首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Key message

A comprehensive linkage atlas for seed yield in rapeseed.

Abstract

Most agronomic traits of interest for crop improvement (including seed yield) are highly complex quantitative traits controlled by numerous genetic loci, which brings challenges for comprehensively capturing associated markers/genes. We propose that multiple trait interactions underlie complex traits such as seed yield, and that considering these component traits and their interactions can dissect individual quantitative trait loci (QTL) effects more effectively and improve yield predictions. Using a segregating rapeseed (Brassica napus) population, we analyzed a large set of trait data generated in 19 independent experiments to investigate correlations between seed yield and other complex traits, and further identified QTL in this population with a SNP-based genetic bin map. A total of 1904 consensus QTL accounting for 22 traits, including 80 QTL directly affecting seed yield, were anchored to the B. napus reference sequence. Through trait association analysis and QTL meta-analysis, we identified a total of 525 indivisible QTL that either directly or indirectly contributed to seed yield, of which 295 QTL were detected across multiple environments. A majority (81.5%) of the 525 QTL were pleiotropic. By considering associations between traits, we identified 25 yield-related QTL previously ignored due to contrasting genetic effects, as well as 31 QTL with minor complementary effects. Implementation of the 525 QTL in genomic prediction models improved seed yield prediction accuracy. Dissecting the genetic and phenotypic interrelationships underlying complex quantitative traits using this method will provide valuable insights for genomics-based crop improvement.
  相似文献   

2.

Key message

Five quantitative trait loci and one epistatic interaction were associated with heat tolerance in a doubled haploid population of broccoli evaluated in three summer field trials.

Abstract

Predicted rising global temperatures due to climate change have generated a demand for crops that are resistant to yield and quality losses from heat stress. Broccoli (Brassica oleracea var. italica) is a cool weather crop with high temperatures during production decreasing both head quality and yield. Breeding for heat tolerance in broccoli has potential to both expand viable production areas and extend the growing season but breeding efficiency is constrained by limited genetic information. A doubled haploid (DH) broccoli population segregating for heat tolerance was evaluated for head quality in three summer fields in Charleston, SC, USA. Multiple quantitative trait loci (QTL) mapping of 1,423 single nucleotide polymorphisms developed through genotyping-by-sequencing identified five QTL and one positive epistatic interaction that explained 62.1% of variation in heat tolerance. The QTL identified here can be used to develop markers for marker-assisted selection and to increase our understanding of the molecular mechanisms underlying plant response to heat stress.
  相似文献   

3.

Background and aims

As an essential mineral element, selenium (Se) plays a critical role in human health. Given the low concentrations (<100 mg Se kg–1) of Se in staple crops, the identification of genetic resources with enriched Se, as well as the genes controlling Se concentration, is valuable for the marker-assisted selection of Se-rich varieties.

Methods

We determined the chromosomal quantitative trait (QTL) for Se concentration over two consecutive plant growth cycles using recombinant inbred lines (RILs) treated with two different concentrations of Se under both field-grown and hydroponic conditions.

Results

Several QTL for Se concentration were detected across the different treatments. Significant genotypic variation in the tissues of the RIL was found at Se-deficicencycondition. Notably, a QTL located on 3D (interval 214.00–218.00, Qse.sau-3D) affected root length and Se concentration in the leaves and grains, suggesting the existence of the same allele with distinctly different functions. However, the QTL for the agronomic traits measured (plant height, flowering time, and tillering number) and Se concentration were not found to be located on the same chromosomal regions, suggesting that marker-assisted selection for both traits is feasible. Se concentrations in the grains were primarily determined by the mineral transport efficiency of the lines, and the line with the highest Se concentration in the grains always possessed larger, more fibrous root systems. The concentrations of Se in the plant tissues were in the order of: root > stem > grain.

Conclusions

This is the first study to document a Se-rich synthetic wheat line, and root structure and Se grain concentration was strongly affected by QTL located on 3D.
  相似文献   

4.

Background

Enhanced processing of emotional stimuli after stress exposure is reported to be associated with stress-induced cortisol. Because enhanced emotional information processing could make cognitive emotion regulation more difficult, it was hypothesized that stress-induced cortisol would be associated with non-negative interpretation generation associated with the cognitive reappraisal processes.

Methods

A total of 36 participants (Mean age?=?21.3 years, SD?=?1.8) watched video clips of depression-related stressful situations before and after the administration of a stress induction task. They were then asked to generate as many non-negative interpretations as possible to reduce the depressive mood. Saliva samples were obtained before and after the stress induction task to measure change in the cortisol level.

Results

Participants were allocated post-hoc to either a responder (n?=?19) or non-responder group (n?=?17) based on the cortisol response to the stress induction task. The number of non-negative interpretations generated following the stress induction task was reduced only in the cortisol responders. The number of post-stress non-negative interpretations was fewer in the responder group when compared by sex, baseline cortisol level, and the number of pre-stress non-negative interpretations, statistically controlled.

Conclusions

Although baseline cortisol and sex may have impacted the results, the results suggest that stress-induced cortisol is associated with difficulty in non-negative interpretation generation during the cognitive reappraisal process.
  相似文献   

5.

Background

In adults, hypothalamus–pituitary–adrenal (HPA) axis activity shows sexual dimorphism, and this is thought to be a mechanism underlying sex-specific disease incidence. Evidence is scarce on whether these sex differences are also present in childhood. In a meta-analysis, we recently found that basal (non-stimulated) cortisol in saliva and free cortisol in 24-h urine follow sex-specific patterns. We explored whether these findings could be extended with sex differences in HPA axis reactivity.

Methods

From inception to January 2016, PubMed and EMBASE.com were searched for studies that assessed HPA axis reactivity in healthy girls and boys aged ≤18 years. Articles were systematically assessed and reported in the categories: (1) diurnal rhythm, (2) cortisol awakening response (CAR), (3) protocolled social stress tests similar or equal to the Trier Social Stress Test for children (TSST-C), (4) pharmacological (ACTH and CRH) stress tests, and (5) miscellaneous stress tests.

Results

Two independent assessors selected 109 out of 6158 records for full-text screening, of which 81 studies (with a total of 14,591 subjects) were included. Studies showed that girls had a tendency towards a more variable diurnal rhythm (12 out of 29 studies), a higher CAR (8 out of 18 studies), and a stronger cortisol response to social stress tests (9 out of 21 studies). We found no evidence for sex differences in cortisol response after a pharmacological challenge or to miscellaneous stress tests.

Discussion

Sex differences in HPA axis reactivity appear to be present in childhood, although evidence is not unequivocal. For a better evaluation of sex differences in HPA axis reactivity, standardization of protocols and reports of stress tests is warranted.
  相似文献   

6.

Background and aims

Functional traits are promising indicators of global changes and ecosystem processes. Trait responses to environmental conditions have been examined widely in vascular plants. In contrast, few studies have focused on soil lichens and mosses composing biocrusts. We aimed to evaluate the potential of biocrust tissue traits as indicators of changes in climate and soil properties.

Methods

Isotope ratios and nutrient content in biocrust tissue were analyzed in 13 Mediterranean shrublands along an aridity gradient. Differences in tissue traits between biocrust groups (lichens and mosses), and relationships between tissue traits and climatic and soil variables were examined.

Results

Lichens and mosses differed in δ13C, δ15N and N content, indicating distinct physical and physiological attributes. Tissue traits correlated strongly with numerous climatic variables, likely due to a modulator effect on biocrust water relations and metabolism. We found contrasting responses of lichen and moss traits to climate, although they responded similarly to soil properties. Overall, the most responsive trait was δ15N, suggesting this trait is the best to reflect integrated processes occurring in the atmosphere and soil.

Conclusions

Biocrust tissue traits arise as cost-effective, integrative ecological indicators of global change drivers in Mediterranean ecosystems, with potential applications in response-effect trait frameworks.
  相似文献   

7.

Background and aims

Serpentine soils impose limits on plant growth and survival and thus provide an ideal model for studying plant adaptation under environmental stress. Despite the increasing amount of data on serpentine ecotypic differentiation, no study has assessed the potential role of polyploidy. We tested for links between polyploidy and the response to serpentine stress in Knautia arvensis, a diploid-tetraploid, edaphically differentiated complex.

Methods

Variation in growth, biomass yield and tissue Mg and Ni accumulation in response to high Mg and Ni concentrations were experimentally tested using hydroponic cultivation of seedlings from eight populations of different ploidy and edaphic origin.

Results

Regardless of ploidy level, serpentine populations exhibited higher tolerance to both Mg and Ni stress than their non-serpentine counterparts, suggesting an adaptive character of these traits in K. arvensis. The effect of ploidy was rather weak and confined to a slightly better response of serpentine tetraploids to Mg stress and to higher biomass yields in tetraploids from both soil types.

Conclusions

The similar response of diploid and tetraploid serpentine populations to edaphic stress corresponded with their previously described genetic proximity. This suggests that serpentine tolerance might have been transmitted during the local autopolyploid origin of serpentine tetraploids.
  相似文献   

8.

Background

Barley, globally the fourth most important cereal, provides food and beverages for humans and feed for animal husbandry. Maximizing grain yield under varying climate conditions largely depends on the optimal timing of flowering. Therefore, regulation of flowering time is of extraordinary importance to meet future food and feed demands. We developed the first barley nested association mapping (NAM) population, HEB-25, by crossing 25 wild barleys with one elite barley cultivar, and used it to dissect the genetic architecture of flowering time.

Results

Upon cultivation of 1,420 lines in multi-field trials and applying a genome-wide association study, eight major quantitative trait loci (QTL) were identified as main determinants to control flowering time in barley. These QTL accounted for 64% of the cross-validated proportion of explained genotypic variance (pG). The strongest single QTL effect corresponded to the known photoperiod response gene Ppd-H1. After sequencing the causative part of Ppd-H1, we differentiated twelve haplotypes in HEB-25, whereof the strongest exotic haplotype accelerated flowering time by 11 days compared to the elite barley haplotype. Applying a whole genome prediction model including main effects and epistatic interactions allowed predicting flowering time with an unmatched accuracy of 77% of cross-validated pG.

Conclusions

The elaborated causal models represent a fundamental step to explain flowering time in barley. In addition, our study confirms that the exotic biodiversity present in HEB-25 is a valuable toolbox to dissect the genetic architecture of important agronomic traits and to replenish the elite barley breeding pool with favorable, trait-improving exotic alleles.
  相似文献   

9.

Key message

Four genetic regions associated with water use traits, measured at different levels of plant organization, and with agronomic traits were identified within a previously reported region for terminal water deficit adaptation on linkage group 2. Close linkages between these traits showed the value of phenotyping both for agronomic and secondary traits to better understand plant productive processes.

Abstract

Water saving traits are critical for water stress adaptation of pearl millet, whereas maximizing water use is key to the absence of stress. This research aimed at demonstrating the close relationship between traits measured at different levels of plant organization, some putatively involved in water stress adaptation, and those responsible for agronomic performance. A fine-mapping population of pearl millet, segregating for a previously identified quantitative trait locus (QTL) for adaptation to terminal drought stress on LG02, was phenotyped for traits at different levels of plant organization in different experimental environments (pot culture, high-throughput phenotyping platform, lysimeters, and field). The linkages among traits across the experimental systems were analysed using principal component analysis and QTL co-localization approach. Four regions within the LG02-QTL were found and revealed substantial co-mapping of water use and agronomic traits. These regions, identified across experimental systems, provided genetic evidence of the tight linkages between traits phenotyped at a lower level of plant organization and agronomic traits assessed in the field, therefore deepening our understanding of complex traits and then benefiting both geneticists and breeders. In short: (1) under no/mild stress conditions, increasing biomass and tiller production increased water use and eventually yield; (2) under severe stress conditions, water savings at vegetative stage, from lower plant vigour and fewer tillers in that population, led to more water available during grain filling, expression of stay-green phenotypes, and higher yield.
  相似文献   

10.

Key message

Rose morphological traits such as prickles or petal number are influenced by a few key QTL which were detected across different growing environments—necessary for genomics-assisted selection in non-target environments.

Abstract

Rose, one of the world’s most-loved and commercially important ornamental plants, is predominantly tetraploid, possessing four rather than two copies of each chromosome. This condition complicates genetic analysis, and so the majority of previous genetic studies in rose have been performed at the diploid level. However, there may be advantages to performing genetic analyses at the tetraploid level, not least because this is the ploidy level of most breeding germplasm. Here, we apply recently developed methods for quantitative trait loci (QTL) detection in a segregating tetraploid rose population (F1?=?151) to unravel the genetic control of a number of key morphological traits. These traits were measured both in the Netherlands and Kenya. Since ornamental plant breeding and selection are increasingly being performed at locations other than the production sites, environment-neutral QTL are required to maximise the effectiveness of breeding programmes. We detected a number of robust, multi-environment QTL for such traits as stem and petiole prickles, petal number and stem length that were localised on the recently developed high-density SNP linkage map for rose. Our work explores the complex genetic architecture of these important morphological traits at the tetraploid level, while helping to advance the methods for marker–trait exploration in polyploid species.
  相似文献   

11.

Background and aims

Functional traits may underlie differences in niches, which promote plant species co-existence, but also differences in competitive ability, which drive competitive exclusion. Empirical evidence concerning the contribution of different traits to niche differentiation and the ability to supress and tolerate competitors is very limited, particularly when considering belowground interactions.

Methods

We grew 26 temperate grassland species along a density gradient of interspecific competitors to determine which belowground traits a) explain species’ ability to suppress and tolerate neighbours and b) contribute to niche differentiation, such that species with dissimilar trait values experience reduced competition.

Results

We found that having larger root systems with extensive horizontal spread and lower root tissue density enabled efficient suppression of neighbours but did not significantly contribute to the ability to tolerate competition. Species with deeper root systems, lower specific root length and less branched roots were better at tolerating competition, but these traits did not significantly affect the ability to suppress neighbours. None of the measured traits contributed significantly to niche differentiation, either individually or in combination.

Conclusions

This study provides little support for belowground traits contributing to species co-existence through niche differentiation. Instead, different sets of weakly correlated traits enable plants to either suppress or tolerate their competitors.
  相似文献   

12.

Background

Herbicide tolerance is an important trait that allows effective weed management in wheat crops. Genetic knowledge of metribuzin tolerance in wheat is needed to develop new cultivars for the industry. Here, we evaluated metribuzin tolerance in a recombinant inbred line (RIL) mapping population derived from Synthetic W7984 and Opata 85 over two consecutive years to identify quantitative trait loci (QTL) contributing to the trait. Herbicide tolerance was measured by two chlorophyll traits, SPAD chlorophyll content index (CCI) and visual senescence score (SNS). The markers associated with major QTL from Synthetic W7984, positively contributing to reduced phytotoxic effects under herbicide treatment were validated in two F3/4 recombinant inbred populations developed from crosses of Synthetic W7984?×?Westonia and Synthetic W7984?×?Lang.

Results

Composite interval mapping (CIM) identified four QTL, two on chromosome 4A and one each on chromosomes 2D and 1A. The chromosomal position of the two QTL mapped on 4A within 10 cM intervals was refined and validated by multiple interval mapping (MIM). The major QTL affecting both measures of tolerance jointly explained 42 and 45% of the phenotypic variation by percentage CCI reduction and SNS, respectively. The identified QTL have a pure additive effect. The metribuzin tolerant allele of markers, Xgwm33 and Xbarc343, conferred lower phytotoxicity and explained the maximum phenotypic variation of 28.8 and 24.5%, respectively. The approximate physical localization of the QTL revealed the presence of five candidate genes (ribulose-bisphosphate carboxylase, oxidoreductase (rbcS), glycosyltransferase, serine/threonine-specific protein kinase and phosphotransferase) with a direct role in photosynthesis and/or metabolic detoxification pathways.

Conclusion

Metribuzin causes photo-inhibition by interrupting electron flow in PSII. Consequently, chlorophyll traits enabled the measure of high proportion of genetic variability in the mapping population. The validated molecular markers associated with metribuzin tolerance mediating QTL may be used in marker-assisted breeding to select metribuzin tolerant lines. Alternatively, validated favourable alleles could be introgressed into elite wheat cultivars to enhance metribuzin tolerance and improve grain yield in dryland farming for sustainable wheat production.
  相似文献   

13.

Background

Trait based functional and community ecology is en vogue. Most studies, however, ignore phenotypical diversity by characterizing entire species considering only trait means rather than their variability. Phenotypical variability may arise from genotypical differences or from ecological factors (e.g., nutritionally imbalanced diet), and these causes can usually not be separated in natural populations. We used a single genotype from a parthenogenetic model system (the oribatid mite Archegozetes longisetosus Aoki) to exclude genotypical differences. We investigated patterns of dietary (10 different food treatments) induced trait variation by measuring the response of nine different traits (relating to life history, morphology or exocrine gland chemistry).

Results

Nutritional quality (approximated by carbon-to-nitrogen ratios) influenced all trait means and their variation. Some traits were more prone to variation than others. Furthermore, the “threshold elemental ratio”- rule of element stoichiometry applied to phenotypic trait variation. Imbalanced food (i.e. food not able to fully meet the nutritional demands of an animal) led to lower trait mean values, but also to a higher variation of traits.

Conclusion

Imbalanced food led not only to lower trait value averages, but also to higher trait variability. There was a negative relationship between both parameters, indicating a direct link of both, average trait levels and trait variation to nutritional quality. Hence, variation of trait means may be a predictor for general food quality, and further indicate trade-offs in specific traits an animal must deal with while feeding on imbalanced diets.
  相似文献   

14.

Background

We study the role of gonadectomy on the response to unavoidable stress and the role of testosterone replacement on gonadectomy in the male Naval Medical Research Institute mice (30±5 g) were studied. For this purpose, the hormonal and metabolic changes were investigated.

Methods

In the experimental group, the gonads were surgically removed, and a cannula was inserted into the left lateral ventricle. For acute and chronic stress induction, animals were placed in the communication box for 30 min for one day and four consecutive days, respectively. The animals received different doses of intraventricular (ICV) testosterone (0.01, 0.05, 0.1 μg/mouse) 5 minutes or intraperitoneal (IP) testosterone (0.05, 0.01, 0.1 mg/kg) 30 minutes before the stress induction.

Results

The results showed that acute and chronic stress increases plasma cortisol concentration. IP testosterone injections of testosterone did not decrease cortisol concentrations in response to acute stress, whereas ICV injections did reduce cortisol concentrations. The stress reduced anorexia time, while the administration of testosterone increased anorexia time. In addition, acute stress reduced food intake in the gonadectomized mice. IP testosterone at 0.01 and 0.05 mg/kg increased food intake. Additionally, stress in gonadectomized mice reduced water intake, while the IP injection of testosterone in chronic stress further reduced water intake. Also, stress reduced the animals’ brain/adrenal volumes, while the IP and ICVinjection of testosterone at 0.01 mg/kg inhibited this effect.

Conclusion

The results showed that the IP (0.05, 0.01, 0.1 mg/kg) and ICV (0.01, 0.05, 0.1 μg/mouse) administration of testosterone in the gonadectomized mice can modulate hormonal and metabolic changes induced by stress.
  相似文献   

15.

Background

We investigate the power of heterogeneity LOD test to detect linkage when a trait is determined by several major genes using Genetic Analysis Workshop 13 simulated data. We consider three traits, two of which are disease-causing traits: 1) the rate of change in body mass index (BMI); and 2) the maximum BMI; and 3) the disease itself (hypertension). Of interest is the power of "HLOD2", the maximum heterogeneity LOD obtained upon maximizing over the two genetic models.

Results

Using a trait phenotype Obesity Slope, we observe that the power to detect the two markers closest to the two genes (S1, S2) at the 0.05 level using HLOD2 is 13% and 10%. The power of HLOD2 for Max BMI phenotype is 12% and 9%. The corresponding values for the Hypertension phenotype are 8% and 6%.

Conclusion

The power to detect linkage to the slope genes is quite low. But the power using disease-related traits as a phenotype is greater than the power using the disease (hypertension) phenotype.
  相似文献   

16.

Background

Neuroimaging studies continue to indicate the major role the anterior cingulate cortex (ACC) plays in processing empathic responses. Error-related negativity (ERN), an event-related potential (ERP) thought to arise from the ACC, has been found to correlate with scores for individual empathic personality. This study investigated the relationship between empathic personality traits and the amplitude of feedback-related negativity (FRN), an ERP sourced from the ACC and similar to the ERN, using a task involving feedback of monetary gains or losses.

Methods

Sixteen healthy participants answered an empathy trait questionnaire and performed a gambling task to elicit FRN. Because FRN amplitude is thought to be associated with attention, motivation, emotional state, and anxiety trait, we performed a partial correlation analysis between the empathic trait score and FRN amplitude while controlling for variables.

Results

In partial correlation analysis, FRN amplitude was significantly inversely correlated with scores for personal distress and marginally correlated with scores for empathic concern and with total average score.

Discussion

The study revealed for the first time an association between FRN and emotional empathic traits, after controlling for variables that can affect FRN amplitude. However, we also found a reversed directional correlation contrary to our expectations. This fronto-central brain activity may be associated with empathic properties via dopaminergic neuronal function. Future study using these electric potentials as experimental tools is expected to help elucidate the neurological mechanism of empathy.
  相似文献   

17.

Background

Limb bone lengths and bone mineral density (BMD) have been used to assess the bone growth and the risk of bone fractures in pigs, respectively. It has been suggested that limb bone lengths and BMD are under genetic control. However, the knowledge about the genetic basis of the limb bone lengths and mineralisatinon is limited in pigs. The aim of this study was to identify quantitative trait loci (QTL) affecting limb bone lengths and BMD of the distal femur in a White Duroc × Erhualian resource population.

Results

Limb bone lengths and femoral bone mineral density (fBMD) were measured in a total of 1021 and 116 F2 animals, respectively. There were strong positive correlations among the lengths of limb bones and medium positive correlations between the lengths of limb bones and fBMD. A whole-genome scan involving 183 microsatellite markers across the pig genome revealed 35 QTL for the limb bone lengths and 2 for femoral BMD. The most significant QTL for the lengths of five limb bones were mapped on two chromosomes affecting all 5 limb bones traits. One was detected around 57 cM on pig chromosome (SSC) 7 with the largest F-value of more than 26 and 95% confidence intervals of less than 5 cM, providing a crucial start point to identify the causal genes for these traits. The Erhualian alleles were associated with longer limb bones. The other was located on SSCX with a peak at 50–53 cM, whereas alleles from the White Duroc breed increased the bone length. Many QTL identified are homologous to the human genomic regions containing QTL for bone-related traits and a list of interesting candidate genes.

Conclusion

This study detected the QTL for the lengths of scapula, ulna, humerus and tibia and fBMD in the pig for the first time. Moreover, several new QTL for the pig femoral length were found. As correlated traits, QTL for the lengths of five limb bones were mainly located in the same genomic regions. The most promising QTL for the lengths of five limb bones on SSC7 merits further investigation.
  相似文献   

18.

Background

Fatigue can be triggered by previous perceived stress which may lead to impairment of performance and function. The purpose of the study was to investigate the relationship between fatigue and perceived stress.

Method

Health determinants including sociodemographic factors for associations between fatigue and perceived stress in the general population (N = 2,483) are outlined. Fatigue and stress were assessed with the Chalder Fatigue Scale (CFS) and the Perceived Stress Questionnaire (PSQ).

Results

Within the general population, 25.9% of male and 34.5% of female respondents reported moderate fatigue during the last six months; 9.7% of subjects reported substantial fatigue lasting six months or longer. An adjusted regression analysis (R2corr = .28, p < .001) showed that fatigue is highest associated with perceived stress and self-perceived health status. The following factors were correlated with increased rates of fatigue and perceived stress: female gender, divorce/separation, low social class and poor health status.

Conclusion

We conclude that the two conditions overlap most in terms of socio-economic status and self-perceived health status.
  相似文献   

19.

Key message

QTL and codominant genetic markers for fruit cracking have been identified in a tomato genetic map derived from a RIL population, providing molecular tools for marker-assisted breeding of this trait.

Abstract

In tomato, as well as in other fleshy fruits, one of the main disorders that widely limit quality and production is fruit cracking or splitting of the epidermis that is observed on the fruit skin and flesh at any stage of fruit growth and maturation. To elucidate the genetic basis of fruit cracking, a quantitative trait loci (QTL) analysis was conducted in a recombinant inbred line (RIL) population derived from a cross between tomato (Solanum lycopersicum) and the wild-relative species S. pimpinellifolium. The RIL population was evaluated for fruit cracking during three consecutive growing seasons. Construction of a high-density linkage map based on codominant markers, covering more than 1000 cM of the whole genome, led to the identification of both main and epistatic QTL controlling fruit cracking on the basis of a single-environment as well as multiple-environment analysis. This information will enhance molecular breeding for novel cracking resistant varieties and simultaneously assist the identification of genes underlying these QTL, helping to reveal the genetic basis of fruit cracking in tomato.
  相似文献   

20.

Background

Tail biting is a common welfare problem in pig production and in addition to being a sign of underlying welfare problems, tail biting reduces welfare in itself. The aim of this study was to evaluate the effects of tail biting on different pre and post mortem indicators of stress in slaughter pigs and on carcass and meat characteristics. A total of 12 tail bitten (TB) and 13 control (C) pigs from a farm with a long-term tail biting problem were selected for salivary cortisol analyses before and after transport to the slaughterhouse. After stunning, samples were taken for the analysis of serum cortisol, blood lactate, intestinal heat shock protein 70 (HSP70), and meat quality characteristics. In addition, body temperature immediately after and muscle temperature 35 min after stunning were measured, as well as lean meat percentage and carcass weight.

Results

TB pigs showed a lower cortisol response to the transport-induced stress than C pigs and also had a lower serum cortisol concentration after stunning. HSP70 content in the small intestine was higher in the TB pigs than in C pigs. TB pigs had a considerably lower carcass weight therefore produced a lower total amount of lean meat per carcass than C pigs.

Conclusions

This study suggests that prolonged or repeated stress in the form of tail biting causes a blunted stress response, possibly a sign of hypocortisolism. In addition, it underlines the importance of reducing tail biting, both from an animal welfare and an economic point-of-view.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号