首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Characterization of variability patterns in leaf n-alkanes isolated from Sedum lanceolatum field populations indicates little correlation with elevation gradients. Inherent variability is better explained by genetic constitution than phenotypic plasticity, thus suggesting that leaf wax samples isolated from field-collected specimens are suitable for use in elucidation of systematic relationships.  相似文献   

2.
Natural hybrid zones provide opportunities to study a range of evolutionary phenomena from speciation to the genetic basis of fitness-related traits. We show that widespread hybridization has occurred between two neo-tropical stream fishes with partial reproductive isolation. Phylogenetic analyses of mitochondrial sequence data showed that the swordtail fish Xiphophorus birchmanni is monophyletic and that X. malinche is part of an independent monophyletic clade with other species. Using informative single nucleotide polymorphisms in one mitochondrial and three nuclear intron loci, we genotyped 776 specimens collected from twenty-three sites along seven separate stream reaches. Hybrid zones occurred in replicated fashion in all stream reaches along a gradient from high to low elevation. Genotyping revealed substantial variation in parental and hybrid frequencies among localities. Tests of F(IS) and linkage disequilibrium (LD) revealed generally low F(IS) and LD except in five populations where both parental species and hybrids were found suggesting incomplete reproductive isolation. In these locations, heterozygote deficiency and LD were high, which suggests either selection against early generation hybrids or assortative mating. These data lay the foundation to study the adaptive basis of the replicated hybrid zone structure and for future integration of behaviour and genetics to determine the processes that lead to the population genetic patterns observed in these hybrid zones.  相似文献   

3.
裸肉足虫作为联结微生物和大中型土壤动物的重要环节, 在土壤生态系统物质循环和能量流动过程中起着重要作用。为探明裸肉足虫群落沿海拔梯度的分布特征及其主要驱动因子, 作者在长白山北坡选择不同海拔梯度(700 m、1,000 m、1,300 m、1,600 m、1,900 m和2,200 m), 采用最大可能数法对裸肉足虫进行了培养计数, 并采用平板培养、标记、分离再培养的方法进行了分类鉴定, 分析比较了不同海拔梯度裸肉足虫的群落组成和结构特征。结果表明: 长白山北坡裸肉足虫物种丰富, 不同海拔梯度裸肉足虫丰富度指数存在显著差异, 且与土壤酸碱度呈极显著正相关关系。其中林分较为单一的岳桦(Betula ermanii)林带(1,900 m)裸肉足虫丰富度最低, 位于植被交错带的针阔混交林带(1,000 m)裸肉足虫丰富度最大, Shannon-Wiener多样性指数和Pielou均匀度指数在不同海拔梯度间不存在显著性差异, 但变化趋势与丰富度一致。聚类分析结果显示, 1,300 m、1,600 m和1,900 m海拔带以及700 m和2,200 m海拔带裸肉足虫群落组成较为相似。典范对应分析(canonical correspondence analysis, CCA)显示, 裸肉足虫群落组成和结构主要受土壤酸碱度、铵态氮以及碳氮比的影响, 而海拔和土壤含水量对其没有显著影响。综上, 裸肉足虫群落多样性随海拔梯度的增加并未呈现递减或单峰的变化趋势, 土壤的基本理化性质是驱动裸肉足虫群落分布的主要因素; 此外, 地上植被也可能通过凋落物和根系分泌物间接影响裸肉足虫的群落组成和多样性。  相似文献   

4.
  1. Terrestrial plant populations located at the margins of species’ distributions often display reduced sexual reproduction and an increased reliance on asexual reproduction. One hypothesis to explain this phenomenon is that the decline is associated with environmental effects on the energetic costs to produce reproductive organs.
  2. In order to clarify the changing processes of sexual reproduction along an elevational gradient, we investigated the sexual reproductive parameters, such as the number of sporophytes and gametangia, in Racomitrium lanuginosum, a dioicous moss found on Mt. Fuji.
  3. Matured sporophytes were present only below 3,000 m, and the number of sporophytes per shoot tended to be lower at higher elevation habitats. The numbers of male inflorescences per shoot and antheridia per inflorescence and shoot significantly decreased with increasing elevation. In contrast, the numbers of female inflorescences per shoot and archegonia per inflorescence and shoot varied little across elevations.
  4. Synthesis. Our results suggest that the reasons for this limitation are assumed to be limitations in sporophyte development that result in abortion, and the spatial segregation between males and females. Possible reasons for the abortion of sporophytes are the inhibitory effects of low air temperature, a shortened growth period, and winter environmental conditions at higher elevations. Remarkable differences between male and female on various reproductive parameters found in this study are thought to affect the mode of sexual reproduction under the harsh environment. These differences between males and females may be caused by differences in the costs of production and development of gametangia, sensitivity to environmental stressors, and phenological patterns.
  相似文献   

5.
Predicting the response of species to environmental changes is a great and on‐going challenge for ecologists, and this requires a more in‐depth understanding of the importance of biotic interactions and the population structuration in the landscape. Using a reciprocal transplantation experiment, we tested the response of five species to an elevational gradient. This was combined to a neighbour removal treatment to test the importance of local adaptation and biotic interactions. The trait studied was performance measured as survival and biomass. Species response varied along the elevational gradient, but with no consistent pattern. Performance of species was influenced by environmental conditions occurring locally at each site, as well as by positive or negative effects of the surrounding vegetation. Indeed, we observed a shift from competition for biomass to facilitation for survival as a response to the increase in environmental stress occurring in the different sites. Unlike previous studies pointing out an increase of stress along the elevation gradient, our results supported a stress gradient related to water availability, which was not strictly parallel to the elevational gradient. For three of our species, we observed a greater biomass production for the population coming from the site where the species was dominant (central population) compared to population sampled at the limit of the distribution (marginal population). Nevertheless, we did not observe any pattern of local adaptation that could indicate adaptation of populations to a particular habitat. Altogether, our results highlighted the great ability of plant species to cope with environmental changes, with no local adaptation and great variability in response to local conditions. Our study confirms the importance of taking into account biotic interactions and population structure occurring at local scale in the prediction of communities’ responses to global environmental changes.  相似文献   

6.
Aim To document the elevational pattern of epiphyte species richness at the local scale in the tropical Andes with a consistent methodology. Location The northern Bolivian Andes at 350–4000 m above sea level. Methods We surveyed epiphytic vascular plant assemblages in humid forests in (a) single trees located in (b) 90 subplots of 400 m2 each located in (c) 14 plots of 1 ha each. The plots were separated by 100–800 m along the elevational gradient. Results We recorded about 800 epiphyte species in total, with up to 83 species found on a single tree. Species richness peaked at c. 1500 m and declined by c. 65% to 350 m and by c. 99% to 4000 m, while forests on mountain ridges had richness values lowered by c. 30% relative to slope forests at the same elevations. The hump‐shaped richness pattern differed from a null‐model of random species distribution within a bounded domain (the mid‐domain effect) as well as from the pattern of mean annual precipitation by a shift of the diversity peak to lower elevations and by a more pronounced decline of species richness at higher elevations. With the exception of Araceae, which declined almost monotonically, all epiphyte taxa showed hump‐shaped curves, albeit with slightly differing shapes. Orchids and pteridophytes were the most species‐rich epiphytic taxa, but their relative contributions shifted with elevation from a predominance of orchids at low elevations to purely fern‐dominated epiphyte assemblages at 4000 m. Within the pteridophytes, the polygrammoid clade was conspicuously overrepresented in dry or cold environments. Orchids, various small groups (Cyclanthaceae, Ericaceae, Melastomataceae, etc.), and Bromeliaceae (below 1000 m) were mostly restricted to the forest canopy, while Araceae and Pteridophyta were well represented in the forest understorey. Main conclusions Our study confirms the hump‐shaped elevational pattern of vascular epiphyte richness, but the causes of this are still poorly understood. We hypothesize that the decline of richness at high elevations is a result of low temperatures, but the mechanism involved is unknown. The taxon‐specific patterns suggest that some taxa have a phylogenetically determined propensity for survival under extreme conditions (low temperatures, low humidity, and low light levels in the forest interior). The three spatial sampling scales show some different patterns, highlighting the influence of the sampling methodology.  相似文献   

7.
研究群落物种组成和多样性的时空动态对揭示生物多样性的分布规律以及预测全球变化情景下生物多样性的变化趋势具有重要意义。然而,在山地生态系统中,不同海拔梯度的森林群落物种多样性和系统发育多样性如何随着时间尺度的变化仍不清楚。该研究以高黎贡山南段东、西坡海拔梯度(960~2 878 m)森林群落固定监测样带的17个样方为研究对象,基于2004、2008和2013年乔木层(DBH ≥ 5 cm)重调查数据,分析样方内物种组成、物种多样性和系统发育多样性的时空动态变化。结果表明:(1)沿着海拔梯度,物种多样性呈现单峰分布格局,系统发育多样性呈现上升的趋势,系统发育结构呈现聚集到离散或者随机的结构。(2)在时间尺度上,森林乔木层在物种多样性和系统发育多样性上并未发生显著性变化。然而,系统发育结构随着时间的推移呈现更加聚集的趋势。(3)在海拔梯度上,东坡低海拔区域(960~1 381 m)的森林群落样方呈现显著的物种丧失,其植被完全被耕地所替代。其中,诃子(Terminalia chebula)、麻栎(Quercus acutissima)、清香木(Pistacia weinmanniifolia)、枳椇(Hovenia acerba)和假香冬青(Ilex wattii)等为主要的丧失物种。相反,物种获得主要集中在西坡低海拔的样方,群落中丰富度显著增加的物种主要为曼青冈(Cyclobalanopsis oxyodon)、华山矾(Symplocos chinensis)和台湾杉(Taiwania cryptomerioides)等。据此,我们推测高黎贡山海拔梯度森林乔木层的群落结构和多样性的动态变化在中高海拔受群落演替和气候变化的制约,而在低海拔主要受人类活动的影响。该研究结果加深了对高黎贡山亚热带常绿阔叶林植物群落动态变化的认识,也有助于该地区精准保护策略的制定。  相似文献   

8.
Aim In this study, we examine patterns of local and regional ant species richness along three elevational gradients in an arid ecosystem. In addition, we test the hypothesis that changes in ant species richness with elevation are related to elevation‐dependent changes in climate and available area. Location Spring Mountains, Nevada, U.S.A. Methods We used pitfall traps placed at each 100‐m elevational band in three canyons in the Spring Mountains. We compiled climate data from 68 nearby weather stations. We used multiple regression analysis to examine the effects of annual precipitation, average July precipitation, and maximum and minimum July temperature on ant species richness at each elevational band. Results We found that patterns of local ant species richness differed among the three gradients we sampled. Ant species richness increased linearly with elevation along two transects and peaked at mid‐elevation along a third transect. This suggests that patterns of species richness based on data from single transects may not generalize to larger spatial scales. Cluster analysis of community similarity revealed a high‐elevation species assemblage largely distinct from that of lower elevations. Major changes in the identity of ant species present along elevational gradients tended to coincide with changes in the dominant vegetation. Regional species richness, defined here as the total number of unique species within an elevational band in all three gradients combined, tended to increase with increasing elevation. Available area decreased with increasing elevation. Area was therefore correlated negatively with ant species richness and did not explain elevational patterns of ant species richness in the Spring Mountains. Mean July maximum and minimum temperature, July precipitation and annual precipitation combined to explain 80% of the variation in ant species richness. Main conclusions Our results suggest that in arid ecosystems, species richness for some taxa may be highest at high elevations, where lower temperatures and higher precipitation may support higher levels of primary production and cause lower levels of physiological stress.  相似文献   

9.
Alpine ecosystems are among those biomes that are most vulnerable to climate change. Cushion plants are an important life form of alpine ecosystems and will likely play a critical role for the resilience of these habitats to climate change. We studied cushion size distribution and different measures of the compactness of cushions (biomass and rosette density, leaf area index) of the cushion plant, Androsace tapete along an elevational gradient from 4500 to 5200 m a.s.l. in the Nyainqentanglha Mountains of the central Tibetan Plateau. Cushion size distribution, total cover, and compactness of cushions varied substantially along the elevational gradient. At the driest site at low elevation we found the lowest total cushion cover, a particularly high proportion of very small cushions, and the most compact cushions (highest rosette and biomass densities, and leaf area index (LAI) per cushion). Our results indicate that in the semi‐arid Tibetan Plateau water availability is the more important climate factor than temperature affecting cushion plant traits and morphology.  相似文献   

10.
Spatial variation in biodiversity is one of the key pieces of information for the delimitation and prioritisation of protected areas. This information is especially important when the protected area includes different climatic and habitat conditions and communities, such as those along elevational gradients. Here we test whether the megadiverse communities of spiders along an elevational gradient change according to two diversity models – a monotonic decrease or a hump-shaped pattern in species richness. We also measure compositional variation along and within elevations, and test the role of the preference of microhabitat (vegetation strata) and the functional (guild) structure of species in the changes. We sampled multiple spider communities using standardised and optimised sampling in three forest types, each at a different elevation along a climatic gradient. The elevational transects were at increasing horizontal distances (between 0.1 and 175 km) in the Udzungwa Mountains, Eastern Arc Mountains, Tanzania. The number of species was similar between plots and forest types, and therefore the pattern did not match either diversity model. However, species composition changed significantly with a gradual change along elevations. Although the number of species per microhabitat and guild also remained similar across elevations, the number of individuals varied, e.g. at higher elevations low canopy vegetation was inhabited by more spiders, and the spiders belonging to guilds that typically use this microhabitat were more abundant. Our findings reflex the complex effects of habitat-microhabitat interactions on spider communities at the individual, species and guild levels. If we aim to understand and conserve some of the most diverse communities in the world, researchers and managers may need to place more attention to small scale and microhabitat characteristics upon which communities depend.  相似文献   

11.
Tropical mountain forests provide an exceptional opportunity to evaluate the patterns of variation in carbon stocks along elevational gradients that correspond to well‐defined temperature gradients. We predicted that carbon stored in live aboveground biomass, aboveground necromass, and soil components of forests on the eastern flank of the Colombian Andes would change with elevation along this gradient extending from 750 to 2,800 m above sea level. The rationale was that the corresponding change in temperature (14–26°C) would influence tree growth and decomposition of organic matter. To address this hypothesis, we examined the carbon stored in these three components using data from 20 0.25‐ha plots located along this elevational gradient. The mean total carbon stock found in the study region was 241.3 ± 37.5 Mg C/ha. Aboveground carbon stocks decreased with elevation (p = 0.001), as did necromass carbon stocks (p = 0.016). Although soil organic carbon stocks did not differ significantly along the gradient (p = 0.153), they contributed proportionately more at higher than at lower elevations, counterbalancing the opposite trends in aboveground carbon and necromass carbon stocks. As such, total carbon stocks did not vary significantly along the elevational gradient (p = 0.576).  相似文献   

12.
13.
Aim To examine patterns in anuran species richness along an elevation gradient and identify factors that govern anuran species richness on a tropical elevational gradient. Location Sampling for anurans was carried out in Kalakad Mundanthurai Tiger Reserve (KMTR) in the southern Western Ghats, India. Methods Night‐time sampling for anuran species richness was carried out from 20 November 2004 to 20 April 2005, during the north‐east monsoon and dry seasons, using transects (50 × 2 m) and visual encounter surveys along the streams. The entire gradient was classified into thirteen 100‐m elevation zones. Sampling at the alpha (single drainage basin) level was carried out in the Chinnapul River drainage basin (40–1260 m a.s.l.) and at the gamma (landscape) level in four drainage basins. Additionally, published records were used to arrive at an empirical species richness (S) for the entire landscape. Mid‐Domain Null software was used to test for the possible influence of geometric constraints on anuran species at both the alpha and gamma levels. The influence of area under each elevation zone on empirical S was tested. The pattern in anuran species richness along the elevational gradient was investigated using: (1) species boundaries in each elevation zone and their habitat correlates, (2) abiotic factors as predictor variables, (3) mean snout vent lengths of anurans, and (4) correlation between the matrices of distance in the elevation zones based on microhabitat parameters and species composition. Cluster analysis on species presence–absence in the elevation zones was used to categorize the entire gradient into high, middle and low elevations. In these three elevation categories, pattern in composition of species was examined for endemism in Western Ghats–Sri Lanka biodiversity hotspot, uniqueness to an elevation zone, adaptations of adults and modes of breeding. Results Species richness at the alpha level increased linearly with elevation, while at the gamma level there were three peaks. Maximum species richness was observed at the highest elevation (1200 m) at both the alpha and the gamma levels. The observed patterns differed significantly from mid‐domain null predictions. The multi‐modal pattern in species richness was a consequence of overlapping species range boundaries. Soil temperature was the best single measure in explaining the majority of variation in species richness at the alpha level (r2 = 0.846, P < 0.01). However, soil moisture was the best predictor when both the alpha and the gamma sites were pooled (r2 = 0.774, P < 0.01). Anuran body size decreased with an increase in elevation. The highest proportions of endemic and unique species were found at high elevations (> 700 m). The proportion of arboreal anurans increased from low to high elevation. Anurans exhibiting direct development were predominantly found at high elevations. Main conclusions Geometric constraints did not influence anuran species richness along the elevational gradient. Overlapping range boundaries influenced species richness at the gamma level. Abiotic factors such as soil temperature and moisture influenced anuran species richness in the mountain range. The ‘Massenerhebung effect’ could be responsible for range restriction and endemism of anurans, differences in guilds and mode of reproduction. These findings highlight the importance of cloud forests for endemic anurans.  相似文献   

14.
Morphological variations in vegetative and reproductive organs in the Solidago virgaurea complex were examined for eight elevations between 1600 and 2400 m a.s.l. in Japan. The rosette diameter and stem height were lower at higher elevations. The stem diameter at any stem height was greater at higher elevations, suggesting that the S. virgaurea complex increases mechanical stiffness against strong wind at high elevations. The number of flower heads at any stem height was less at high elevations (2000–2400 m a.s.l.) than at low elevations (1600–1900 m a.s.l.). Leaf nitrogen concentration did not change along the elevational gradient. Leaf mass per area (LMA) tended to decrease with increasing elevation, except for 2400 m a.s.l. The decrease of LMA would contribute to maintaining a positive carbon balance at high elevations. The number of involucral rays of flower heads was mostly four at low elevations (1600–1900 m a.s.l.) and three at high elevations (2000–2400 m a.s.l.). The number of involucral scales and diameter of flower heads were greater at high elevations (2000–2400 m a.s.l.) than at low elevations (1600–1900 m a.s.l.). Therefore, the S . virgaurea complex is suggested to adapt to high elevations that have cool temperature, a short growing season and strong wind conditions by changing its vegetative and reproductive traits.  相似文献   

15.
ABSTRACT

Background: Several studies have documented the variation in species diversity patterns along elevational gradients in the Himalaya, but few have reported the evolutionary and biogeographic processes behind these patterns.

Aims: To understand whether evolutionary history and phylogeny have any role in structuring plant species communities along an elevational gradient in the Sikkim Himalaya.

Methods: We used data on endemic plant species occurrence from primary and secondary sources to construct family-level phylogenetic supertrees for different growth forms with the help of Phylomatic tool of Phylocom. These phylogenetic supertrees were used as a base for testing phylogenetic diversity (PD), niche conservatism, diversification time patterns and phylogenetic structure of various plant growth forms along an elevational gradient.

Results: PD was the highest at mid-elevations for all growth forms and PD had a significant positive correlation with endemic species richness. Species at mid-elevations were dominated by the ancestral/primitive taxa. There was phylogenetic clustering at higher elevations and phylogenetic overdispersion at lower and mid-elevations for the majority of the growth forms.

Conclusions: Time-for-speciation effect and niche conservatism along elevation (retention of niche-related ancestral elevational distribution over evolutionary time scale by species) together determine plant species diversity patterns in the Himalaya.  相似文献   

16.
Transplantation experiments are a useful method to identify responses of organisms to environmental change. However, they are typically restricted to single or few species. Our experiment was carried out using entire bromeliad‐inhabiting microfauna communities which were transplanted along an elevational gradient, simulating environmental change acting on the communities. Additionally, we manipulated trophic interactions, i.e. resource availability and predator presence, thus combining abiotic and biotic effects in a full‐factorial experimental design. Using this experiment, we found a strong signal of original elevation in microfauna community structure (abundance, evenness, functional composition) with a shift from amoeba‐dominated to flagellate‐dominated communities with increasing original elevation. Surprisingly, the transplantation of communities along the elevational gradient did not affect community structure, indicating strong priority effects. Predation decreased microfauna abundance and increased microfauna evenness, specifically in higher original elevation and high resource levels. In summary, our results suggest that microfauna communities in bromeliads might be primarily shaped by priority effects and predator presence. However, interacting effects (between predator presence and resource availability, as well as between predator presence and original elevation) highlight the usefulness of studies with full‐factorial experimental designs to understand community‐structuring processes. Bromeliads and other micro‐ecosystems provide convenient study systems for community level approaches that could be used in future studies concerning the effects of environmental change, for example climate change on community structure.  相似文献   

17.
Aim Bergmann's rule generally predicts larger animal body sizes with colder climates. We tested whether Bergmann's rule at the interspecific level applies to moths (Lepidoptera: Geometridae) along an extended elevational gradient in the Ecuadorian Andes. Location Moths were sampled at 22 sites in the province Zamora‐Chinchipe in southern Ecuador in forest habitats ranging from 1040 m to 2677 m above sea level. Methods Wingspans of 2282 male geometrid moths representing 953 species were measured and analysed at the level of the family Geometridae, as well as for the subfamily Ennominae with the tribes Boarmiini and Ourapterygini, and the subfamily Larentiinae with the genera Eois, Eupithecia and Psaliodes. Results Bergmann's rule was not supported since the average wingspan of geometrid moths was negatively correlated with altitude (r = ?0.59, P < 0.005). The relationship between body size and altitude in Geometridae appears to be spurious because species of the subfamily Larentiinae are significantly smaller than species of the subfamily Ennominae and simultaneously increase in their proportion along the gradient. A significant decrease of wingspan was also found in the ennomine tribe Ourapterygini, but no consistent body size patterns were found in the other six taxa studied. In most taxa, body size variation increases with altitude, suggesting that factors acting to constrain body size might be weaker at high elevations. Main conclusions The results are in accordance with previous studies that could not detect consistent body size patterns in insects at the interspecific level along climatic gradients.  相似文献   

18.
Aims Understanding what drives the variation in species composition and diversity among local communities can provide insights into the mechanisms of community assembly. Because ecological traits are often thought to be phylogenetically conserved, there should be patterns in phylogenetic structure and phylogenetic diversity in local communities along ecological gradients. We investigate potential patterns in angiosperm assemblages along an elevational gradient with a steep ecological gradient in Changbaishan, China.Methods We used 13 angiosperm assemblages in forest plots (32×32 m) distributed along an elevational gradient from 720 to 1900 m above sea level. We used Faith's phylogenetic diversity metric to quantify the phylogenetic alpha diversity of each forest plot, used the net relatedness index to quantify the degree of phylogenetic relatedness among angiosperm species within each forest plot and used a phylogenetic dissimilarity index to quantify phylogenetic beta diversity among forest plots. We related the measures of phylogenetic structure and phylogenetic diversity to environmental (climatic and edaphic) factors.Important findings Our study showed that angiosperm assemblages tended to be more phylogenetically clustered at higher elevations in Changbaishan. This finding is consistent with the prediction of the phylogenetic niche conservatism hypothesis, which highlights the role of niche constraints in governing the phylogenetic structure of assemblages. Our study also showed that woody assemblages differ from herbaceous assemblages in several major aspects. First, phylogenetic clustering dominated in woody assemblages, whereas phylogenetic overdispersion dominated in herbaceous assemblages; second, patterns in phylogenetic relatedness along the elevational and temperature gradients of Changbaishan were stronger for woody assemblages than for herbaceous assemblages; third, environmental variables explained much more variations in phylogenetic relatedness, phylogenetic alpha diversity and phylogenetic beta diversity for woody assemblages than for herbaceous assemblages.  相似文献   

19.
20.
One expected response to observed global warming is an upslope shift of species elevational ranges. Here, we document changes in the elevational distributions of the small mammals within the Ruby Mountains in northeastern Nevada over an 80‐year interval. We quantified range shifts by comparing distributional records from recent comprehensive field surveys (2006–2008) to earlier surveys (1927–1929) conducted at identical and nearby locations. Collector field notes from the historical surveys provided detailed trapping records and locality information, and museum specimens enabled confirmation of species' identifications. To ensure that observed shifts in range did not result from sampling bias, we employed a binomial likelihood model (introduced here) using likelihood ratios to calculate confidence intervals around observed range limits. Climate data indicate increases in both precipitation and summer maximum temperature between sampling periods. Increases in winter minimum temperatures were only evident at mid to high elevations. Consistent with predictions of change associated with climate warming, we document upslope range shifts for only two mesic‐adapted species. In contrast, no xeric‐adapted species expanded their ranges upslope. Rather, they showed either static distributions over time or downslope contraction or expansion. We attribute these unexpected findings to widespread land‐use driven habitat change at lower elevations. Failure to account for land‐use induced changes in both baseline assessments and in predicting shifts in species distributions may provide misleading objectives for conservation policies and management practices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号