首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 The role of the cysteine thiolate ligand for the unusual copper coordination geometry in the blue copper proteins has been studied by comparing the electronic structure, geometry, and energetics of a number of small Cu(II) complexes. The geometries have been optimised with the density functional B3LYP method, and energies have been calculated by multiconfigurational second-order perturbation theory (the CASPT2 method). Most small inorganic Cu(II) complexes assume a tetragonal geometry, where four ligands make σ bonds to a Cu 3d orbital. If a ligand lone-pair orbital instead forms a π bond to the copper ion, it formally occupies two ligand positions in a square coordination, and the structure becomes trigonal. Large, soft, and polarisable ligands, such as SH and SeH, give rise to covalent copper-ligand bonds and structures close to a tetrahedron, which might be trigonal or tetragonal with approximately the same stability. On the other hand, small and hard ligands, such as NH3, OH2, and OH, give ionic bonds and flattened tetragonal structures. It is shown that axial type 1 (blue) copper proteins have a trigonal structure with a π bond to the cysteine sulphur atom, whereas rhombic type 1 and type 2 proteins have a tetragonal structure with σ bonds to all strong ligands. The soft cysteine ligand is essential for the stabilisation of a structure that is close to a tetrahedron (either trigonal or tetragonal), which ensures a low reorganisation energy during electron transfer. Received: 9 July 1997 / 26 November 1997  相似文献   

2.
This communication addresses a simple question by means of density functional calculations: Why is iron used as the metal in iron-sulfur clusters? While there may be several answers to this question, it is shown here that one feature - the well-defined inner-sphere reorganization energy of self-exchange electron transfer - is very much favored in iron-sulfur clusters as opposed to metal substituted analogues of Mn, Co, Ni, and Cu. Furthermore, the conclusion holds for both 1Fe and 2Fe type iron-sulfur clusters. The results show that only iron provides a small inner-sphere reorganization energy of 21 kJ/mol in 1Fe (rubredoxin) and 46 kJ/mol in 2Fe (ferredoxin) models, whereas other metal ions exhibit values in the range 57-135 kJ/mol (1Fe) and 94-140 kJ/mol (2Fe). This simple result provides an important, although partial, explanation why iron alone is used in this type of clusters. The results can be explained by simple orbital rules of electron transfer, which state that the occupation of anti-bonding orbitals should not change during the redox reactions. This rule immediately suggests good and poor electron carriers.  相似文献   

3.
An intramolecular electron-transfer process has previously been shown to take place between the Cys3--Cys26 radical-ion (RSSR-) produced pulse radiolytically and the Cu(II) ion in the blue single-copper protein, azurin [Farver, O. & Pecht, I. (1989) Proc. Natl Acad. Sci. USA 86, 6868-6972]. To further investigate the nature of this long-range electron transfer (LRET) proceeding within the protein matrix, we have now investigated it in two azurins where amino acids have been substituted by single-site mutation of the wild-type Pseudomonas aeruginosa azurin. In one mutated protein, a methionine residue (Met44) that is proximal to the copper coordination sphere has been replaced by a positively charged lysyl residue ([M44K]azurin), while in the second mutant, another residue neighbouring the Cu-coordination site (His35) has been replaced by a glutamine ([H35Q]azurin). Though both these substitutions are not in the microenvironment separating the electron donor and acceptor, they were expected to affect the LRET rate because of their effect on the redox potential of the copper site and thus on the driving force of the reaction, as well as on the reorganization energies of the copper site. The rate of intramolecular electron transfer from RSSR- to Cu(II) in the wild-type P. aeruginosa azurin (delta G degrees = -68.9 kJ/mol) has previously been determined to be 44 +/- 7 s-1 at 298 K, pH 7.0. The [M44K]azurin mutant (delta G degrees = -75.3 kJ/mol) was now found to react considerably faster (k = 134 +/- 12 s-1 at 298 K, pH 7.0) while the [H35Q]azurin mutant (delta G degrees = -65.4 kJ/mol) exhibits, within experimental error, the same specific rate (k = 52 +/- 11 s-1, 298 K, pH 7.0) as that of the wild-type azurin. From the temperature dependence of these LRET rates the following activation parameters were calculated: delta H++ = 37.9 +/- 1.3 kJ/mol and 47.2 +/- 0.7 kJ/mol and delta S++ = -86.5 +/- 5.8 J/mol.K and -46.4 +/- 4.4 J/mol.K for [H35Q]azurin and [M44K]azurin, respectively. Using the Marcus relation for intramolecular electron transfer and the above parameters we have determined the reorganization energy, lambda and electronic coupling factor, beta. The calculated values fit very well with a through-bond LRET mechanism.  相似文献   

4.
The functional roles of the amino acid residues of the Cu(A) site in bovine cytochrome c oxidase (CcO) were investigated by utilizing hybrid quantum mechanics (QM)/molecular mechanics (MM) calculations. The energy levels of the molecular orbitals (MOs) involving Cu d(zx) orbitals unexpectedly increased, as compared with those found previously with a simplified model system lacking the axial Met residue (i.e., Cu(2)S(2)N(2)). This elevation of MO energies stemmed from the formation of the anti-bonding orbitals, which are generated by hybridization between the d(zx) orbitals of Cu ions and the p-orbitals of the S and O atoms of the axial ligands. To clarify the roles of the axial Met ligand, the inner-sphere reorganization energies of the Cu(A) site were computed, with the Met residue assigned to either the QM or MM region. The reorganization energy slightly increased when the Met residue was excluded from the QM region. The existing experimental data and the present structural modeling study also suggested that the axial Met residue moderately increased the redox potential of the Cu(A) site. Thus, the role of the Met may be to regulate the electron transfer rate through the fine modulation of the electronic structure of the Cu(A) "platform", created by two Cys/His residues coordinated to the Cu ions. This regulation would provide the optimum redox potential/reorganization energy of the Cu(A) site, and thereby facilitate the subsequent cooperative reactions, such as the proton pump and the enzymatic activity, of CcO. This article is part of a Special Issue entitled: Allosteric cooperativity in respiratory proteins.  相似文献   

5.
Theoretical investigations of the structure and function of the blue copper proteins are described. We have studied the optimum vacuum geometry of oxidised and reduced copper sites, the relative stability of trigonal and tetragonal Cu(II) structures, the relation between the structure and electronic spectra, the reorganisation energy, and reduction potentials. Our calculations give no support to the suggestion that strain plays a significant role in the function of these proteins; on the contrary, our results show that the structures encountered in the proteins are close to their optimal vacuum geometries (within 7 kJ/mol). We stress the importance of defining what is meant by strain and of quantifying strain energies or forces in order to make strain hypotheses testable.  相似文献   

6.
7.
Stellacyanin is a mucoprotein of molecular weight approximately 20,000 containing one copper atom in a blue or type I site. The metal ion can exist in both the Cu(II) and Cu(I) redox states. The metal binding site in plastocyanin, another blue copper protein, contains one cysteinyl, one methionyl, and two imidazoyl residues (Colman et al. 1978. Nature [Lond.]. 272:319-324.), but an exactly analogous site cannot exist in stellacyanin as it lacks methionine. The copper coordination in stellacyanin has been studied by x-ray edge absorption and extended x-ray absorption fine structure (EXAFS) analysis. A new, very conservative data analysis procedure has been introduced, which suggests that the there are two nitrogen atoms in the first coordination shell of the oxidized [Cu(II)] protein and one in the reduced [Cu(I)] protein; these N atoms have normal Cu--N distances: 1.95-2.05 A. In both redox states there are either one or two sulfur atoms coordinating the copper, the exact number being indeterminable from the present data. In the oxidized state the Cu--S distance is intermediate between the short bond found in plastocyanin and those found in near tetragonal copper model compounds. Above -140 degree C, radiation damage of the protein occurs. At room temperature the oxidized proteins is modified in the x-ray beam at a rate of 0.25%/s.  相似文献   

8.
J O De Kerpel  U Ryde 《Proteins》1999,36(2):157-174
Free energy perturbations have been performed on two blue copper proteins, plastocyanin and nitrite reductase. By changing the copper coordination geometry, force constants, and charges, we have estimated the maximum energy with which the proteins may distort the copper coordination sphere. By comparing this energy with the quantum chemical energy cost for the same perturbation on the isolated copper complex, various hypotheses about protein strain have been tested. The calculations show that the protein can only modify the copper-methionine bond length by a modest amount of energy-<5 kJ/mol-and they lend no support to the suggestion that the quite appreciable difference in the copper coordination geometry encountered in the two proteins is a result of the proteins enforcing different Cu-methionine bond lengths. On the contrary, this bond is very flexible, and neither the geometry nor the electronic structure change appreciably when the bond length is changed. Moreover, the proteins are rather indifferent to the length of this bond. Instead, the Cu(II) coordination geometries in the two proteins represent two distinct minima on the potential surface of the copper ligand sphere, characterized by different electronic structures, a tetragonal, mainly sigma-bonded, structure in nitrite reductase and a trigonal, pi-bonded, structure in plastocyanin. In vacuum, the structures have almost the same energy, and they are stabilized in the proteins by a combination of geometric and electrostatic interactions. Plastocyanin favors the bond lengths and electrostatics of the trigonal structure, whereas in nitrite reductase, the angles are the main discriminating factor. Proteins 1999;36:157-174.  相似文献   

9.
 The reduction potential of the basic blue-copper protein from cucumber peels (CBP) was determined through voltammetric techniques in different conditions of temperature, pH and ionic composition of the medium. The most notable properties of CBP include a positive entropy change upon reduction, a low-pH protonation and detachment of a metal-binding histidine in the reduced protein, and specific binding interactions with a number of anions present in common laboratory buffers, which influence to some extent the redox thermodynamics. The enthalpy and entropy changes accompanying reduction of the Cu(II) center were compared with those for other blue-copper proteins and correlated with spectroscopic data, structural properties and theoretical calculations. This allows some general considerations to be offered regarding the determinants of the reduction potential in this protein class. It emerges, in line with previous studies of the electronic structure of blue-copper sites, that the enthalpic contribution to the reduction potential is mainly modulated by the metal-binding interactions in the trigonal N2S ligand set, and particularly by the Cu-cysteinate bond, while the entropy term is mainly affected by solvation properties and possibly by the weak axial bond to copper. The role of solvent exposure of the metal site in the active-site protonations in reduced blue-copper proteins is discussed. Finally, it is shown that the Nernst-Debye-Huckel model qualitatively accounts for the ionic strength dependence of the reduction potential. Received: 20 December 1996 / Accepted: 26 March 1997  相似文献   

10.
Copper coordination in blue proteins   总被引:5,自引:0,他引:5  
The spectroscopic and electrochemical properties of blue copper proteins are strikingly different from those of inorganic copper complexes in aqueous solution. Over three decades ago this unusual behavior was ascribed to constrained coordination in the folded protein; consistent with this view, crystal structure determinations of blue proteins have demonstrated that the ligand positions are essentially unchanged on reduction as well as in the apoprotein. Blue copper reduction potentials are tuned to match the particular function of a given protein by exclusion of water from the metal site and strict control of the positions of axial ligands in the folded structure. Extensive experimental work has established that the reorganization energy of a prototypal protein, Pseudomonas aeruginosa azurin, is approximately 0.7 eV, a value that is much lower than those of inorganic copper complexes in aqueous solution. The lowered reorganization energy in the protein, which is attributable to constrained coordination, is critically important for function, since the driving forces for electron transfer often are low (approximately 0.1 eV) between blue copper centers and distant (>10 A) donors and acceptors.  相似文献   

11.
The kinetics of the deuteronation of one of the copper ligand histidines of the reduced Type I blue-copper protein amicyanin from Thiobacillus versutus was studied as a function of temperature by 300- and 600- MHz 1H NMR. The NMR data were analyzed with the help of a three site exchange model. Deuteron exchange between the histidine ligand and the solution appears to be catalyzed by phosphate. After deuteronation the histidine can occur in two conformations. The electron self-exchange rate of amicyanin was determined as a function of temperature and ionic strength. At 298 K, pD = 8.6, I = 0.05 M, the ese rate amounts to 1.3 x 10(5) M-1 S-1. The activation parameters amount to delta H not equal to = (52 +/- 3) kJ/mol and delta S not equal to = (26 +/- 9) J/mol.K. The dependence of the ese rate on ionic strength is small. The deuteronated amicyanin appears to be redox-inactive. The experimental findings clearly distinguish amicyanin from other classes of blue-copper proteins like the azurins and the pseudo-azurins.  相似文献   

12.
U Ryde 《Biophysical journal》1999,77(5):2777-2787
The relative energies of different coordination modes (bidentate, monodentate, syn, and anti) of a carboxylate group bound to a zinc ion have been studied by the density functional method B3LYP with large basis sets on realistic models of the active site of several zinc proteins. In positively charged four-coordinate complexes, the mono- and bidentate coordination modes have almost the same energy (within 10 kJ/mol). However, if there are negatively charged ligands other than the carboxylate group, the monodentate binding mode is favored. In general, the energy difference between monodentate and bidentate coordination is small, 4-24 kJ/mol, and it is determined more by hydrogen-bond interactions with other ligands or second-sphere groups than by the zinc-carboxylate interaction. Similarly, the activation energy for the conversion between the two coordination modes is small, approximately 6 kJ/mol, indicating a very flat Zn-O potential surface. The energy difference between syn and anti binding modes of the monodentate carboxylate group is larger, 70-100 kJ/mol, but this figure again strongly depends on interactions with second-sphere molecules. Our results also indicate that the pK(a) of the zinc-bound water ligand in carboxypeptidase and thermolysin is 8-9.  相似文献   

13.
 The reduction potentials of blue copper sites vary between 180 and about 1000 mV. It has been suggested that the reason for this variation is that the proteins constrain the distance between the copper ion and its axial ligands to different values. We have tested this suggestion by performing density functional B3LYP calculations on realistic models of the blue copper proteins, including solvent effects by the polarizable continuum method. Constraining the Cu-SMet bond length to values between 245 and 310 pm (the range encountered in crystal structures) change the reduction potential by less than 70 mV. Similarly, we have studied five typical blue copper proteins spanning the whole range of reduction potentials: stellacyanin, plastocyanin, azurin, rusticyanin, and ceruloplasmin. These studies included the methionine (or glutamine) ligand as well as the back-bone carbonyl oxygen group that is a ligand in azurin and is found at larger distances in the other proteins. The active-site models of these proteins show a variation in the reduction potential of about 140 mV, i.e., only a minor part of the range observed experimentally (800 mV). Consequently, we can conclude that the axial ligands have a small influence on the reduction potentials of the blue copper proteins. Instead, the large variation in the reduction potentials seems to arise mainly from variations in the solvent accessibility of the copper site and in the orientation of protein dipoles around the copper site. Received: 7 April 1999 / Accepted: 26 July 1999  相似文献   

14.
Quantum chemical calculations have been performed to study the all-metal π halogen bonding in Al(4)(2-)···halohydrocarbon complexes. The result shows the existence of the all-metal π halogen bond in the complexes. There are three interaction modes (top, corner, and side) between Al(4)(2-) and halohydrocarbon. The interaction energy of this interaction varies from a positive value to -90.54 kJ mol(-1) in Al(4)(2-)···I-ethyne-s complex. The interaction strength is affected greatly by the hybridization of C atom and follows the order of C(sp(3)) < C(sp(2)) < C(sp) in most complexes. The methyl group in the halogen donor plays a negative contribution to the formation of halogen bond. The halogen bonding becomes stronger for the heavier halogen atom. The effect of binding site on the strength of halogen bond is related with the nature of halogen atom. The complexes have been analyzed with electrostatic potential, NICS, ELF, NBO, and AIM.  相似文献   

15.
The facultative potentially tetradentate thioether ligands 1,2-bis(methylthioethylthio)ethane (2,2,2), 1,3-bis(2-methylthioethylthio)propane (2,3,2) and 1,2-bis(3-methylthiopropylthio)ethane (3,2,3) react with copper(II) salts to form Cu2(2,2,2)Cl4, Cu3(ligand)X6 (ligand = 2,3,2 and 3,2,3 X = Cl; ligand = 2,2,2 2,3,2 and 3,2,3 X = Br), and Cu(ligand)(ClO4)2. The stoichiometry and structures of these complexes are discussed in terms of the steric demands of the ligand and the nature of the halide. The [Cu(2,3,2)(ClO4)] ClO4 and [Cu(3,2,3)(ClO4) [ClO4 complexes have electronic spectra which exhibit the intense 600 nm band characteristic of the "blue" copper proteins. In fact, the spectrum of [Cu(2,3,2)(ClO4)]ClO4 is very similar to that of pseudomonas aeroginosa azurin.  相似文献   

16.
Complexes of the uranyl cation [UO(2)(2+)] with histidine (His), N-acetyl-histidine (NAH), tyrosine (Tyr), and N-acetyl-tyrosine (NAT) were studied by UV-visible and NMR spectroscopy, and by potentiometric titration. Protonation constants for each ligand are reported, as are cumulative formation constants for uranyl-amino acid complexes. Coupling constant data (J(CH)) for uranyl-histidine complexes indicate that inner-sphere solution interactions between histidine and uranyl cation are solely at the carboxylate site. At 25 degrees C the major uranyl-histidine complex has a cumulative formation constant of logbeta(110)=8.53, and a proposed formula of [UO(2)HisH(2)(OH)(2)](+); the stepwise formation constant, logK(UL), is estimated to be 5.6 ( approximately 8.53-(-6.1)-(-6.1)-15.15). Outer-sphere interactions, H-bonding or electrostatic interactions, are proposed as contributing a significant portion of the stability to the ternary uranyl-hydroxo-amino acid complexes. The temperature dependent protonation constants of histidine and formation constants between uranyl cation and histidine are reported from 10 to 35 degrees C; at 25 degrees C, DeltaG=-43.3 kJ/mol.  相似文献   

17.
The oxidation of phenols to ortho-quinones, catalyzed by tyrosinase, has been studied using the hybrid DFT method B3LYP. Since no X-ray structure exists for tyrosinase, information from the related enzymes hemocyanin and catechol oxidase were used to set up a chemical model for the calculations. Previous studies have indicated that the direct cleavage of O(2) forming a Cu(2)(III,III) state is energetically very unlikely. The present study therefore followed another mechanism previously suggested. In this mechanism, dioxygen attacks the phenolate ring which is then followed by O[bond]O cleavage. The calculations give a reasonable barrier for the O(2) attack of only 12.3 kcal/mol, provided one of the copper ligands is able to move substantially away from its direct copper coordination. This can be achieved with six histidine ligands even if these ligands are held in their positions by the enzyme, but can also be achieved if one of the coppers only has two histidine ligands and the third ligand is water. The next step of O[bond]O cleavage has a computed barrier of 14.4 kcal/mol, in reasonable agreement with the experimental overall rate for the catalytic cycle. For the other steps of the mechanism, only a preliminary investigation was made, indicating a few problems which require future QM/MM studies.  相似文献   

18.
A series of new iron(III) and copper(II) complexes of bovine serum transferrin (BTf), with carbonate and/or oxalate as the synergistic anion, are presented. The complexes [Fe(2)(CO(3))(2)BTf], [Fe(2)(C(2)O(4))(2)BTf], [Cu(2)(CO(3))(2)BTf] and [Cu(C(2)O(4))BTf] were prepared by standard titrimetric techniques. The oxalate derivatives were also obtained from the corresponding carbonate complexes by anion-displacement. The site-preference of the transition metal-oxalate synergism has facilitated the preparation and isolation of the mononuclear complex [Cu(C(2)O(4))BTf], the mixed-anion complexes [Cu(2)(CO(3))(C(2)O(4))BTf] and [Fe(2)(CO(3))(C(2)O(4))BTf] and the mixed-metal complex [FeCu(C(2)O(4))(2)BTf]. The sensitivity of electron paramagnetic resonance (EPR) spectroscopy to the nature of the synergistic anions at the specific-binding sites of the transferrins has made this physical technique particularly indispensable to this study. None of the other members of the transferrin family of proteins has ever been demonstrated to bind the ferric and cupric ions one after the other, each occupying a separate specific-binding site of the same transferrin molecule, as a response to the coordination restrictions imposed by the oxalate ion. The bathochromic shift of the visible p(pi)-d(pi*) CT band for iron(III)-BTf and the hypsochromic shift of the p(pi)-d(sigma*) CT band for copper(II)-BTf, on replacing carbonate by oxalate as the associated anion, are consistent with the relative positions of these anionic ligands in the spectrochemical series and the nature of the d-type acceptor orbitals involved in the CT transitions. The binding and spectroscopic properties of bovine serum transferrin--a serum transferrin--very nearly mirror those of human serum transferrin, but differ significantly from those of human lactoferrin.  相似文献   

19.
Density functional theory calculations have been used to evaluate the effects of inter-ring interactions within a covalently linked histidine-tyrosine cofactor such as that which is a ligand to the Cu(B) centre in cytochrome c oxidases and to investigate the energetics of histidine substitution at the Cu(B) centre. Small, but significant, perturbations of the redox potentials and/or p K(a) values of the histidine imidazole, the tyrosine phenol and the copper ion are found. The Cu(B)-N(cofactor) bond is estimated to be weaker than the Cu(B)-N(histidine coligand) bonds in the Cu(B)(I) state and in the Cu(B) (II) state when the cofactor is oxidized, by approximately 13 kJ/mol and approximately 23 kJ/mol, respectively. The calculations reveal that displacement of a histidine ligand from the Cu(B) centre, as is suggested in proposals of "histidine cycle" mechanisms for proton pumping in cytochrome c oxidases, is only energetically feasible if accompanied by protonation of the histidine imidazole and coupled to an endothermic process. It is proposed that the histidine-tyrosine cofactor ought to be considered as the substitutionally labile ligand to Cu(B) as the covalent crosslink would ensure displacement of the cofactor from Cu(B)-driven helix deformation. It is estimated that this process could store up to approximately 70 kJ/mol, which, based upon thermodynamic considerations, is sufficient for the pumping of two protons in the later steps (reductive phase) of the catalytic cycle. Ramifications of this proposition for the mechanism of proton pumping in cytochrome c oxidases are discussed.  相似文献   

20.
Summary The factors that control long-range electron transfer between two redox centers in a protein are summarized. Rack-induced bonding in blue copper proteins is described. The protein conformation forces the Cu(II) ion into a distorted geometry, lying at least 70 kJ mol–1 above the preferred square-planar geometry in energy. The distortion has the effect that the structural change associated with electron transfer is minimal and thus the reorganization energy small. Variations in back bonding are suggested to modulate the reduction potentials of blue proteins without any change in the energy of the charge-transfer transitions. In proton pumps there must be a structural control of the electron transfer rates (electron gating) and model studies suggest that this is best achieved by variations in the reorganization energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号