首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Small Ruminant Research》2010,91(1-3):88-94
To determine the genetic diversity and phylogenetic relationships among Chinese sheep, 10 indigenous breeds and one introduced breed were genotyped for 19 microsatellite loci. The mean number of alleles per breed ranged from 5.44 (Guide Black Fur sheep) to 9.13 (Ujumqin sheep and Hulunbeier sheep), the expected heterozygosity varied from 0.623 (Guide Black Fur sheep) to 0.737 (Zhaotong sheep), and the allelic richness ranged from 5.169 (Guide Black Fur sheep) to 7.610 (Zhaotong sheep). The deviation from Hardy–Weinberg equilibrium (HWE) was statistically significant (P < 0.05) at three loci (SRCRSP5, OarAE129 and DYMS1) in most of the breeds. Chinese sheep breeds had maintained a high level of within-population genetic differentiation (95.23%), with the remainder explained by differentiation among populations (4.77%). The genetic differentiation pattern and genetic relationships among Chinese sheep breeds displayed a high consistency with the traditional classification. Both the Bayesian cluster and principal component analyses showed a reliable clustering pattern, which revealed three major clusters in Chinese indigenous sheep (Mongolian sheep, Kazakh sheep and Tibetan sheep), except Zhaotong and Guide Black Fur sheep. There were probably caused by different breeding history, geography isolation and different levels of inbreeding. This study will help to interpret the genetic characters of Chinese indigenous sheep and benefit to the future conservation programs.  相似文献   

2.
Using the ISSR-PCR technique, the genetic structure of nine sheep breeds (Ovis aries) bred on the territories of Russia and Mongolia was examined. Species-specific and breed-specific DNA fragments were identified. For the first time, data on the genetic diversity of Telengit and Buubey sheep breeds were obtained. The main parameters of the genetic diversity and the breed structure were assessed, and the phylogenetic relationships and genetic distances between the studied breeds were determined. Using the method of hierarchical frequency averaging, the prototypal sheep gene pool was reconstructed. The three-tiered analysis of diversity based on the ISSR fingerprinting data showed that 15.8% of variability was found between the breeds, 31.4% of variability was found between the populations within the breeds, and the diversity among the individuals within the populations constituted 52.8%.  相似文献   

3.
Santa Inês is the most common hair sheep breed in Brazil and probably has the highest genetic diversity among sheep breeds in this country. Successful breeding programs for Brazilian sheep breeds are not common for various reasons, including a lack of control of parentage in the flocks. We developed an allele frequency database for 23 STR loci for the Santa Inês breed based on 285 animals sampled from five populations distributed across the central-western and north-eastern regions of Brazil. The marker set included seven microsatellites used in the 2011 International Society for Animal Genetics sheep genotyping comparison tests and all eight microsatellites currently approved by the Brazilian Agricultural Ministry laboratory accreditation guidelines for sheep identification. The microsatellites had an average of 10 alleles and a mean expected heterozygosity of 0.745. Combined paternity exclusion probabilities when no parent or one parent was known were >99.99%. A small proportion (5.8%) of the existing genetic variation was found to be among the Santa Inês populations, possibly derived from genetic drift and selection. We found that the marker panel proposed by the Agricultural Ministry, although generally useful, should be enhanced by including more markers for improved exclusionary power in parentage testing. This database provides a useful tool for parentage testing of this major Brazilian breed, contributing to improved management and breeding of existing herds.  相似文献   

4.
Studies of domestic animals are performed on breeds, but a breed does not necessarily equate to a genetically defined population. The division of sheep from three native and four modern Baltic sheep breeds was studied using 21 microsatellite loci and applying a Bayesian clustering method. A traditional breed-wise approach was compared to that relying on the pattern of molecular diversity. In this study, a breed was found to be inconsistent with a distinct genetic population for three reasons: (i) a lack of differentiation between modern Baltic breeds, since the majority of the studied sheep formed a single population; (ii) the presence of individuals of foreign ancestry within the breed; and (iii) an undefined local Saaremaa sheep was referred to as a breed, but was shown to consist of separate populations. In the breed-wise approach, only the clearly distinct Ruhnu sheep demonstrated low within-breed variation, although the newly identified Saaremaa populations also have low variability. Providing adequate management recommendations for the Saaremaa sheep is not possible without further studies, but the potential harmful effects of inbreeding in the Ruhnu sheep could be reduced through the use of two genetically related Saaremaa populations. In other breeds, excessive crossing appears to be a larger concern than inbreeding. Assigning individuals into populations based on the pattern of genetic diversity offers potentially unbiased means of elucidating the genetic population structure of species. Combining these genetic populations with phenotypic and aetiological data will enable formulation of the most informed recommendations for gene resource management.  相似文献   

5.
Domestic sheep in Kazakhstan may provide an interesting source of genetic variability due to their proximity to the center of domestication and the Silk Route. Additionally, those breeds have never been compared to New World sheep populations. This report compares genetic diversity among five Kazakhstan (KZ) and 13 United States (US) sheep breeds (N = 442) using 25 microsatellite markers from the FAO panel. The KZ breeds had observed and expected measures of heterozygosity greater than 0.60 and an average number of alleles per locus of 7.8. In contrast, US sheep breeds had observed heterozygosity ranged from 0.37 to 0.62 and had an average number of alleles of 5.7. A Bayesian analysis indicated there were two primary populations (K = 2). Surprisingly, the US breeds were near evenly split between the two clusters, while all of the KZ breeds were placed in one of the two clusters. Pooling breeds within country of sample origin showed KZ and US populations to have similar levels of expected heterozygosity and the average number of alleles per locus. The results of breeds pooled within country suggest that there was no difference between countries for these diversity measures using this set of neutral markers. This finding suggests that populations’ geographically isolated from centers of domestication can be more diverse than previously thought, and as a result, conservation strategies can be adjusted accordingly. Furthermore, these results suggest there may be limited need for countries to alter the protocols for trade and exchange of animal genetic resources that are in place today, since no one population has a unique set of private alleles.  相似文献   

6.
Nuclear genetic diversity and differentiation of 341 sheep belonging to 12 sheep breeds from Croatia and Bosnia and Herzegovina were examined. The aim of the study was to provide the understanding of the genetic structure and variability of the analysed pramenka sheep populations, and to give indications for conservation strategies based on the population diversity and structure information. The genetic variation of the sheep populations, examined at the nuclear level using 27 microsatellite loci, revealed considerable levels of genetic diversity, similar to the diversity found in other European indigenous low-production sheep breeds. Population-specific alleles were detected at most loci and in breeds analysed. The observed heterozygosity ranged from 0.643 (in Lika pramenka) to 0.743 (in Vlasic pramenka), and the expected heterozygosity ranged from 0.646 (in Lika pramenka) to 0.756 (in Dalmatian pramenka). Significant inbreeding coefficients were found for half of the populations studied and ranged from 0.040 (Pag island sheep) to 0.091 (Kupres pramenka). Moderate genetic differentiation was found between the studied sheep populations. The total genetic variability observed between different populations was 5.29%, whereas 94.71% of the variation was found within populations. Cres island sheep, Lika pramenka and Istrian sheep were identified as the most distinct populations, which was confirmed by the factorial analysis of correspondence and supported through a bootstrapping adjustment to correct for the difference in the sample sizes. The population structure analysis distinguished 12 clusters for the 12 sheep breeds analysed. However, the cluster differentiation was low for Dalmatian, Vlasic, Stolac and Krk pramenka. This systematic study identified Lika pramenka and Rab island sheep as those with the lowest diversity, whereas Istrian sheep and Pag island sheep had the highest. Conservation actions are proposed for Istrian, Rab and Cres island sheep, Lika and Kupres pramenka because of high estimated coefficients of inbreeding.  相似文献   

7.

Background

Native pig breeds in the Iberian Peninsula are broadly classified as belonging to either the Celtic or the Mediterranean breed groups, but there are other local populations that do not fit into any of these groups. Most of the native pig breeds in Iberia are in danger of extinction, and the assessment of their genetic diversity and population structure, relationships and possible admixture between breeds, and the appraisal of conservation alternatives are crucial to adopt appropriate management strategies.

Methods

A panel of 24 microsatellite markers was used to genotype 844 animals representing the 17 most important native swine breeds and wild populations existing in Portugal and Spain and various statistical tools were applied to analyze the results.

Results

Genetic diversity was high in the breeds studied, with an overall mean of 13.6 alleles per locus and an average expected heterozygosity of 0.80. Signs of genetic bottlenecks were observed in breeds with a small census size, and population substructure was present in some of the breeds with larger census sizes. Variability among breeds accounted for about 20% of the total genetic diversity, and was explained mostly by differences among the Celtic, Mediterranean and Basque breed groups, rather than by differences between domestic and wild pigs. Breeds clustered closely according to group, and proximity was detected between wild pigs and the Mediterranean cluster of breeds. Most breeds had their own structure and identity, with very little evidence of admixture, except for the Retinto and Entrepelado varieties of the Mediterranean group, which are very similar. Genetic influence of the identified breed clusters extends beyond the specific geographical areas across borders throughout the Iberian Peninsula, with a very sharp transition from one breed group to another. Analysis of conservation priorities confirms that the ranking of a breed for conservation depends on the emphasis placed on its contribution to the between- and within-breed components of genetic diversity.

Conclusions

Native pig breeds in Iberia reveal high levels of genetic diversity, a solid breed structure and a clear organization in well-defined clusters.  相似文献   

8.
Iranian livestock diversity is still largely unexplored, in spite of the interest in the populations historically reared in this country located near the Fertile Crescent, a major livestock domestication centre. In this investigation, the genetic diversity and differentiation of 10 Iranian indigenous fat‐tailed sheep breeds were investigated using 18 microsatellite markers. Iranian breeds were found to host a high level of diversity. This conclusion is substantiated by the large number of alleles observed across loci (average 13.83, range 7–22) and by the high within‐breed expected heterozygosity (average 0.75, range 0.72–0.76). Iranian sheep have a low level of genetic differentiation, as indicated by the analysis of molecular variance, which allocated a very small proportion (1.67%) of total variation to the between‐population component, and by the small fixation index (FST = 0.02). Both Bayesian clustering and principal coordinates analysis revealed the absence of a detectable genetic structure. Also, no isolation by distance was observed through comparison of genetic and geographical distances. In spite of high within‐breed variation, signatures of inbreeding were detected by the FIS indices, which were positive in all and statistically significant in three breeds. Possible factors explaining the patterns observed, such as considerable gene flow and inbreeding probably due to anthropogenic activities in the light of population management and conservation programmes, are discussed.  相似文献   

9.
The genetic structure of populations of the Tuvinian short-fat-tailed sheep was studied with the use of the ISSR-PCR (Inter Simple Sequence Repeats) method in 18 farms of Tyva. Data on the spectrum of ISSR fragments of DNA were obtained using the (AG)9C primer. Analysis of intermicrosatellite polymorphism permitted us to determine genomic characteristics of the populations, their genealogical relations, and the parameters of genetic diversity within the populations and the breed as a whole. Three genetic notions were considered on the basis of the results of this analysis: gene pool profile, gene pool standard, and breed-specific pattern. The data obtained can be used to carry out population genetic monitoring, to develop a breeding strategy, and to conserve in situ the Tuvinian sheep breed and breeds of other domesticated species.  相似文献   

10.
At present, the Assaf is the main dairy sheep in Spain. The Spanish Assaf (Assaf.E) was formed by male-mediated absorption of native Spanish sheep. Here we assess the genetic relationships among the Assaf.E and major native Spanish dairy breeds using microsatellites to contribute to the knowledge of the formation and within-population genetic variability of the breed. Blood samples from 44 unrelated Assaf.E individuals from 23 different Assaf.E flocks spread throughout 6 different Spanish provinces were obtained and genotyped using 14 microsatellites. Up to 312 additional samples belonging to the Awassi and Milchschaf sheep breeds and to six native Spanish dairy sheep breeds (Castellana, Churra, Latxa, Manchega, and Rubia de El Molar) as well as samples from Merino individuals to be used as the outgroup were also analysed observed (Ho) and expected (He) heterozygosity, rarefacted number of alleles per locus and distances based on molecular coancestry information were computed. Probabilities of assignment of the Assaf.E individuals to native Spanish dairy sheep breeds and cryptic genetic structure in the whole dataset were also assessed. It can be concluded that the Assaf.E breed has low genetic variability and high genetic distance with respect native Spanish dairy sheep breeds. From our results, the formation of the Assaf.E breed basically occurred via the absorption of individuals belonging to the Entrefino type, particularly to the Castellana and Manchega populations. Furthermore, Churra individuals may have participated in the formation of the Assaf.E breed at an early moment of the introduction of the breed into Spain.  相似文献   

11.
《Small Ruminant Research》2009,81(1-3):39-44
At present, the Assaf is the main dairy sheep in Spain. The Spanish Assaf (Assaf.E) was formed by male-mediated absorption of native Spanish sheep. Here we assess the genetic relationships among the Assaf.E and major native Spanish dairy breeds using microsatellites to contribute to the knowledge of the formation and within-population genetic variability of the breed. Blood samples from 44 unrelated Assaf.E individuals from 23 different Assaf.E flocks spread throughout 6 different Spanish provinces were obtained and genotyped using 14 microsatellites. Up to 312 additional samples belonging to the Awassi and Milchschaf sheep breeds and to six native Spanish dairy sheep breeds (Castellana, Churra, Latxa, Manchega, and Rubia de El Molar) as well as samples from Merino individuals to be used as the outgroup were also analysed observed (Ho) and expected (He) heterozygosity, rarefacted number of alleles per locus and distances based on molecular coancestry information were computed. Probabilities of assignment of the Assaf.E individuals to native Spanish dairy sheep breeds and cryptic genetic structure in the whole dataset were also assessed. It can be concluded that the Assaf.E breed has low genetic variability and high genetic distance with respect native Spanish dairy sheep breeds. From our results, the formation of the Assaf.E breed basically occurred via the absorption of individuals belonging to the Entrefino type, particularly to the Castellana and Manchega populations. Furthermore, Churra individuals may have participated in the formation of the Assaf.E breed at an early moment of the introduction of the breed into Spain.  相似文献   

12.
Contrary to highly selected commercial breeds, indigenous domestic breeds are composed of semi-wild or feral populations subjected to reduced levels of artificial selection. As a consequence, many of these breeds have become locally adapted to a wide range of environments, showing high levels of phenotypic variability and increased fitness under natural conditions. Genetic analyses of three loci associated with milk production (alpha(S1)-casein, kappa-casein and prolactin) and the locus BoLA-DRB3 of the major histocompatibility complex indicated that the Argentinean Creole cattle (ACC), an indigenous breed from South America, maintains high levels of genetic diversity and population structure. In contrast to the commercial Holstein breed, the ACC showed considerable variation in heterozygosity (H(e)) and allelic diversity (A) across populations. As expected, bi-allelic markers showed extensive variation in He whereas the highly polymorphic BoLA-DRB3 showed substantial variation in A, with individual populations having 39-74% of the total number of alleles characterized for the breed. An analysis of molecular variance (AMOVA) of nine populations throughout the distribution range of the ACC revealed that 91.9-94.7% of the total observed variance was explained by differences within populations whereas 5.3-8.1% was the result of differences among populations. In addition, the ACC breed consistently showed higher levels of genetic differentiation among populations than Holstein. Results from this study emphasize the importance of population genetic structure within domestic breeds as an essential component of genetic diversity and suggest that indigenous breeds may be considered important reservoirs of genetic diversity for commercial domestic species.  相似文献   

13.
Evaluations of genetic diversity in domestic livestock populations are necessary to implement region‐specific conservation measures. We determined the genetic diversity and evolutionary relationships among eight geographically and phenotypically diverse cattle breeds indigenous to west‐central India by genotyping these animals for 22 microsatellite loci. A total of 326 alleles were detected, and the expected heterozygosity ranged from 0.614 (Kenkatha) to 0.701 (Dangi). The mean number of alleles among the cattle breeds ranged from 7.182 (Khillar) to 9.409 (Gaolao). There were abundant genetic variations displayed within breeds, and the genetic differentiation was also high between the Indian cattle breeds, which displayed 15.9% of the total genetic differentiation among the different breeds. The genetic differentiation (pairwise FST) among the eight Indian breeds varied from 0.0126 for the Kankrej–Malvi pair to 0.2667 for Khillar–Kenkatha pair. The phylogeny, principal components analysis, and structure analysis further supported close grouping of Kankrej, Malvi, Nimari and Gir; Gaolao and Kenkatha, whereas Dangi and Khillar remained at distance from other breeds.  相似文献   

14.
The knowledge of the genetic relationship and admixture among neighbouring populations is crucial for conservation efforts. The aim of this study was to analyse the genetic diversity of five Italian sheep breeds (Appenninica, Garfagnina Bianca, Massese, Pomarancina and Zerasca) using a panel of 24 microsatellite markers. Blood samples from 226 individuals belonging to the aforementioned populations were obtained and genotyped. All the investigated breeds showed a significant heterozygote deficiency caused by the high level of inbreeding indicated also by the high level of FIS (0.146). Genetic differentiation between breeds was moderate (FST = 0.05) but significant and the individuals could be assigned to their breeds with an high success rate even if the inter-individual distances showed that few animals clustered separately from the other individuals of the same breed, especially for Pomarancina breed. The genetic distances reflect the historical knowledge of these breeds and some patterns of ancestral and recent gene flow between neighbour populations arise. The clustering analysis detects the presence of six clusters. Massese and Zerasca breeds were grouped together as well as Appenninica and Pomarancina with the latter forming two distinct clusters equally represented. The formation of this last breed is occurred with the absorption of individuals of the Appenninica breed and the gene flow probably continued in these recent years allowing the presence of a population substructure for Pomarancina breed. Such substructure supports the high level of heterozygote deficiency found for this breed despite the relatively high population size. The five populations analysed presented some genetic similarities but a clear uniqueness of the populations has been showed for almost all of them. Special attention to monitor genetic variability and to organize mating plans should be given especially for the three endangered breeds.  相似文献   

15.
Elmaci C  Oner Y  Ozis S  Tuncel E 《Biochemical genetics》2007,45(9-10):691-696
The genetic diversity and phylogenetic relationships of 108 individual sheep from three Turkish sheep breeds (K?v?rc?k, Gökçeada, and Sak?z) were studied using RAPD analysis. Polymorphisms within and between populations were assayed using 15 random primers, and 82 loci were amplified ranging from 250 to 2,500 bp. The percentage of polymorphic loci was found to be 80.49, 78.05, and 73.17%, for K?v?rc?k, Gökçeada, and Sak?z sheep breeds, respectively. Total genetic diversity was 0.2265, and the average coefficient of genetic differentiation was 0.1181. Genetically, the Gökçeada breed was more closely related to the Sak?z breed than to the K?v?rc?k breed.  相似文献   

16.
Emphasis on livestock genetic improvement in the past decades has led to commercialization of different breeds of livestock species. Breed validation has become increasingly important to assess the safety and authenticity of livestock products in global and domestic markets. The objective of this study was to evaluate the use of breed-specific single nucleotide polymorphisms (SNPs) in discriminating between Holstein and Jersey dairy cattle breeds. Two separate resource populations were used, including a reference population consisting of 498 Holstein and 83 Jersey bull DNA samples, and a validation population consisting of 260 Holstein and 34 Jersey cow DNA samples. Five Jersey-specific and four Holstein-specific SNPs were identified and genotyped on the reference and validation resource populations. The reference population was used to validate the breed-specific SNPs used in this study and to predict the allocation efficiencies and misclassification probabilities of different combinations of SNPs. Individual animals in the validation population were allocated to either breed based on the presence of breed-specific alleles. It was found that any combination of three breed-specific SNPs had, on average, high breed allocation efficiency of >95% and low misclassification probability of <5%. In conclusion, this study demonstrates a simple, yet effective, method of using breed-specific SNPs to discriminate between Jersey and Holstein cattle breeds.  相似文献   

17.
This study illustrates the genetic diversity and relationships within and among six Indian sheep breeds of the northwestern arid region of Rajasthan, based on microsatellite markers. The range of allele diversity was 7.72-9.56, and gene diversity was 0.686-0.766, revealing that these breeds possessed substantial amounts of genetic diversity. Positive F (IS) values suggested a deficit of heterozygotes in all six breeds. Despite the declining status of the Marwari, Chokla, Jaisalmeri, Magra and Pugal breeds, an absence of a recent genetic bottleneck was evident from the data. The genetic differentiation estimate (F (ST)?=?6.1%) suggested low levels of differentiation between the breeds. Genetic distance estimates revealed a close relationship between the Magra-Pugal and Nali-Jaisalmeri breed pairs. This information forms a framework for designing genetic management and conservation programs for these valuable ovine breeds.  相似文献   

18.
The purpose of this study was to assess genetic diversity, genetic differentiation relationship and population structure among 10 Chinese sheep populations using 5 single nucleotide polymorphisms (SNPs) in MC1R gene. The genetic diversity indices suggested that the intra-population variation levels of Chinese Merino and Large-tailed Han breeds were lowest than Kazakh Fat-Rumped. Chinese sheep breeds have maintained a high intra-population variation levels (95.23%). The genetic differentiation patterns and genetic relationships among Chinese sheep breeds displayed a high consistency with the traditional classification. The cluster trees were constructed by UPMGA method. The results showed that Chinese indigenous sheep populations have distinct genetic differentiation. The inter-population variation levels in Chinese sheep populations indicated three geographically independent domestication events have occurred. The Bayesian cluster analyses also showed a reliable clustering pattern, which revealed three major clusters in Chinese indigenous sheep populations (Mongolian group, Kazakh group and Tibetan group), except for Duolang and Minxian Black-fur. There were probably caused by different breeding history, geography isolation and different levels of inbreeding. The findings supported the related records in literature, ten sheep populations originated on different time stage from the primogenitor population and communicated genetically with each other in the process of natural and artificial selection, and in different ecological environment. It is concluded that Chinese indigenous sheep have higher genetic variation and diversity, genetic differentiation exist between Chinese sheep populations.  相似文献   

19.
This study attempts to provide a comprehensive insight into the prevailing genetic status of Indian sheep breeds using microsatellite markers. Seventeen Indian sheep breeds from 3 agroecological zones were analysed using a panel of 25 microsatellite markers. All of the sheep breeds investigated were genetically diverse, as evident from the high allele (>6) and gene (>0.6) diversity values. The gene diversity values for all breeds ranged from 0.621 to 0.780. The within-population heterozygote deficit (F(IS)) varied from -0.098 to 0.234, reflecting significant levels for 12 of the 17 breeds investigated. The average genetic differentiation between all breeds (F(ST)) was 11.1%, revealing moderate discrimination between the indigenous sheep breeds. The genetic distance and principal component analysis revealed a separation of sheep breeds based on geographical propinquity. The Bayesian clustering approach suggested poor breed differentiation in the north-western arid and semi-arid region when compared to the breeds from the eastern and southern peninsular regions. The observed results mirror the divergent management strategies in the different agroecological regions, lack of specific selection policies, and intermixing of breeds in close proximity. Immediate steps to curb the intermixing and erosion of breed purity for some of these breeds need to be implemented, for example, by introducing measures like making proven rams available and ensuring their frequent exchange between flocks. The data generated here provides valuable information about the genetic structure of the 17 Indian sheep breeds and this can be used for designating priorities for their conservation.  相似文献   

20.

Background

From domestication to the current pattern of differentiation, domestic species have been influenced by reticulate evolution with multiple events of migration, introgression, and isolation; this has resulted in a very large number of breeds. In order to manage these breeds and their genetic diversity, one must know the current genetic structure of the populations and the relationships among these. This paper presents the results of a genetic diversity analysis on an almost exhaustive sample of the sheep breeds reared in France. Molecular characterization was performed with a set of 21 microsatellite markers on a collection of 49 breeds that include five breed types: meat, hardy meat, dairy, high prolificacy and patrimonial breeds.

Results

Values of expected heterozygosity ranged from 0.48 to 0.76 depending on the breed, with specialized meat breeds exhibiting the lowest values. Neighbor-Net, multidimensional analysis or clustering approaches revealed a clear differentiation of the meat breeds compared to the other breed types. Moreover, the group that clustered meat breeds included all the breeds that originated from the United Kingdom (UK) and those that originated from crossbreeding between UK breeds and French local breeds. We also highlighted old genetic introgression events that were related to the diffusion of Merino rams to improve wool production. As a result of these introgression events, especially that regarding the UK breeds, the breeds that were clustered in the ‘meat type cluster’ exhibited the lowest contribution to total diversity. That means that similar allelic combinations could be observed in different breeds of this group.

Conclusions

The genetic differentiation pattern of the sheep breeds reared in France results from a combination of factors, i.e. geographical origin, historic gene flow, and breed use. The Merino influence is weaker than that of UK breeds, which is consistent with how sheep use changed radically at the end of 19th century when wool-producing animals (Merino-like) were replaced by meat-producing breeds. These results are highly relevant to monitor and manage the genetic diversity of sheep and can be used to set priorities in conservation programs when needed.

Electronic supplementary material

The online version of this article (doi:10.1186/s12711-015-0131-7) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号