首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ClC chloride channels are voltage-gated transmembrane proteins that have been associated with a wide range of regulatory roles in vertebrates. To accomplish their function, they allow small inorganic anions to efficiently pass through, while blocking the passage of all other particles. Understanding the conduction mechanism of ClC has been the subject of many experimental investigations, but until now, the detailed dynamic mechanism was not known despite the availability of crystallographic structures. We investigate Cl(-) conduction by means of an all-atom molecular dynamics simulation of the ClC channel in a membrane environment. Based on our simulation results, we propose a king-of-the-hill mechanism for permeation, in which a lone ion bound to the center of the ClC pore is pushed out by a second ion that enters the pore and takes its place. Although the energy required to extract the single central ion from the pore is enormous, by resorting to this two-ion process, the largest free energy barrier for conduction is reduced to 4 kcal/mol. At the narrowest part of the pore, residues Tyr-445 and Ser-107 stabilize the central ion. There, the bound ion blocks the pore, disrupting the formation of a continuous water file that could leak protons, possibly preventing the passage of uncharged solutes.  相似文献   

2.
Dutzler R 《FEBS letters》2004,564(3):229-233
Members of the ClC family of voltage-gated chloride channels are found from bacteria to mammals with a considerable degree of conservation in the membrane-inserted, pore-forming region. The crystal structures of the ClC channels of Escherichia coli and Salmonella typhimurium provide a structural framework for the entire family. The ClC channels are homodimeric proteins with an overall rhombus-like shape. Each ClC dimer has two pores each contained within a single subunit. The ClC subunit consists of two roughly repeated halves that span the membrane with opposite orientations. This antiparallel architecture defines a chloride selectivity filter within the 15-A neck of a hourglass-shaped pore. Three Cl(-) binding sites within the selectivity filter stabilize ions by interactions with alpha-helix dipoles and by chemical interactions with nitrogen atoms and hydroxyl groups of residues in the protein. The Cl(-) binding site nearest the extracellular solution can be occupied either by a Cl(-) ion or by a glutamate carboxyl group. Mutations of this glutamate residue in Torpedo ray ClC channels alter gating in electrophysiological assays. These findings reveal a form of gating in which the glutamate carboxyl group closes the pore by mimicking a Cl(-) ion.  相似文献   

3.
Youn Jo Ko 《Biophysical journal》2010,98(10):2163-2169
Several prokaryotic ClC proteins have been demonstrated to function as exchangers that transport both chloride ions and protons simultaneously in opposite directions. However, the path of the proton through the ClC exchanger, and how the protein brings about the coupled movement of both ions are still unknown. In this work, we use an atomistic molecular dynamics (MD) simulation to demonstrate that a previously unknown secondary water pore is formed inside an Escherichia coli ClC exchanger. The secondary water pore is bifurcated from the chloride ion pathway at E148. From the systematic simulations, we determined that the glutamate residue exposed to the intracellular solution, E203, plays an important role as a trigger for the formation of the secondary water pore, and that the highly conserved tyrosine residue Y445 functions as a barrier that separates the proton from the chloride ion pathways. Based on our simulation results, we conclude that protons in the ClC exchanger are conducted via a water network through the secondary water pore, and we propose a new mechanism for the coupled transport of chloride ions and protons. It has been reported that several members of ClC proteins are not just channels that simply transport chloride ions across lipid bilayers; rather, they are exchangers that transport both the chloride ion and proton in opposite directions. However, the ion transit pathways and the mechanism of the coupled movement of these two ions have not yet been unveiled. In this article, we report a new finding (to our knowledge) of a water pore inside a prokaryotic ClC protein as revealed by computer simulation. This water pore is bifurcated from the putative chloride ion, and water molecules inside the new pore connect two glutamate residues that are known to be key residues for proton transport. On the basis of our simulation results, we conclude that the water wire that is formed inside the newly found pore acts as a proton pathway, which enables us to resolve many problems that could not be addressed by previous experimental studies.  相似文献   

4.
The ClC chloride channels control the ionic composition of the cytoplasm and the volume of cells, and regulate electrical excitability. Recently, it has been proposed that prokaryotic ClC channels are H+-Cl- exchange transporter. Although X-ray and molecular dynamics (MD) studies of bacterial ClC channels have investigated the filter open-close and ion permeation mechanism of channels, details have remained unclear. We performed MD simulations of ClC channels involving H+, Na+, K+, or H3O+ in the intracellular region to elucidate the open-close mechanism, and to clarify the role of H+ ion an H+-Cl- exchange transporter. Our simulations revealed that H+ and Na+ caused channel opening and the passage of Cl- ions. Na+ induced a bead-like string of Cl- -Na+-Cl--Na+-Cl- ions to form and permeate through ClC channels to the intracellular side with the widening of the channel pathway.  相似文献   

5.
Lu T  Nguyen B  Zhang X  Yang J 《Neuron》1999,22(3):571-580
Inwardly rectifying K+ channels bind intracellular magnesium and polyamines to generate inward rectification. We have examined the architecture of the inner pore of Kir2.1 channels by covalently attaching a constrained number (from one to four) of positively charged moieties of different sizes to the channel. Our results indicate that the inner pore is formed solely by the second transmembrane segment and is unprecedentedly wide. At a position critical for inward rectification (D172), the pore is sufficiently wide to bind three Mg2+ ions or polyamine molecules simultaneously. Single-channel recordings directly demonstrate that partially modified channels exhibit distinct subconductance levels. Such a wide inner pore may greatly facilitate ion permeation and high-affinity binding of multiple pore blockers to generate strong inward rectification.  相似文献   

6.
Ion channels are gated, i.e. they can switch conformation between a closed and an open state. Molecular dynamics simulations may be used to study the conformational dynamics of ion channels and of simple channel models. Simulations on model nanopores reveal that a narrow (<4 A) hydrophobic region can form a functionally closed gate in the channel and can be opened by either a small (approximately 1 A) increase in pore radius or an increase in polarity. Modelling and simulation studies confirm the importance of hydrophobic gating in K channels, and support a model in which hinge-bending of the pore-lining M2 (or S6 in Kv channels) helices underlies channel gating. Simulations of a simple outer membrane protein, OmpA, indicate that a gate may also be formed by interactions of charged side chains within a pore, as is also the case in ClC channels.  相似文献   

7.
Studies suggest that Ktr/Trk/HKT-type transporters have evolved from multiple gene fusions of simple K(+) channels of the KcsA type into proteins that span the membrane at least eight times. Several positively charged residues are present in the eighth transmembrane segment, M2(D), in the transporters but not K(+) channels. Some models of ion transporters require a barrier to prevent free diffusion of ions down their electrochemical gradient, and it is possible that the positively charged residues within the transporter pore may prevent transporters from being channels. Here we studied the functional role of these positive residues in three Ktr/Trk/HKT-type transporters (Synechocystis KtrB-mediated K(+) uniporter, Arabidopsis AtHKT1-mediated Na(+) uniporter and wheat TaHKT1-mediated K(+)/Na(+) symporter) by examining K(+) uptake rates in E. coli, electrophysiological measurements in oocytes and growth rates of E. coli and yeast. The conserved Arg near the middle of the M2(D) segment was essential for the K(+) transport activity of KtrB and plant HKTs. Combined replacement of several positive residues in TaHKT1 showed that the positive residue at the beginning of the M2(D), which is conserved in many K(+) channels, also contributed to cation transport activity. This positive residue and the conserved Arg both face towards the ion conducting pore side. We introduced an atomic-scale homology model for predicting amino acid interactions. Based on the experimental results and the model, we propose that a salt bridge(s) exists between positive residues in the M2(D) and conserved negative residues in the pore region to reduce electrostatic repulsion against cation permeation caused by the positive residue(s). This salt bridge may help stabilize the transporter configuration, and may also prevent the conformational change that occurs in channels.  相似文献   

8.
From stones to bones: the biology of ClC chloride channels   总被引:6,自引:0,他引:6  
Chloride (Cl(-)) is the most abundant extracellular anion in multicellular organisms. Passive movement of Cl(-) through membrane ion channels enables several cellular and physiological processes including transepithelial salt transport, electrical excitability, cell volume regulation and acidification of internal and external compartments. One family of proteins mediating Cl(-) permeability, the ClC channels, has emerged as important for all of these biological processes. The importance of ClC channels has in part been realized through studies of inherited human diseases and genetically engineered mice that display a wide range of phenotypes from kidney stones to petrified bones. These recent findings have demonstrated many eclectic functions of ClC channels and have placed Cl(-) channels in the physiological limelight.  相似文献   

9.
We tested the hypothesis that key residues in a putative intraluminal loop contribute to determination of ion permeation through the intracellular Ca(2+) release channel (inositol 1,4,5-trisphosphate receptors (IP(3)Rs)) that is gated by the second messenger inositol 1,4,5-trisphosphate (IP(3)). To accomplish this, we mutated residues within the putative pore forming region of the channel and analyzed the functional properties of mutant channels using a (45)Ca(2+) flux assay and single channel electrophysiological analyses. Two IP(3)R mutations, V2548I and D2550E, retained the ability to release (45)Ca(2+) in response to IP(3). When analyzed at the single channel level; both recombinant channels had IP(3)-dependent open probabilities similar to those observed in wild-type channels. The mutation V2548I resulted in channels that exhibited a larger K(+) conductance (489 +/- 13 picosiemens (pS) for V2548I versus 364 +/- 5 pS for wild-type), but retained a Ca(2+) selectivity similar to wild-type channels (P(Ca(2+)):P(K(+)) approximately 4:1). Conversely, D2550E channels were nonselective for Ca(2+) over K(+) (P(Ca(2+)):P(K(+)) approximately 0.6:1), while the K(+) conductance was effectively unchanged (391 +/- 4 pS). These results suggest that amino acid residues Val(2548) and Asp(2550) contribute to the ion conduction pathway. We propose that the pore of IP(3)R channels has two distinct sites that control monovalent cation permeation (Val(2548)) and Ca(2+) selectivity (Asp(2550)).  相似文献   

10.
Mammalian ClC-type chloride channels have large cytoplasmic carboxy-terminal domains whose function is still insufficiently understood. We investigated the role of the distal part of the carboxy-terminus of the muscle isoform ClC-1 by constructing and functionally evaluating two truncation mutants, R894X and K875X. Truncated channels exhibit normal unitary conductances and anion selectivities but altered apparent anion binding affinities in the open and in the closed state. Since voltage-dependent gating is strictly coupled to ion permeation in ClC-1 channels, the changed pore properties result in different fast and slow gating. Full length and truncated channels also differed in methanethiosulphonate (MTS) modification rate constants of an engineered cysteine at position 231 near the selectivity filter. Our data demonstrate that the carboxy-terminus of ClC channels modifies the conformation of the outer pore vestibule.  相似文献   

11.
ClC channels are a family of protein molecules containing two ion-permeation pores. Although these transmembrane proteins are important for a variety of physiological functions, their molecular operations are only superficially understood. High-resolution X-ray crystallography techniques have recently revealed the structures of two bacterial ClC channels, but whether vertebrate ClC channel pores are similar to those of bacterial homologues is not clear. To study the pore architecture of the Torpedo ClC-0 channel, we employed the substituted-cysteine-accessibility method (SCAM) and used charged methane thiosulfonate (MTS) compounds to modify the introduced cysteine. Several conclusions were derived from this approach. First, the MTS modification pattern from Y512C to E526C in ClC-0, which corresponds to residues forming helix R in bacterial ClC channels, is indeed consistent with the suggested helical structure. Second, the ClC-0 pore is more accessible to the negatively charged than to the positively charged MTS compound, a pore property that is regulated by the intrinsic electrostatic potential in the pore. Finally, attempts to modify the introduced cysteine at positions intracellular to the selectivity filter did not result in larger MTS modification rates for the open-state channel, suggesting that the fast gate of ClC-0 cannot be located at a position intracellular to the Cl- selectivity filter. Thus, the proposal that the glutamate side chain is the fast gate of the channel is applicable to ClC-0, revealing a structural and functional conservation of ClC channels between bacterial and vertebrate species.  相似文献   

12.
ClC-4 and ClC-5 are mammalian ClC isoforms with unique ion conduction and gating properties. Macroscopic current recordings in heterologous expression systems revealed very small currents at negative potentials, whereas a substantially larger instantaneous current amplitude and a subsequent activation were observed upon depolarization. Neither the functional basis nor the physiological impact of these channel features are currently understood. Here, we used whole-cell recordings to study pore properties of human ClC-4 channels heterologously expressed in tsA201 or HEK293 cells. Variance analysis demonstrated that the prominent rectification of the instantaneous macroscopic current amplitude is due to a voltage-dependent unitary current conductance. The single channel amplitudes are very small, i.e., 0.10 +/- 0.02 pA at +140 mV for external Cl(-) and internal I(-). Conductivity and permeability sequences were determined for various external and internal anions, and both values increase for anions with lower dehydration energies. ClC-4 exhibits pore properties that are distinct from other ClC isoforms. These differences can be explained by assuming differences in the size of the pore narrowing and the electrostatic potentials within the ion conduction pathways.  相似文献   

13.
Ion-binding properties of the ClC chloride selectivity filter   总被引:1,自引:0,他引:1  
The ClC channels are members of a large protein family of chloride (Cl-) channels and secondary active Cl- transporters. Despite their diverse functions, the transmembrane architecture within the family is conserved. Here we present a crystallographic study on the ion-binding properties of the ClC selectivity filter in the close homolog from Escherichia coli (EcClC). The ClC selectivity filter contains three ion-binding sites that bridge the extra- and intracellular solutions. The sites bind Cl- ions with mM affinity. Despite their close proximity within the filter, the three sites can be occupied simultaneously. The ion-binding properties are found conserved from the bacterial transporter EcClC to the human Cl- channel ClC-1, suggesting a close functional link between ion permeation in the channels and active transport in the transporters. In resemblance to K+ channels, ions permeate the ClC channel in a single file, with mutual repulsion between the ions fostering rapid conduction.  相似文献   

14.
ClC chloride channels, which are ubiquitously expressed in mammals, have a unique double-barreled structure, in which each monomer forms its own pore. Identification of pore-lining elements is important for understanding the conduction properties and unusual gating mechanisms of these channels. Structures of prokaryotic ClC transporters do not show an open pore, and so may not accurately represent the open state of the eukaryotic ClC channels. In this study we used cysteine-scanning mutagenesis and modification (SCAM) to screen >50 residues in the intracellular vestibule of ClC-0. We identified 14 positions sensitive to the negatively charged thiol-modifying reagents sodium (2-sulfonatoethyl)methanethiosulfonate (MTSES) or sodium 4-acetamido-4'-maleimidylstilbene-2'2-disulfonic acid (AMS) and show that 11 of these alter pore properties when modified. In addition, two MTSES-sensitive residues, on different helices and in close proximity in the prokaryotic structures, can form a disulfide bond in ClC-0. When mapped onto prokaryotic structures, MTSES/AMS-sensitive residues cluster around bound chloride ions, and the correlation is even stronger in the ClC-0 homology model developed by Corry et al. (2004). These results support the hypothesis that both secondary and tertiary structures in the intracellular vestibule are conserved among ClC family members, even in regions of very low sequence similarity.  相似文献   

15.
All eukaryotic and some prokaryotic ClC anion transport proteins have extensive cytoplasmic C-termini containing two cystathionine-β-synthase (CBS) domains. CBS domain secondary structure is highly conserved and consists of two a-helices and three b-strands arranged as b1-a1-b2-b3-a2. ClC CBS domain mutations cause muscle and bone disease and alter ClC gating. However, the precise functional roles of CBS domains and the structural bases by which they regulate ClC function are poorly understood. CLH-3a and CLH-3b are C. elegans ClC anion channel splice variants with strikingly different biophysical properties. Splice variation occurs at cytoplasmic N- and C-termini and includes several amino acids that form a2 of the second CBS domain (CBS2). We demonstrate that interchanging a2 between CLH-3a and CLH-3b interchanges their gating properties. The "R-helix" of ClC proteins forms part of the ion conducting pore and selectivity filter and is connected to the cytoplasmic C-terminus via a short stretch of cytoplasmic amino acids termed the "R-helix linker". C-terminus conformation changes could cause R-helix structural rearrangements via this linker. X-ray structures of three ClC protein cytoplasmic C-termini suggest that a2 of CBS2 and the R-helix linker could be closely apposed and may therefore interact. We found that mutating apposing amino acids in a2 and the R-helix linker of CLH-3b was sufficient to give rise to CLH-3a-like gating. We postulate that the R-helix linker interacts with CBS2 a2, and that this putative interaction provides a pathway by which cytoplasmic C-terminus conformational changes induce conformational changes in membrane domains that in turn modulate ClC function.  相似文献   

16.
The ability to discriminate between different ionic species, termed ion selectivity, is a key feature of ion channels and forms the basis for their physiological function. Members of the degenerin/epithelial sodium channel (DEG/ENaC) superfamily of trimeric ion channels are typically sodium selective, but to a surprisingly variable degree. While acid-sensing ion channels (ASICs) are weakly sodium selective (sodium:potassium ratio ∼10:1), ENaCs show a remarkably high preference for sodium over potassium (>500:1). This discrepancy may be expected to originate from differences in the pore-lining second transmembrane segment (M2). However, these show a relatively high degree of sequence conservation between ASICs and ENaCs, and previous functional and structural studies could not unequivocally establish that differences in M2 alone can account for the disparate degrees of ion selectivity. By contrast, surprisingly little is known about the contributions of the first transmembrane segment (M1) and the preceding pre-M1 region. In this study, we used conventional and noncanonical amino acid–based mutagenesis in combination with a variety of electrophysiological approaches to show that the pre-M1 and M1 regions of mASIC1a channels are major determinants of ion selectivity. Mutational investigations of the corresponding regions in hENaC show that these regions contribute less to ion selectivity, despite affecting ion conductance. In conclusion, our work suggests that the remarkably different degrees of sodium selectivity in ASICs and ENaCs are achieved through different mechanisms. These results further highlight how M1 and pre-M1 are likely to differentially affect pore structure in these related channels.  相似文献   

17.
Voltage sensor domains (VSD) are transmembrane proteins that respond to changes in membrane voltage and modulate the activity of ion channels, enzymes, or in the case of proton channels allow permeation of protons across the cell membrane. VSDs consist of four transmembrane segments, S1-S4, forming an antiparallel helical bundle. The S4 segment contains several positively charged residues, mainly arginines, located at every third position along the helix. In the voltage-gated Shaker K(+) channel, the mutation of the first arginine of S4 to a smaller uncharged amino acid allows permeation of cations through the VSD. These currents, known as ω-currents, pass through the VSD and are distinct from K(+) currents passing through the main ion conduction pore. Here we report molecular dynamics simulations of the ω-current in the resting-state conformation for Kv1.2 and for four of its mutants. The four tested mutants exhibit various degrees of conductivity for K(+) and Cl(-) ions, with a slight selectivity for K(+) over Cl(-). Analysis of the ion permeation pathway, in the case of a highly conductive mutant, reveals a negatively charged constriction region near the center of the membrane that might act as a selectivity filter to prevent permeation of anions through the pore. The residues R1 in S4 and E1 in S2 are located at the narrowest region of the ω-pore for the resting state conformation of the VSD, in agreement with experiments showing that the largest increase in current is produced by the double mutation E1D and R1S.  相似文献   

18.
Berger TK  Isacoff EY 《Neuron》2011,72(6):991-1000
In classical tetrameric voltage-gated ion channels four voltage-sensing domains (VSDs), one from each subunit, control one ion permeation pathway formed by four pore domains. The human Hv1 proton channel has a different architecture, containing?a VSD, but lacking a pore domain. Since its location is not known, we searched for the Hv permeation pathway. We find that mutation of the S4 segment's third arginine R211 (R3) compromises proton selectivity, enabling conduction of a metal cation and even of the large organic cation guanidinium, reminiscent of Shaker's omega pore. In the open state, R3 appears to interact with an aspartate (D112) that is situated in the middle of S1 and is unique to Hv channels. The double mutation of both residues further compromises cation selectivity. We propose that membrane depolarization reversibly positions R3 next to D112 in?the transmembrane VSD to form the ion selectivity filter in the channel's open conformation.  相似文献   

19.
Yin J  Kuang Z  Mahankali U  Beck TL 《Proteins》2004,57(2):414-421
ClC chloride channels possess a homodimeric structure in which each monomer contains an independent chloride ion pathway. ClC channel gating is regulated by chloride ion concentration, pH and voltage. Based on structural and physiological evidence, it has been proposed that a glutamate residue on the extracellular end of the selectivity filter acts as a fast gate. We utilized a new search algorithm that incorporates electrostatic information to explore the ion transit pathways through wild-type and mutant bacterial ClC channels. Examination of the chloride ion permeation pathways supports the importance of the glutamate residue in gating. An external chloride binding site previously postulated in physiological experiments is located near a conserved basic residue adjacent to the gate. In addition, access pathways are found for proton migration to the gate, enabling pH control at hyperpolarized membrane potentials. A chloride ion in the selectivity filter is required for the pH-dependent gating mechanism.  相似文献   

20.
Potassium channels are membrane-spanning proteins with several transmembrane segments and a single pore region where ion conduction takes place (Biggin, P. C., Roosild, T., and Choe, S. (2000) Curr. Opin. Struct. Biol. 4, 456-461; Doyle, D. A., Morais Cabral, J., Pfuetzner, R. A., Kuo, A., Gulbis, J. M., Cohen, S. L., Chait, B. T., and MacKinnon, R. (1998) Science 280, 69-77). TOK1, a potassium channel identified in the yeast Saccharomyces cerevisiae, was the first described member from a growing new family of potassium channels with two pore domains in tandem (2P) (Ketchum, K. A., Joiner, W. J., Sellers, A. J., Kaczmarek, L. K., and Goldstein, S. A. (1995) Nature 376, 690-695). In an attempt to understand the relative contribution of each one of the 2P from TOK1 to the functional properties of this channel, we split and expressed the pore domains separately or in combination. Expression of the two domains separately rescued a potassium transport-deficient yeast mutant, suggesting that each domain forms functional potassium-permeable channels in yeast. In Xenopus laevis oocytes expression of each pore domain resulted in the appearance of unique inwardly rectifying cationic channels with novel gating and pharmacological properties. Both pore domains were poorly selective to potassium; however, upon co-expression they partially restored TOK1 channel selectivity. The single channel conductance was different in both pore domains with 7 +/- 1 (n = 12) and 15 +/- 2 (n = 12) picosiemens for the first and second domain, respectively. In light of the known structure of the Streptomyces lividans KcsA potassium channel pore (see Doyle et al. above), these results suggest a novel non-four-fold-symmetric architecture for 2P potassium-selective channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号