resulted in extensive demethylation of a region including 5' upstream, coding, and 3' downstream regions of the ipt gene. The role of DNA methylation in gene regulation in this system is discussed.  相似文献   

4.
5.
Genome-wide DNA methylation patterns are frequently deregulated in cancer. There is considerable interest in targeting the methylation machinery in tumor cells using nucleoside analogs of cytosine, such as 5-aza-2′-deoxycytidine (5-azadC). 5-azadC exerts its antitumor effects by reactivation of aberrantly hypermethylated growth regulatory genes and cytoxicity resulting from DNA damage. We sought to better characterize the DNA damage response of tumor cells to 5-azadC and the role of DNA methyltransferases 1 and 3B (DNMT1 and DNMT3B, respectively) in modulating this process. We demonstrate that 5-azadC treatment results in growth inhibition and G2 arrest—hallmarks of a DNA damage response. 5-azadC treatment led to formation of DNA double-strand breaks, as monitored by formation of γ-H2AX foci and comet assay, in an ATM (ataxia-telangiectasia mutated)-dependent manner, and this damage was repaired following drug removal. Further analysis revealed activation of key strand break repair proteins including ATM, ATR (ATM-Rad3-related), checkpoint kinase 1 (CHK1), BRCA1, NBS1, and RAD51 by Western blotting and immunofluorescence. Significantly, DNMT1-deficient cells demonstrated profound defects in these responses, including complete lack of γ-H2AX induction and blunted p53 and CHK1 activation, while DNMT3B-deficient cells generally showed mild defects. We identified a novel interaction between DNMT1 and checkpoint kinase CHK1 and showed that the defective damage response in DNMT1-deficient cells is at least in part due to altered CHK1 subcellular localization. This study therefore greatly enhances our understanding of the mechanisms underlying 5-azadC cytotoxicity and reveals novel functions for DNMT1 as a component of the cellular response to DNA damage, which may help optimize patient responses to this agent in the future.  相似文献   

6.
In one of 30 transgenic tobacco (Nicotiana tabacum) plants, the expression of an introduced β-glucuronidase (GUS) gene driven by the cauliflower mosaic virus 35S promoter, was found to be repressed as the plant matured, whereas the endogenous GUS activity was unaffected. Plants grown from seeds or regenerated from leaf discs derived from this plant showed a similar temporal pattern of expression. Suspension-cultured cells established from nonexpressing leaves did not express the introduced gene. In these cells, the silent gene could be reactivated by treatment for 5 or 10 days with 5-azacytidine. Overall, demethylation of the genome preceded recovery of the enzyme activity. The increase in the fraction of reactivated cells progressed in two phases. Up to 8 weeks after starting the 5-azacytidine treatment, approximately 2 to 4% of the cells were expressing GUS, followed by a dramatic increase of GUS-expressing cells. Thirteen weeks after starting the 5-azacytidine treatment, the fraction of GUS-expressing cells amounted to 80%. At this time, the original overall level of DNA methylation was reestablished. The degree of DNA demethylation, as well as the magnitude of reactivation, was dependent on the duration of the 5-azacytidine treatment. These results demonstrate that DNA methylation appears to be involved in the regulation of the introduced GUS gene and that this development-dependent pattern of expression can be inherited.  相似文献   

7.
DNA methylation regulates gene expression throughout development and in a wide range of pathologies such as cancer and neurological disorders. Pathways controlling the dynamic levels and targets of methylation are known to be disrupted by chemicals and are therefore of great interest in both prevention and clinical contexts. Benzene and its metabolite hydroquinone have been shown to lead to decreased levels of DNA methylation, although the mechanism is not known. This study employs a cell culture model to investigate the mechanism of hydroquinone-mediated changes in DNA methylation. Exposures that do not affect HEK293 cell viability led to genomic and methylated reporter DNA demethylation. Hydroquinone caused reactivation of a methylated reporter plasmid that was prevented by the addition of N-acetylcysteine. Hydroquinone also caused an increase in Ten Eleven Translocation 1 activity and global levels of 5-hydroxymethylcytosine. 5-Hydroxymethylcytosine was found enriched at LINE-1 prior to a decrease in both 5-hydroxymethylcytosine and 5-methylcytosine. Ten Eleven Translocation-1 knockdown decreased 5-hydroxymethylcytosine formation following hydroquinone exposure as well as the induction of glutamate-cysteine ligase catalytic subunit and 14-3-3σ. Finally, Ten Eleven Translocation 1 knockdown decreased the percentage of cells accumulating in G2+M following hydroquinone exposure, indicating that it may have a role in cell cycle changes in response to toxicants. This work demonstrates that hydroquinone exposure leads to active and functional DNA demethylation in HEK293 cells in a mechanism involving reactive oxygen species and Ten Eleven Translocation 1 5-methylcytosine dioxygenase.  相似文献   

8.
Removal of the somatic DNA methylation pattern from donor cells and remodeling of embryonic status have been suggested as integral processes for successful nuclear transfer (NT) reprogramming. This study has investigated the effects of 5-azacytidine (5-azaC), a DNA methylation inhibitor, on global methylation changes in porcine fetal fibroblasts (PFF); this may improve NT attributable to the potential reprogramming of the methyl groups. PFF in 5th passage cultures were treated with 0, 0.5, 1.0, 2.0, and 3.0 μM 5-azaC for 96 h; 5-azaC inhibited the growth at all tested concentrations. At the higher concentrations of 5-azaC used, cells appeared to exhibit morphological changes and to become apoptotic as observed by TUNEL assay. Thus, cells were negatively affected by 5-azaC. Differences in cellular ploidy were also observed at higher concentrations. Analysis showed no considerable changes in the proportion of cells at the G1-phase of the cell cycle with 5-azaC concentrations. The fractional part of the methylated DNA of these cells was significantly reduced by 5-azaC treatment. Confocal microscopy confirmed the inhibition of methylation levels in PFF with increased concentrations of 5-azaC. Exposure to 5-azaC altered the expression of genes involved in imprinting (IGF2) or pro-apoptosis (BAX), whereas there was a reduction in the expression of the main enzyme responsible for replicating the DNA methylation pattern (DNMT1) and anti-apoptosis (BCL2L1). Therefore, 5-azaC induces a relative reduction in methylation in PFF, and cells treated with 0.5 μM 5-azaC may have enhanced potential for porcine NT.The financial support of BioGreen 21 (grant no. 100052004002000) and KOSEF (grant no. R05-2004-000-10702-0) in Korea is gratefully acknowledged.  相似文献   

9.
Nonviral episomal vectors present attractive alternative vehicles for gene therapy applications. Previously, we have established a new type of nonviral episomal vector-mediated by the characteristic motifs of matrix attachment regions (MARs), which is driven by the cytomegalovirus (CMV) promoter. However, the CMV promoter is intrinsically susceptible to silencing, resulting in declined productivity during long-term culture. In this study, Chinese hamster ovary (CHO) cells and DNA methyltransferase-deficient (Dnmt3a-deficient) CHO cells were transfected with plasmid-mediated by MAR, or CHO cells were treated with the DNA methylation inhibitor 5-Aza-2′-deoxycytidine. Flow cytometry, plasmid rescue experiments, fluorescence in-situ hybridization (FISH), and bisulfite sequencing were performed to observe transgene expression, its state of existence, and the CpG methylation level of the CMV promoter. The results indicated that all DNA methylation inhibitor and methyltransferase deficient cells could increase transgene expression levels and stability in the presence or absence of selection pressure after a 60-generation culture. Plasmid rescue assay and FISH analysis showed that the vector still existed episomally after long-time culture. Moreover, a relatively lower CMV promoter methylation level was observed in Dnmt3a-deficient cell lines and CHO cells treated with 5-Aza-2′-deoxycytidine. In addition, Dnmt3a-deficient cells were superior to the DNA methylation inhibitor treatment regarding the transgene expression and long-term stability. Our study provides the first evidence that lower DNA methyltransferase can enhance expression level and stability of transgenes mediated by episomal vectors in transfected CHO cells.  相似文献   

10.
Cytomegalovirus (CMV) immediate early promoter is a powerful promoter frequently used for driving the expression of transgenes in mammalian cells. However, this promoter gradually becomes silenced in stably transfected cells. We employed Chinese Hamster Ovary (CHO) and human pancreatic cancer (Panc 1) cells stably tansfected with three glycogenes driven by a CMV promoter to study the activation of silenced glycogenes. We found that butyrate, tricostatin A (TSA), and 5-aza-2-deoxycytidine (5-Aza-dC) can activate these CMV-driven glycogenes. The increase in mRNA and protein of a glycogene occurred 8–10 h after butyrate treatment, suggesting an indirect effect of butyrate in the activation of the transgene. The enhanced expression of the trangenes by butyrate and TSA, known inhibitors of histone deacetylase, was independent of the transgene or cell type. However, the transgene can be activated by these two agents in only a fraction of the cells derived from a single clone, suggesting that inactivation of histone deacetylase can only partially explain silencing of the transgenes. Combination treatment of one or both agents with 5-Aza-dC, a known inhibitor of DNA methylase, resulted in a synergistic activation of the transgene, suggesting a cross-talk between histone acetylation and DNA demethylation. Understanding the mechanisms of the inactivation and reactivation of CMV promoter-controlled transgenes should help develop an effective strategy to fully activate the CMV promoter-controlled therapeutic genes silenced by the host cells. Published in 2005.  相似文献   

11.
12.
Summary The survival of UV-irradiated cholera phage e5 was found to increase when the host cells, Vibrio cholerae MAK757, were exposed to a low dose of UV irradiation before phage infection (Weigle reactivation), indicating the existence of a UV-inducible DNA repair pathway (SOS repair) in V. cholerae MAK757. The induction signal generated by UV irradiation was transient in nature and lasted about 20–30 min at 37°C. Maximal weigle reactivation of the phage was obtained when the host cells were irradiated with a UV dose of 16 J/m2. V. cholerae MAK757 was also found to possess efficient photoreactivation and host cell reactivation of UV-damaged DNA in phage e5.  相似文献   

13.
The formation of three oxidative DNA 5-methylcytosine (5mC) modifications (oxi-mCs)—5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC)—by the TET/JBP family of dioxygenases prompted intensive studies of their functional roles in mammalian cells. However, the functional interplay of these less abundant modified nucleotides in other eukaryotic lineages remains poorly understood. We carried out a systematic study of the content and distribution of oxi-mCs in the DNA and RNA of the basidiomycetes Laccaria bicolor and Coprinopsis cinerea, which are established models to study DNA methylation and developmental and symbiotic processes. Quantitative liquid chromatography–tandem mass spectrometry revealed persistent but uneven occurrences of 5hmC, 5fC and 5caC in the DNA and RNA of the two organisms, which could be upregulated by vitamin C. 5caC in RNA (5carC) was predominantly found in non-ribosomal RNA, which potentially includes non-coding, messenger and small RNA species. Genome-wide mapping of 5hmC and 5fC using the single CG analysis techniques hmTOP-seq and foTOP-seq pointed at involvement of oxi-mCs in the regulation of gene expression and silencing of transposable elements. The implicated diverse roles of 5mC and oxi-mCs in the two fungi highlight the epigenetic importance of the latter modifications, which are often neglected in standard whole-genome bisulfite analyses.  相似文献   

14.
Transgenic technology has greatly facilitated our understanding of gene function, producing pharmaceutical proteins, and generating models for the study of human diseases. However, epigenetic silencing is still the most major limitation. In this study, we employed DNA methyltransferase inhibitor 5-Aza-2'-deoxycytidine (5-Aza-dC) and histone deacetylase inhibitor Trichostatin A (TSA) to study the reactivation of silenced green fluorescent protein (GFP) transgene driven by the cytomegalovirus (CMV) promoter in three fibroblast cell lines from transgenic pigs (tPFs). Analysis showed that porcine fetal fibroblasts (PFF) treated with 0.5 μM 5-Aza-dC for 48 h or 0.25 μM TSA for 24 h had no significantly relevant deaths and no considerably morphological changes. We observed that transgene underwent progressive silencing in a long time course of culture in vitro, and this was correlated with DNA hypermethylation and hypoacetylation of specific histone H3 lysines in the CMV promoter region. Moreover, silenced transgene could be reactivated with 5-Aza-dC or/and TSA treatment by reversing the CMV promoter status of histone hypoacetylation and DNA hypermethylation, and the combination treatment with both agents resulted in a synergistic activation of the transgene, suggesting a cross talk between histone acetylation and DNA methylation. Furthermore, the combination treatment once per 10 days could maintain transgene expression in a high level for more than 60 days by sustaining DNA hypomethylation and histone hyperacetylation. In conclusion, our results suggest that methyltransferase inhibitor 5-Aza-dC and histone deacetylase inhibitor TSA can reactivate silenced transgene and maintain transgene expression by induction of DNA hypomethylation and histone hyperacetylation in the promoter region.  相似文献   

15.
Genomic sequencing was used to localise 5-methylcytosine residues in individual DNA strands of 5S rRNA genes in tobacco. The density of methylation along the sequence was high in both strands, exceeding the average methylation density of the tobacco genome. Besides methylation of CG and CNG sequences, considerable amounts of mC were found in non-symmetrical sites. Among 69 sequenced clones obtained from leaf DNA we did not detect any non-methylated clone, and Southern blot hybridisation analysis also failed to suggest the presence of methylation-free 5S rDNA units in the tobacco genome. Differences were observed among methylation patterns of individual sequenced clones. This heterogeneity reflects either heterogeneity among individual members of 5S rRNA gene cluster or differences among individual cells. Methylation of CNG and non-symmetrical sites can be efficiently reduced by treatment with dihydroxypropyladenine, an inhibitor of S-adenosylhomocysteine hydrolase.  相似文献   

16.
DNA hypomethylation of karyoplasts for bovine nuclear transplantation   总被引:1,自引:0,他引:1  
The objective of this research was to evaluate if DNA hypomethylation in cells used as karyoplasts would improve development of bovine nuclear transplantation (NT) embryos. DNA from serum-fed (SF), serum-starved (SS), and 1, or 5 microM 5-azacytidine (5-aza-CR) treated cells was digested with a methylation sensitive enzyme, and evaluated for DNA methylation. A significant reduction in DNA methylation was observed in cells cultured for 48 or 72 hr in SS medium as well as in cells cultured for 48 hr in the presence of 5 microM 5-aza-CR when compared to cells cultured in SF medium. All other comparisons contained no significant differences when compared to controls. When donor cells were cultured in 5-aza-CR, SF, or SS treatment media for 48 hr, no significant difference was observed (P = 0.06) in blastocyst development rates after NT. One embryo produced by donor cells treated with 5-aza-CR established a pregnancy. Four pregnancies resulted from embryos produced by SS donor cell NT and 3 resulted from embryos produced by SF donor cell NT. Supplementation of the donor cell culture medium with 5-aza-CR was not beneficial for increasing blastocyst rate or establishing pregnancy after NT.  相似文献   

17.
Conventional non-viral gene transfer uses bacterial plasmid DNA containing antibiotic resistance genes, cis-acting bacterial sequence elements, and prokaryotic methylation patterns that may adversely affect transgene expression and vector stability in vivo. Here, we describe novel replicative forms of a eukaryotic vector DNA that consist solely of an expression cassette flanked by adeno-associated virus (AAV) inverted terminal repeats. Extensive structural analyses revealed that this AAV-derived vector DNA consists of linear, duplex molecules with covalently closed ends (termed closed-ended, linear duplex, or “CELiD”, DNA). CELiD vectors, produced in Sf9 insect cells, require AAV rep gene expression for amplification. Amounts of CELiD DNA produced from insect cell lines stably transfected with an ITR-flanked transgene exceeded 60 mg per 5×109 Sf9 cells, and 1–15 mg from a comparable number of parental Sf9 cells in which the transgene was introduced via recombinant baculovirus infection. In mice, systemically delivered CELiD DNA resulted in long-term, stable transgene expression in the liver. CELiD vectors represent a novel eukaryotic alternative to bacterial plasmid DNA.  相似文献   

18.
We have optimized conditions for demethylation of the genome and induction of a silent, hypermethylated T-DNA gene (ipt) by 5-azacytosine (5-azaCyt) derivatives in a suspension culture of tobacco cells. In this system, 5-azacytidine (5-azaC) is more effective in causing genomic demethylation and ipt gene induction than 5-azaCyt or 5-azadeoxycytidine (5-azadC). A single treatment with 2.5 M 5-azaC resulted in a maximal level of ipt gene induction without inhibiting cell growth. However, we could not reduce the level of genomic methylation below approximately 2/3 of that found in untreated controls, even after extensive 5-azaC treatment. Furthermore, remethylation of the genome occurred after removal of 5-azaC. The use of 5-azaC as an inducer of silent plant genes is discussed, along with differences in the response of plant and animal genomes to demethylating agents.Abbreviations C cytidine - Cyt cytosine - 5-azaCyt 5-azacytosine - 5-azaC 5-azacytidine - 5-azadC 5-azadeoxycytidine - m5Cyt 5-methylcytosine  相似文献   

19.
J. T. Irelan  E. U. Selker 《Genetics》1997,146(2):509-523
Repeated DNA sequences are frequently mutated during the sexual cycle in Neurospora crassa by a process named repeat-induced point mutation (RIP). RIP is often associated with methylation of cytosine residues in and around the mutated sequences. Here we demonstrate that this methylation can silence a gene located in nearby, unique sequences. A large proportion of strains that had undergone RIP of a linked duplication flanking a single-copy transgene, hph (hygromycin B phosphotransferase), showed partial silencing of hph. These strains were all heavily methylated throughout the single-copy hph sequences and the flanking sequences. Silencing was alleviated by preventing methylation, either by 5-azacytidine (5AC) treatment or by introduction of a mutation (eth-1) known to reduce intracellular levels of S-adenosylmethionine. Silenced strains exhibited spontaneous reactivation of hph at frequencies of 10(-4) to 0.5. Reactivated strains, as well as cells that were treated with 5AC, gave rise to cultures that were hypomethylated and partially hygromycin resistant, indicating that some of the original methylation was propagated by a maintenance mechanism. Gene expression levels were found to be variable within a population of clonally related cells, and this variation was correlated with epigenetically propagated differences in methylation patterns.  相似文献   

20.
Background and Aims Epigenetic regulation plays an important role in the management of plant growth, development and response to stress factors, and several reports have indicated that DNA methylation plays a critical role in seed development and viability. This study examines changes in 5-methylcytosine (m5C) levels in the DNA of seeds during ageing, a process that has important implications for plant conservation and agriculture.Methods Changes in the global level of m5C were measured in mature seeds of oak, Quercus robur. The extent of DNA methylation was measured using a protocol based on two-dimensional thin-layer chromatography. Viability of seeds was determined by germination and seedling emergence tests.Key Results An ageing-related decrease in total m5C during storage of recalcitrant seeds was highly and significantly correlated with a decrease in seed viability, as reflected by a reduction in germination (r = 0·8880) and seedling emergence (r = 0·8269).Conclusions The decrease in viability during ageing of Q. robur seeds is highly correlated with a global decline in the amount of m5C in genomic DNA, and it is possible that this may represent a typical response to ageing and senescence in recalcitrant seeds. Potential mechanisms that drive changes in genomic DNA methylation during ageing are discussed, together with their implications for seed viability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号