首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《FEBS letters》1987,218(1):52-54
The N-terminal sequence of the 8 kDa polypeptide isolated from spinach photosystem I (PS I) particles was determined by a gas-phase sequencer. The sequence showed the characteristic distribution of cysteine residues in the bacterial-type ferredoxins and was highly homologous to that deduced from the chloroplast gene frxA of liverwort, Marchantia polymorpha. It is strongly suggested that the 8 kDa polypeptide has to be an apoprotein of one of the iron-sulfur center proteins in PS I particles.  相似文献   

2.
Six 'core' subunits of pea photosystem I have been isolated and their N-terminal amino acid sequences determined by gas-phase or solid-phase sequencing. On average more than thirty residues were determined from the N-terminus of each polypeptide. This sequence analysis has revealed three polypeptides with charged N-terminal regions (21, 17 and 11 kDa subunits), one polypeptide with a predominantly hydrophobic N-terminal region (9 kDa subunit), one polypeptide which is cysteine-rich (8 kDa subunit) and one which is alanine-rich (13 kDa subunit).  相似文献   

3.
The 9 kDa polypeptide from spinach photosystem I (PS I) complex was isolated with iron-sulfur cluster(s) by an n-butanol extraction procedure under anaerobic conditions. The polypeptide was soluble in a saline solution and contained non-heme irons and inorganic sulfides. The absorption spectrum of this iron-sulfur protein was very similar to those of bacterial-type ferredoxins. The amino acid sequence of the polypeptide was determined by using a combination of gas-phase sequencer and conventional procedures. It was composed of 80 amino acid residues giving a molecular weight of 8,894, excluding iron and sulfur atoms. The sequence showed the typical distribution of cysteine residues found in bacterial-type ferredoxins and was highly homologous (91% homology) to that deduced from the chloroplast gene, frxA, of liverwort, Marchantia polymorpha. The 9 kDa polypeptide is considered to be the iron-sulfur protein responsible for the electron transfer reaction in PS I from center X to [2Fe-2S] ferredoxin, namely a polypeptide with center(s) A and/or B in PS I complex. It is noteworthy that the 9 kDa polypeptide was rather hydrophilic and a little basic in terms of the primary structure. A three-dimensional structure was simulated on the basis of the tertiary structure of Peptococcus aerogenes [8Fe-8S] ferredoxin, and the portions in the molecule probably involved in contacting membranes or other polypeptides were indicated. The phylogenetic implications of the structure of the present polypeptide as compared with those of several bacterial-type ferredoxins are discussed.  相似文献   

4.
By using a hydroxyapatite column, the five major Photosystem I (PSI) subunits (PsaA,-B,-C,-D,-E) solubilized by sodium dodecyl sulfate (SDS) were fractionated from a spinach PSI reaction center preparation. Another small (5-6 kDa) polypeptide was also separated, and purified to homogeneity. Mass spectroscopy yielded its molecular weight to be 5942 +/- 10. This polypeptide had an N-terminal sequence homologous to those of previously reported 5-kDa subunits from spinach and wheat and a 6.1-kDa subunit of Chlamydomonas, which had all been assigned to Photosystem II (PSII) and designated as PsbW. However, we found similar 5-kDa polypeptides with highly conserved N-terminal sequences ubiquitously in PSI particles from other plants including Daikon (Raphanus sativus, Japanese radish), Chingensai (Brassica parachinensis, Chinese cabbage), parsley and Shungiku (Chrysanthemum coronarium, Garland chrysanthemum) as well. Preparations of spinach PSI particles prepared by using a mild detergent (digitonin) had this 5-kDa subunit, while PSII particles did not. Moreover, a bare-bone PSI reaction center preparation consisting of PsaA/B alone had a more than stoichiometric amount of this 5-kDa polypeptide. A mechanically (without detergent) fractionated stroma thylakoid preparation from Phytolacca americana, which lacked other PSII subunits, also contained this 5-kDa subunit. Thus, we propose that this 5-kDa polypeptide, previously designated as a PSII subunit (PsbW), is an integral subunit of PSI as well.  相似文献   

5.
The Mr 10,000 phosphoprotein was purified from photosystem II particles by solubilization of the particles in 5% (w/v) dodecyl dimethylamine oxide, centrifugation in 10% (w/v) sucrose, and three chromatography steps. The purified phosphoprotein showed a unique NH2 terminus indicating a highly purified polypeptide. The amino acid sequence for the first nine residues is NH2-Ala-Thr-Gln-Thr-Val-Glu-Ser-Ser-Ser . . . COOH. The amino acid composition was determined and could also be used to help distinguish the polypeptide from other known thylakoid proteins. The sequence and composition data indicated that the Mr 10,000 phosphoprotein is neither the hydrophobic 8-kDa subunit of the energy coupling complex nor cytochrome b-559, but rather a unique, as yet unidentified, polypeptide associated with photosystem II.  相似文献   

6.
Triton X-100对70℃处理后光系统Ⅰ颗粒耗氧速率的影响   总被引:4,自引:0,他引:4  
比较了70℃10min处理前后和加与不加Triton X-100时光系统Ⅰ颗粒的耗氧速率、荧光光谱和吸收光谱等.70℃处理后光系统Ⅰ颗粒的耗氧速率明显降低,Triton X-100可以恢复其耗氧速率.在Triton X-100存在时,光系统Ⅰ颗粒耗氧速率的急剧上升是光系统Ⅰ核心复合物和捕光色素蛋白复合体Ⅰ分离后产生的单线态氧引起的.  相似文献   

7.
Two cDNA clones for the barley photosystem I polypeptide which migrates with an apparent molecular mass of 9.5 kDa on SDS-polyacrylamide gels have been isolated using antibodies and an oligonucleotide probe. The determined N-terminal amino acid sequence for the mature polypeptide confirms the identification of the clones. The 644 base-pair sequence of one of the clones contains one large open reading frame coding for a 14 882 Da precursor polypeptide. The molecular mass of the mature polypeptide is 10 193 Da. The hydropathy plot of the polypeptide shows one membrane-spanning region with a predicted -helix secondary structure. The gene for the 9.5 kDa polypeptide has been designated PsaH.  相似文献   

8.
A cDNA clone encoding the photosystem I subunit, PSI-G was isolated from barley using an oligonucleotide specifying a partial amino acid sequence from a 9 kDa polypeptide of barley photosystem I. The 724 bp sequence contains an open reading frame encoding a precursor polypeptide of 15 107 kDa. Import studies using the in vitro expressed barley PsaG cDNA clone demonstrate that PSI-G migrates with an apparent molecular mass of 9 kDa on SDS-polyacrylamide gels together with PSI-C (subunit-VII). The previous assignment of the gene product of PsaG from spinach as subunit V (Steppuhn J, Hermans J, Nechushtai R, Ljungberg U, Thümmler F, Lottspeich F, Herrmann RG, FEBS Lett 237: 218–224, 1988) needs to be re-examined. The expression of the psaG gene is light-induced similar to other barley photosystem I genes. A significant sequence similarity to PSI-K from Chlamydomonas reinhardtii was discovered when a gene database was searched with the barley PSI-G amino acid sequence. Extensive sequence similarity between the nuclear-encoded photosystem I subunits has not previously been found. The observed sequence similarity between PSI-G and PSI-K suggests a symmetric location of these subunits in the photosystem I complex. The hydropathy plot of the barley PSI-G polypeptide indicates two membrane-spanning regions which are also found at the corresponding locations in the PSI-K polypeptide. PSI-G and PSI-K probably have evolved from a gene duplication of an ancestral gene.  相似文献   

9.
A photosystem II core complex from spinach exhibiting high rates of electron transport was obtained rapidly and in high yield by treatment of a Tris-extracted, O2-evolving photosystem II preparation with the detergent dodecyl-beta-D-maltoside. The core complex was essentially free of light-harvesting chlorophyll-protein and photosystem I polypeptides, and was highly enriched in the polypeptides associated with the photosystem II reaction center (45 and 49 kDa), cytochrome b559, and three polypeptides in the region 32-34 kDa. The photosystem II core complex contained two chlorophyll-proteins which had a slightly higher apparent molecular mass than CPa-1 and CPa-2. Additionally, a high-molecular-mass chlorophyll-protein complex termed CPa* was observed, which exhibited a low fluorescence yield when illuminated with ultraviolet light. This observation suggests that CPa* contains a functionally efficient quencher of chlorophyll fluorescence, possibly P680.  相似文献   

10.
Ferredoxin has been effectively cross-linked to photosystem I complex by treatment of purified particles or thylakoids with N-ethyl-3-(3-dimethylaminopropyl)carbodiimide, a zero-length cross-linker which stabilizes protein-protein electrostatic interactions. Analysis of photosystem I polypeptide composition after such a treatment showed a specific decrease of the 20-kDa subunit and the appearance of a new component of about 42 kDa which was recognized by the anti-ferredoxin antibody. Cross-linking of ferredoxin to thylakoids allowed the membrane preparation to photoreduce cytochrome c without requiring exogenous ferredoxin, whereas photosystem I particles purified from treated thylakoids were inactivated in the NADP+ photoreduction activity. From these results, it can be inferred that the polypeptide of 20 kDa is the photosystem I subunit which interacts with ferredoxin during the photosynthetic electron transport.  相似文献   

11.
The psaI gene encoding the 5.2 kDa protein component (PsaI) of the photosystem I complex was cloned from the cyanobacterium Anabaena 29413. The gene is present in single copy in this cyanobacterial genome. The nucleotide sequence of a 500 bp region of the cloned DNA revealed the presence of an open reading frame encoding a 46 amino acid long polypeptide. The N-terminal 11 residues are absent in the mature polypeptide and thus represents the first identified cleavable presequence on the PsaI protein. We suggest that this presequence directs the N-terminus of the protein to the thylakoid lumen.  相似文献   

12.
M Ikeuchi  Y Inoue 《FEBS letters》1988,241(1-2):99-104
The photosystem II reaction center complex, so-called D1-D2-cytochrome b-559 complex, isolated from higher plants contains a new component of about 4.8 kDa [(1988) Plant Cell Physiol. 29, 1233-1239]. The partial amino acid sequence of this component from spinach was determined after release of N-terminal blockage. The determined sequence matched an open reading frame (ORF36) of the chloroplast genome from tobacco and liverwort, which is located downstream from the psbK gene and forms an operon with psbK. The predicted product consists of 36 amino acid residues and has a single membrane-spanning segment. High homology between the tobacco and liverwort genes, and its presence in the reaction center complex suggest an important role for this component in the photosystem II complex. Since this gene corresponds to a part of the formerly designated psbI gene, we propose to revise the definition of psbI as the gene encoding the 4.8 kDa reaction center component.  相似文献   

13.
A chlorophyll-protein was isolated from a Synechococcus P700-chlorophyll a-protein complex free from small subunits (CP1-e) by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis after treatment with 2% 2-mercaptoethanol and 2% SDS. In contrast to CP1-e which, when electrophoresed under denaturating conditions, showed two polypeptide bands of 62 and 60 kDa, the chlorophyll-protein contained only the 60-kDa polypeptide and hence is called CP60. The yield of CP60 was maximal with 1-2% SDS and 2-4% sulfhydryl reagents because the chlorophyll-protein was denatured at higher concentrations of the reagents. The absorption spectrum of CP60, which retained more than half of the chlorophyll alpha molecules originally associated with the 60-kDa subunit of the photosystem I reaction center complex, showed a red band maximum at 672 nm and a small absorption band around 700 nm at liquid nitrogen temperature. CP60 emitted a fluorescence band at 717 to 725 nm at 77 degrees K. The temperature dependence of the far red band of CP60 was essentially the same as that of CP1-e between 77 and 273 degrees K. No photoresponse of P700 was detected in CP60. The results suggest that the two polypeptides resolved by SDS-gel electrophoresis from CP1-e are apoproteins of two distinct chlorophyll-proteins and that CP60 represents a chlorophyll-bearing 60-kDa subunit functioning as an intrinsic antenna protein of the photosystem I reaction center complex. It will also be shown that the temperature dependence of the far red fluorescence band is not related to the photosystem I photochemistry.  相似文献   

14.
Plastocyanin is specifically cross-linked by incubation with N-ethyl-3-[3-(dimethylamino)propyl]carbodiimide (EDC) to a subunit of photosystem I in stroma lamellae and in isolated photosystem I complex. SDS-PAGE shows the disappearance of a 18.5 kDa subunit and the appearance of a new 31.5 kDa protein which was recognized by anti-plastocyanin antibodies. The isolated subunit was identified by its N-terminal amino acid sequence as the mature peptide coded by the nuclear gene psaF [Steppuhn et al. (1988) FEBS Lett. 237, 218–224]. P700+ was reduced by cross-linked plastocyanin with the same halftime of 13 μs as found in the native complex. This is evidence that cross-linking conserved the orientation of the complex and that the 18.5 kDa subunit provides the conformation of photosystem I necessary for the extremely rapid electron transfer from plastocyanin to P700+.  相似文献   

15.
H Koike  M Ikeuchi  T Hiyama  Y Inoue 《FEBS letters》1989,253(1-2):257-263
The photosystem I core complex isolated from a thermophilic cyanobacterium, Synechococcus vulcanus, is composed of eight low-molecular-mass proteins of 18, 14, 12, 9.5, 9, 6.5, 5 and 4.1 kDa in addition to the PS I chlorophyll protein. N-terminal amino acid sequences of all these components were determined and compared with those of higher plants. Clearly, the 9.5 kDa component corresponds to the protein which carries the non-heme iron-sulfur centers A and B. This protein is so poorly visualized by staining that it has probably been overlooked in gel electrophoresis analyses. The 18, 14, 12 and 9 kDa components show appreciable homology with respective subunits of higher plant PS I. In contrast, the 6.5, 5 and 4.1 kDa components do not correspond to any known proteins except that the sequence of the 4.1 kDa component matches an unidentified open reading frame (ORF) 42 (liverwort) or ORF44 (tobacco) of chloroplast DNA.  相似文献   

16.
Mitochondrial NADH:ubiquinone oxidoreductase (complex I) is the most complicated enzyme in the respiratory chain and is composed of at least 26 distinct polypeptides. Two hydrophilic subfractions of bovine heart complex I were systematically resolved into individual polypeptides by chromatography. Three polypeptides (51, 24, and 9 kDa) were isolated from the flavoprotein fraction (FP) of complex I, and the complete amino acid sequence of the 9 kDa polypeptide was determined. The 9 kDa polypeptide is composed of 75 amino acids with a molecular weight of 8,437. This protein exhibits no obvious sequence similarity to other proteins. The iron-sulfur protein fraction (IP) of complex I was separated into eight polypeptides, 75, 49, 30, 20, 18, 15, 13 kDa-A, and 13 kDa-B. The 20 kDa polypeptide was recognized as a novel component of IP for the first time. The N-terminal and several peptide sequences of the 20 kDa polypeptide were determined. Comparison of the sequences revealed significant sequence similarities of the 20 kDa polypeptide to the psbG gene products encoded in the chloroplast genome. The conserved sequence in these proteins was also found in the small subunit of the nickel-containing hydrogenases. These results suggest that complex I is related to other redox enzyme complexes.  相似文献   

17.
The chlorophyll-protein complexes of the thylakoid membrane from Prochlorothrix hollandica were identified following electrophoresis under nondenaturing conditions. Five complexes, CP1-CP5, were resolved and these green bands were analyzed by spectroscopic and immunological methods. CP1 contains the photosystem I (PSI) reaction center, as this complex quenched fluorescence at room temperature, and had a 77 K fluorescence emission peak at 717 nm. CP4 contains the major chlorophyll-a-binding proteins of the photosystem II (PSII) core, because this complex contained polypeptides which cross-reacted to antibodies raised against Chlamydomonas PSII proteins 5 and 6. Furthermore, fluorescence excitation studies at 77 K indicated that only a Chl a is bound to CP4. Complexes CP2, CP3 and CP5 contained functionally bound Chl a and b as judged by absorption spectroscopy at 20 degrees C and fluorescence excitation spectra at 77 K. CP2, CP3 and CP5 all contain polypeptides of 30-33 kDa which are immunologically distinct from the LHC-II complex of higher plant thylakoids.  相似文献   

18.
The 23 kDa polypeptide of the oxygen-evolving complex of photosystem II has been extracted from pea photosystem II particles by washing with 1 M NaCl and purified by anion-exchange chromatography. The N-terminal amino acid sequence has been determined and specific antisera have been raised in rabbits and used to screen a pea-leaf cDNA library in gt11. Determination of the nucleotide sequence of two clones provided the nucleotide sequence for the full 23 kDa polypeptide. The deduced amino acid sequence showed it to code for a mature protein of 186 amino acid residues with an N-terminal presequence of 73 amino acid residues showing a high degree of conservation with previously reported 23 kDa sequences from spinach and Chlamydomonas. Southern blots of genomic DNA from pea probed with the labelled cDNA gave rise to only one band suggesting that the protein is encoded by a single gene. Northern blots of RNA extracted from various organs indicated a message of approximately 1.1 kb, in good agreement with the size of the cDNA, in all chlorophyll-containing tissues. Western blots of protein extracted from the same organs indicated that the 23 kDa polypeptide was present in all major organs of the plant except the roots.Abbreviations bis-Tris bis (2-hydroxyethyl) imino-tris (hydroxymethyl)-methane - pfu plaque-forming units  相似文献   

19.
Isolated photosystem I (PSI)-110 particles, prepared using a minimal concentration of Triton X-100 [J. E. Mullet, J. J. Burke, and C. J. Arntzen (1980) Plant Physiol. 65, 814-822] and further subjected to short-term solubilization with sodium dodecyl sulfate (SDS), were resolved into four pigment-containing bands on polyacrylamide gel electrophoresis (PAGE). We have identified these in order of increasing electrophoretic mobility as being (a) CPIa, (b) CPI, (c) the light-harvesting complex of photosystem I (LHC-I), and (d) a free pigment-zone. LHC-I had an absorption maximum in the red at 668-669 nm and a shoulder at 650 nm, which was resolved by its first-derivative spectrum to indicate the presence of chlorophyll b. LHC-I exhibited a 77 degrees K fluorescence emission maximum at 729-730 nm. The 77 degrees K fluorescence emission maxima of CPIa and CPI, excised from the gel, were at 729 and 722 nm, respectively. The LHC-I band, excised from the gel and rerun on dissociating SDS-PAGE, was resolved into two polypeptide doublets of 24-22.5 and 21-20.5 kDa. The CPIa band under similar conditions was resolved into polypeptides of 68, 24, 22.5, 21, 20.5, 19, 15, and 14 kDa; on the contrary, CPI contained only the 68-kDa polypeptide. When intact thylakoids were subjected to "nondenaturing" SDS-PAGE, LHC-I comigrated with an oligomeric form (dimer) of the light-harvesting chlorophyll a/b pigment-protein that preferentially serves photosystem II (LHCP-II). When this combined LHC-I/LHCP-II pigment-protein band was prepared by SDS-PAGE from isolated stroma lamellae, it exhibited a long-wavelength fluorescence band near 730 nm at 77 degrees K. When a similar preparation was obtained from sucrose density gradients containing SDS [J. Argyroudi-Akoyunoglou and H. Thomou (1981) FEBS Lett. 135, 171-181], it was found to be enriched in a 21-kDa polypeptide. The data suggest that the 21-kDa polypeptide of LHC-I is the chlorophyll-containing polypeptide responsible for the long-wavelength fluorescence of LHC-I; other polypeptides in the complex (20.5, 22.5, and 24 kDa) presumably bind chlorophyll and also serve an antennae function.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号