首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
前列腺癌鼠模型是研究前列腺癌的重要工具,目前常见以下4类:自发和诱发鼠模型,异种移植鼠模型,转基因鼠模型和基因敲除鼠模型。简要综述了前列腺癌鼠模型的研究进展。  相似文献   

2.
A complete enumeration and classification of two-locus disease models   总被引:7,自引:0,他引:7  
Li W  Reich J 《Human heredity》2000,50(6):334-349
There are 512 two-locus, two-allele, two-phenotype, fully penetrant disease models. Using the permutation between two alleles, between two loci, and between being affected and unaffected, one model can be considered to be equivalent to another model under the corresponding permutation. These permutations greatly reduce the number of two-locus models in the analysis of complex diseases. This paper determines the number of nonredundant two-locus models (which can be 102, 100, 96, 51, 50, or 58, depending on which permutations are used, and depending on whether zero-locus and single-locus models are excluded). Whenever possible, these nonredundant two-locus models are classified by their property. Besides the familiar features of multiplicative models (logical AND), heterogeneity models (logical OR), and threshold models, new classifications are added or expanded: modifying-effect models, logical XOR models, interference and negative interference models (neither dominant nor recessive), conditionally dominant/recessive models, missing lethal genotype models, and highly symmetric models. The following aspects of two-locus models are studied: the marginal penetrance tables at both loci, the expected joint identity-by-descent (IBD) probabilities, and the correlation between marginal IBD probabilities at the two loci. These studies are useful for linkage analyses using single-locus models while the underlying disease model is two-locus, and for correlation analyses using the linkage signals at different locations obtained by a single-locus model.  相似文献   

3.
A classification scheme for those population models which allow variation in development rates is proposed, based on two ways of modifying standard age-structured models. The resulting classes of models are termed development index models and sojourn time models. General formulations for the two classes of models are developed from two basic balance equations, and numerous specific models from the literature are shown to fit into the scheme. Concepts from competing risks theory are shown to be important in understanding the interplay between mortality and maturation. Relationships among the classes are investigated both for the most general forms of the models and for the simpler forms often used. The scheme can provide guidance in developing appropriate insect population models for specific modelling situations.Contribution 3878871  相似文献   

4.
Granger models are popular when it comes to testing hypotheses that relate series of measures causally to each other. In this article, we propose a taxonomy of Granger causality models. The taxonomy results from crossing the four variables Order of Lag, Type of (Contemporaneous) Effect, Direction of Effect, and Segment of Dependent Series Targeted. Among the uses of such a taxonomy are that existing models can be embedded in the context of possible other models, new models can be derived, models can be compared, and the relation of statistical models to theories of causality can be specified. Sample models are depicted, and parameters of interest are indicated. For two new models, empirical data examples are provided from research on the development of aggression in adolescents.  相似文献   

5.
Results are summarized from the literature on three commonly used stochastic population models with regard to persistence time. In addition, several new results are introduced to clearly illustrate similarities between the models. Specifically, the relations between the mean persistence time and higher-order moments for discrete-time Markov chain models, continuous-time Markov chain models, and stochastic differential equation models are compared for populations experiencing demographic variability. Similarities between the models are demonstrated analytically, and computational results are provided to show that estimated persistence times for the three stochastic models are generally in good agreement when the models are consistently formulated. As an example, the three stochastic models are applied to a population satisfying logistic growth. Logistic growth is interesting as different birth and death rates can yield the same logistic differential equation. However, the persistence behavior of the population is strongly dependent on the explicit forms for the birth and death rates. Computational results demonstrate how dramatically the mean persistence time can vary for different populations that experience the same logistic growth.  相似文献   

6.
Ecological interpretations of the mid-domain effect   总被引:3,自引:1,他引:2  
The suggestion that spatial gradients in species richness are influenced by geometric constraints resulting in the mid‐domain effect has been investigated by null models. The technical aspects of making such null models are well explored, but the implicit ecological assumptions behind these models are less explored. Four ecological models that all assume that species ranges are constrained by hard boundaries are made: evolutionary model, source‐sink model, dynamic‐environment model, and range‐size model. These models give different predictions that make it possible to separate the models from each other, and from a model that assumes that hard boundaries are not important.  相似文献   

7.
Compartmental models for influenza that include control by vaccination and antiviral treatment are formulated. Analytic expressions for the basic reproduction number, control reproduction number and the final size of the epidemic are derived for this general class of disease transmission models. Sensitivity and uncertainty analyses of the dependence of the control reproduction number on the parameters of the model give a comparison of the various intervention strategies. Numerical computations of the deterministic models are compared with those of recent stochastic simulation influenza models. Predictions of the deterministic compartmental models are in general agreement with those of the stochastic simulation models.  相似文献   

8.
9.
Hollow copper models painted to match the reflectance of the animal subject are standard in thermal ecology research. While the copper electroplating process results in accurate models, it is relatively time consuming, uses caustic chemicals, and the models are often anatomically imprecise. Although the decreasing cost of 3D printing can potentially allow the reproduction of highly accurate models, the thermal performance of 3D printed models has not been evaluated. We compared the cost, accuracy, and performance of both copper and 3D printed lizard models and found that the performance of the models were statistically identical in both open and closed habitats. We also find that 3D models are more standard, lighter, durable, and inexpensive, than the copper electroformed models.  相似文献   

10.
Ecological indicators are often collected to detect and monitor environmental change. Statistical models are used to estimate natural variability, pre-existing trends, and environmental predictors of baseline indicator conditions. Establishing standard models for baseline characterization is critical to the effective design and implementation of environmental monitoring programs. An anthropogenic activity that requires monitoring is the development of Marine Renewable Energy sites. Currently, there are no standards for the analysis of environmental monitoring data for these development sites. Marine Renewable Energy monitoring data are used as a case study to develop and apply a model evaluation to establish best practices for characterizing baseline ecological indicator data. We examined a range of models, including six generalized regression models, four time series models, and three nonparametric models. Because monitoring data are not always normally distributed, we evaluated model ability to characterize normal and non-normal data using hydroacoustic metrics that serve as proxies for ecological indicator data. The nonparametric support vector regression and random forest models, and parametric state-space time series models generally were the most accurate in interpolating the normal metric data. Support vector regression and state-space models best interpolated the non-normally distributed data. If parametric results are preferred, then state-space models are the most robust for baseline characterization. Evaluation of a wide range of models provides a comprehensive characterization of the case study data, and highlights advantages of models rarely used in Marine Renewable Energy environmental monitoring. Our model findings are relevant for any ecological indicator data with similar properties, and the evaluation approach is applicable to any monitoring program.  相似文献   

11.
The dynamics of a microbial community consisting of a eucaryotic ciliateTetrahymena pyriformis and procaryoticEscherichia coli in a batch culture is explored by employing an individual-based approach. In this portion of the article, Part I, population models are presented. Because both models are individual-based, models of individual organisms are developed prior to construction of the population models. The individual models use an energy budget method in which growth depends on energy gain from feeding and energy sinks such as maintenance and reproduction. These models are not limited by simplifying assumptions about constant yield, constant energy sinks and Monod growth kinetics as are traditional models of microbal organisms. Population models are generated from individual models by creating distinct individual types and assigning to each type the number of real individuals they represent. A population is a compilation of individual types that vary in a phase of cell cycle and physiological parameters such as filtering rate for ciliates and maximum anabolic rate for bacteria. An advantage of the developed models is that they realistically describe the growth of the individual cells feeding on resource which varies in density and composition. Part II, the core of the project, integrates models into a dynamic microbial community and provides model analysis based upon available data.  相似文献   

12.
Using network models to approximate spatial point-process models   总被引:2,自引:0,他引:2  
Spatial effects are fundamental to ecological and epidemiological systems, yet the incorporation of space into models is potentially complex. Fixed-edge network models (i.e. networks where each edge has the same fixed strength of interaction) are widely used to study spatial processes but they make simplistic assumptions about spatial scale and structure. Furthermore, it can be difficult to parameterize such models with empirical data. By comparison, spatial point-process models are often more realistic than fixed-edge network models, but are also more difficult to analyze. Here we develop a moment closure technique that allows us to define a fixed-edge network model which predicts the prevalence and rate of epidemic spread of a continuous spatial point-process epidemic model. This approach provides a systematic method for accurate parameterization of network models using data from continuously distributed populations (such as data on dispersal kernels). Insofar as point-process models are accurate representations of real spatial biological systems, our example also supports the view that network models are realistic representations of space.  相似文献   

13.
Cure models are used in time-to-event analysis when not all individuals are expected to experience the event of interest, or when the survival of the considered individuals reaches the same level as the general population. These scenarios correspond to a plateau in the survival and relative survival function, respectively. The main parameters of interest in cure models are the proportion of individuals who are cured, termed the cure proportion, and the survival function of the uncured individuals. Although numerous cure models have been proposed in the statistical literature, there is no consensus on how to formulate these. We introduce a general parametric formulation of mixture cure models and a new class of cure models, termed latent cure models, together with a general estimation framework and software, which enable fitting of a wide range of different models. Through simulations, we assess the statistical properties of the models with respect to the cure proportion and the survival of the uncured individuals. Finally, we illustrate the models using survival data on colon cancer, which typically display a plateau in the relative survival. As demonstrated in the simulations, mixture cure models which are not guaranteed to be constant after a finite time point, tend to produce accurate estimates of the cure proportion and the survival of the uncured. However, these models are very unstable in certain cases due to identifiability issues, whereas LC models generally provide stable results at the price of more biased estimates.  相似文献   

14.
15.
Ecologists attempt to understand the diversity of life with mathematical models. Often, mathematical models contain simplifying idealizations designed to cope with the blooming, buzzing confusion of the natural world. This strategy frequently issues in models whose predictions are inaccurate. Critics of theoretical ecology argue that only predictively accurate models are successful and contribute to the applied work of conservation biologists. Hence, they think that much of the mathematical work of ecologists is poor science. Against this view, I argue that model building is successful even when models are predictively inaccurate for at least three reasons: models allow scientists to explore the possible behaviors of ecological systems; models give scientists simplified means by which they can investigate more complex systems by determining how the more complex system deviates from the simpler model; and models give scientists conceptual frameworks through which they can conduct experiments and fieldwork. Critics often mistake the purposes of model building, and once we recognize this, we can see their complaints are unjustified. Even though models in ecology are not always accurate in their assumptions and predictions, they still contribute to successful science.  相似文献   

16.
Classical budburst models (Spring Warming, Sequential, Parallel and Alternating) are unable to fully predict external data, partly because of the methods of optimization used to adjust them. The purpose of this study was to examine different assumptions of budburst models and select those which are best supported by the data, defining new models able to predict external data. Eight models, each differing in one assumption, were fitted and tested using external data. The dataset used to test the models was deduced from aeropalynological data at two stations in France. The results show that some of the models proposed are able to accurately predict external dates of flowering of most of the studied species. The assumptions of those models have been individually tested and shown to improve the models accuracy. Robust estimates of the best predictor models of 12 tree species are presented. The analysis of hypothetical provenance transfer of two species, Buxus sempervirens and Platanus acerifolia, between the two study sites, shows that P. acerifolia estimates are similar in both environments whereas B. sempervirens estimates are variable. This result, which agrees with the genetic characteristics of both species, shows that local adaptation of phenology can also be studied through modelling approaches.  相似文献   

17.
In this paper, we consider local and non-local spatially explicit mathematical models for biological phenomena. We show that, when rate differences between fast and slow local dynamics are great enough, non-local models are adequate simplifications of local models. Non-local models thus avoid describing fast processes in mechanistic detail, instead describing the effects of fast processes on slower ones. As a consequence, non-local models are helpful to biologists because they describe biological systems on scales that are convenient to observation, data collection, and insight. We illustrate these arguments by comparing local and non-local models for the aggregation of hypothetical organisms, and we support theoretical ideas with concrete examples from cell biology and animal behavior.  相似文献   

18.
Loglinear symmetry and quasi-symmetry models are proposed as tools for investigating various hypotheses about change. First, a survey of model representations is provided, including model specification in terms of hierarchical loglinear models and in design matrix notation. Secondly, the range of symmetry and quasi-symmetry models is extended to the joint analysis of several groups. Parameter constraints are discussed which allow one to test specific hypotheses about group differences in symmetric frequency distributions. Finally, symmetry and quasi-symmetry models are considered for multiway contigency tables. In this context, loglinear total score models are proposed for the analysis of symmetry in several marginal distributions. The proposed models reflect cross-sectional as well as longitudinal facets of development.  相似文献   

19.
Voxel-based computational models of real human anatomy: a review   总被引:2,自引:0,他引:2  
Computational models of human anatomy are mathematical representations of human anatomy designed to be used in dosimetry calculations. They have been used in dosimetry calculations for radiography, radiotherapy, nuclear medicine, radiation protection and to investigate the effects of low frequency electromagnetic fields. Tomographic medical imaging techniques have allowed the construction of digital three-dimensional computational models based on the actual anatomy of individual humans. These are called voxel models, tomographic models or phantoms. Their usefulness lies in their faithful representation of human anatomy and the flexibility they afford by being able to be scaled in size to match the required human dimensions. Segmenting medical images in order to make voxel models is very time-consuming so semi-automatic segmentation techniques are being developed. Some 21 whole or partial body models currently exist and more are being prepared. These models are listed and discussed.  相似文献   

20.
We provide a definitive guide to parameter redundancy in mark‐recovery models, indicating, for a wide range of models, in which all the parameters are estimable, and in which models they are not. For these parameter‐redundant models, we identify the parameter combinations that can be estimated. Simple, general results are obtained, which hold irrespective of the duration of the studies. We also examine the effect real data have on whether or not models are parameter redundant, and show that results can be robust even with very sparse data. Covariates, as well as time‐ or age‐varying trends, can be added to models to overcome redundancy problems. We show how to determine, without further calculation, whether or not parameter‐redundant models are still parameter redundant after the addition of covariates or trends.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号