首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study aims to examine the possible relationship between cytokines, nitric oxide (NO) and prostaglandins in the pregnant rat uterus. Results indicate that 1) IL1alpha enhances the synthesis of prostaglandins and augments NO production in pregnant rat uteri and 2) the effect of IL1alpha on prostaglandin synthesis is abolished by NMMA, a NOS inhibitor, by aminoguanidine, an iNOS inhibitor, and by NS-398, a COX-2 inhibitor. These results suggest that there is an interaction between IL1alpha, NO and prostaglandins and that are involved COX-2 and iNOS in this interrelationship. This mechanism might be important in the regulation of uterine contractility during pregnancy and labor.  相似文献   

2.
We investigated the regulation of cyclooxygenase-2 (COX-2) by 17-beta-estradiol (E2) in the rat oviduct. We observed that COX-2 is expressed mainly in proestrous and estrous stages, periods under estrogenic influence. While exogenous administration of E2 (1 microg/rat) significantly increased COX-2 protein levels, progesterone did not modify it. COX-2 was mainly localized on oviductal epithelial cells from estrogenized rat. Induction of COX-2 expression by E2 was partially reverted by tamoxifen (1 mg/rat), an E2 receptor antagonist. Estradiol treatment also increased prostaglandins (PGs) synthesis: 6-keto-PGF(1alpha) (40%), a stable metabolite of prostacyclin (PGI2), PGF(2alpha) (40%) and PGE2 (50%). Tamoxifen completely suppressed this enhancement. In order to discriminate which isoform of COX was implicated in the stimulatory effect of E2 on PGs synthesis, oviducts were preincubated with meloxicam (Melo: 10(-9)M) or NS-398 (10(-7)M), two selective COX-2 inhibitors. Both Melo and NS-398 abolished the increase of PGs synthesis stimulated by E2. All together, these data indicate that E2 could upregulate COX-2 expression and activity in the rat oviduct and that the stimulatory effect of E2 may be receptor-mediated.  相似文献   

3.
Microsomal prostaglandin E synthase (mPGES)-1 is a newly identified inducible enzyme of the arachidonic acid cascade with a key function in prostaglandin (PG)E2 synthesis. We investigated the kinetics of inducible cyclo-oxygenase (COX)-2 and mPGES-1 expression with respect to the production of 6-keto-PGF1alpha and PGE2 in rat chondrocytes stimulated with 10 ng/ml IL-1beta, and compared their modulation by peroxisome-proliferator-activated receptor (PPAR)gamma agonists. Real-time PCR analysis showed that IL-1beta induced COX-2 expression maximally (37-fold) at 12 hours and mPGES-1 expression maximally (68-fold) at 24 hours. Levels of 6-keto-PGF1alpha and PGE2 peaked 24 hours after stimulation with IL-1beta; the induction of PGE2 was greater (11-fold versus 70-fold, respectively). The cyclopentenone 15-deoxy-Delta12,14prostaglandin J2 (15d-PGJ2) decreased prostaglandin synthesis in a dose-dependent manner (0.1 to 10 microM), with more potency on PGE2 level than on 6-keto-PGF1alpha level (-90% versus -66% at 10 microM). A high dose of 15d-PGJ2 partly decreased COX-2 expression but decreased mPGES-1 expression almost completely at both the mRNA and protein levels. Rosiglitazone was poorly effective on these parameters even at 10 microM. Inhibitory effects of 10 microM 15d-PGJ2 were neither reduced by PPARgamma blockade with GW-9662 nor enhanced by PPARgamma overexpression, supporting a PPARgamma-independent mechanism. EMSA and TransAM analyses demonstrated that mutated IkappaBalpha almost completely suppressed the stimulating effect of IL-1beta on mPGES-1 expression and PGE2 production, whereas 15d-PGJ2 inhibited NF-kappaB transactivation. These data demonstrate the following in IL-1-stimulated rat chondrocytes: first, mPGES-1 is rate limiting for PGE2 synthesis; second, activation of the prostaglandin cascade requires NF-kappaB activation; third, 15d-PGJ2 strongly inhibits the synthesis of prostaglandins, in contrast with rosiglitazone; fourth, inhibition by 15d-PGJ2 occurs independently of PPARgamma through inhibition of the NF-kappaB pathway; fifth, mPGES-1 is the main target of 15d-PGJ2.  相似文献   

4.
Phorbol-12-myristate- 13-acetate (PMA) has been shown to induce hypertrophy of cardiac myocytes. The prostaglandin endoperoxide H synthase isoform 2 (cyclooxygenase-2, COX-2) has been associated with enhanced growth and/or proliferation of several types of cells. Thus we studied whether PMA induces COX-2 and prostanoid products PGE(2) and PGF(2alpha) in neonatal ventricular myocytes and whether endogenous COX-2 products participate in their growth. In addition, we examined whether PMA affects interleukin-1beta (IL-1beta) stimulation of COX-2 and PGE(2) production. PMA (0.1 micromol/l) stimulated growth, as indicated by a 1.6-fold increase in [(3)H]leucine incorporation. PMA increased COX-2 protein levels 2. 8-fold, PGE(2) 3.7-fold, and PGF(2alpha) 2.9-fold. Inhibition of either p38 kinase or protein kinase C (PKC) prevented PMA-stimulated COX-2. Inhibition of COX-2 with either indomethacin or NS-398 had no effect on PMA-stimulated [(3)H]leucine incorporation. Exogenous administration of PGF(2alpha), but not PGE(2), stimulated protein synthesis. Treatment with IL-1beta (5 ng/ml) increased COX-2 protein levels 42-fold, whereas cotreatment with IL-1beta and PMA stimulated COX-2 protein only 32-fold. IL-1beta did not affect control or PMA-stimulated protein synthesis. These findings indicate that: 1) PMA, acting through PKC and p38 kinase, enhances COX-2 expression, but chronic treatment with PMA partially inhibits IL-1beta stimulation of COX-2; and 2) exogenous PGF(2alpha) is involved in neonatal ventricular myocyte growth but endogenous COX-2 products are not.  相似文献   

5.
Previously, we reported that cartilage is an estrogen receptor (ER) positive tissue and that mRNA levels of ERbeta increase in postmenopausal women with osteoarthritis. Based on our findings and those of other investigators, we hypothesized that local rather than circulating estrogen levels negatively affect chondrocyte metabolism and that selective ER modulators (SERM) augment cartilage health. To test the latter part of our hypothesis, we explored the role of genistein, a naturally occurring SERM with high affinity to bind ERbeta, in inhibiting the lipopolysaccharide (LPS)-stimulated cyclooxygenase (COX)-2 in chondrocytes. Primary cultures of normal human chondrocytes were treated with three levels of genistein (0, 50, and 100 microM). After 1 h, the genistein-treated cells were stimulated by 1 microg/ml LPS for 24 h. Cells were then harvested, and the cytosolic fraction was isolated for assessment of COX-1 and COX-2 protein levels using Western analysis. Nitric oxide (NO), interleukin-I beta (IL-1beta), and human cartilage glycoprotein 39 (YKL-40) production was also measured in cell supernatants. NO and IL-1beta were measured as markers of inflammation, and YKL-40 was assessed as a marker of cartilage catabolism. Genistein had no significant effect on either YKL-40 or IL-1beta levels. Our data indicate that the LPS-stimulated increases in COX-2 protein level and NO in supernatant are reduced by pretreatment of genistein, whereas COX-1 protein level is not affected by genistein. The ability of genistein to suppress COX-2 but not COX-1 is advantageous because suppressing COX-2 can lead to suppression of proinflammatory molecules. Although genistein suppresses COX-2 production, it does not affect the production of COX-1 enzyme, which is responsible for releasing prostaglandins involved in cellular house-keeping functions such as the maintenance of gastrointestinal integrity and vascular homeostasis.  相似文献   

6.
7.
Prostaglandin endoperoxide synthases (PTGS), commonly referred to as cyclooxygenases (COX-1 and COX-2), catalyze the key step in the synthesis of biologically active prostaglandins (PGs), the conversion of arachidonic acid (AA) into prostaglandin H2 (PGH2). Although COX and prostaglandins have been implicated in a wide variety of physiologic processes, an evaluation of the role of prostaglandins in early mammalian development has been difficult due to the maternal contribution of prostaglandins from the uterus: COX null mouse embryos develop normally during embryogenesis. Here, we verify that inhibition of COX-1 results in zebrafish gastrulation arrest and shows that COX-1 expression becomes restricted to the posterior mesoderm during somitogenesis and to posterior mesoderm organs at pharyngula stage. Inhibition of COX-1 signaling after gastrulation results in defective vascular tube formation and shortened intersomitic vessels in the posterior body region. These defects are rescued completely by PGE(2) treatment or, to a lesser extent, by PGF(2alpha), but not by other prostaglandins, such as PGI(2), TxB(2), or PGD(2). Functional knockdown of COX-1 using antisense morpholino oligonucleotide translation interference also results in posterior vessel defect in addition to enlarged posterior nephric duct, phenocopying the defects caused by inhibition of COX-1 activity. Together, we provide the first evidence that COX-1 signaling is required for development of posterior mesoderm organs, specifically in the vascular tube formation and posterior nephric duct development.  相似文献   

8.
9.
In this study, the ability of Bothrops asper snake venom (BaV) to increase the production of prostaglandins PGE2 and PGD2 was assessed in a mouse model in vivo and in inflammatory cells in vitro. In addition, the expressions of COX-1 and COX-2 were assessed. BaV induced an increment in the in vivo synthesis of PGE2 and PGD2, together with an enhanced expression of COX-2, but not of COX-1. However, enzymatic activities of COX-1 and COX-2 were increased. Incubation of isolated macrophages and neutrophils with a sub-cytotoxic concentration of BaV in vitro resulted in increased release of PGE2 and PGD2 by macrophages and PGE2 by neutrophils, concomitantly with an increment in the expression of COX-2, but not of COX-1 by both cell types. Our results demonstrate the ability of BaV to promote the expression of COX-2 and to induce the synthesis of proinflammatory prostaglandins. Macrophages and neutrophils may be important targets for this venom under in vivo situation.  相似文献   

10.
Human umbilical vein endothelial cells (HUVEC) express and synthesize both constitutive and inducible nitric oxide synthase (NOS) and cyclo-oxygenase (COX) enzymes, and have been extensively used as an in vitro model to investigate the role of these enzymes in the patho-physiology of placenta-fetal circulation. In this study we investigated the role of NO in regulating prostanoid production and release from HUVEC. Both untreated and IL-1beta-treated HUVEC were exposed to various NOS inhibitors and NO donors in short-term (1 or 3 hours) experiments, and the effects on prostanoid production were evaluated through the measurement of prostaglandins (PG) I2, E2 and F2alpha released in the incubation medium. We found that the inhibition of inducible NOS but not endothelial NOS antagonizes the IL-1beta-induced increase in PGI2 release. However, NOS inhibitors do not modify baseline PGI2 production. Pharmacological levels of NO, obtained with various NO donors, inhibit basal and IL-1beta-stimulated PG release.  相似文献   

11.
12.
Interleukin-1beta (IL-1beta) induces the release of nitric oxide (.NO) and prostaglandin E2 (PGE2) by chondrocytes and this effect can be reversed with the application of dynamic compression. Previous studies have indicated that integrins may play a role. In addition, IL-1beta upregulates the expression of iNOS and COX-2 mRNA via upstream activation of p38 MAPK. The current study examines the involvement of these pathways in mediating .NO and PGE2 release in IL-1beta stimulated bovine chondrocytes subjected to dynamic compression. Bovine chondrocytes were seeded in agarose constructs and cultured with 0 or 10 ng.ml(-1) IL-1beta with or without the application of 15% dynamic compressive strain at 1 Hz. Selected inhibitors were used to interrogate the role of alpha5beta1 integrin signalling and p38 MAPK activation in mediating the release of .NO and PGE2 in response to both IL-1beta and dynamic compression. The relative expression levels of iNOS and COX-2 were assessed using real-time quantitative PCR. Nitrite, a stable end product of .NO, was measured using the Griess assay and PGE2 release was measured using an enzyme immunoassay. IL-1beta enhanced .NO and PGE2 release and this effect was reversed by the application of dynamic compression. Co-incubation with an integrin binding peptide (GRGDSP) abolished the compression-induced effect. Real-time quantitative PCR analysis revealed that IL-1beta enhanced iNOS and COX-2 mRNA levels, with the maximum expression at 6 or 12 hours. Dynamic compression reduced this effect via a p38 MAPK sensitive pathway. These results suggest that dynamic compression acts to abrogate of .NO and PGE2 release by directly influencing the expression levels of iNOS and COX-2.  相似文献   

13.
Interleukin (IL)-1 beta-induced inhibition of glucose-stimulated insulin secretion in rat islets of Langerhans is mediated in part by nitric oxide (NO). The NO synthase cofactor 5,6,7,8-tetrahydrobiopterin (BH(4)) supports NO synthesis in many cell types and IL-1 beta-induced NO generation and inhibition of insulin secretion have been previously correlated with intracellular BH(4 )levels in rat insulinoma cells. Using rat islets and the beta cell line BRIN-BD11, we have investigated whether synthesis of BH(4) limits IL-1beta-induced NO generation and inhibition of glucose-induced insulin secretion. IL-1 beta-induced NO generation by BRIN cells and islets was reduced by 2,4-diamino-6-hydroxypyrimidine (DAHP), an inhibitor of de novo BH(4) synthesis. Sepiapterin, the substrate for salvage pathway BH(4) synthesis, reversed this inhibitory effect of DAHP in islets but not BRIN cells. DAHP reversed IL-1 beta-induced inhibition of islet insulin secretion, an effect prevented by sepiapterin. We conclude that BH(4) generation is necessary for IL-1 beta-induced NO generation in rat islets and BRIN cells. While a contribution of non-NO mediators cannot be excluded, our results support the proposal that IL-1 beta-induced, NO-mediated inhibition of insulin secretion in rat islets is dependent on the NOS cofactor BH(4).  相似文献   

14.
15.
Prostaglandins (PG) are well known lipid mediators with important immunoregulatory properties. While exogenous PGE2 has the ability to modulate the function and maturation of antigen presenting cells, such as dendritic cells (DC), it is not clear whether human DC have the capacity to synthesize PGE2 and other prostaglandins themselves. We therefore examined the expression of inducible cyclo-oxygenase (COX-2) by monocyte derived DC and the production of PGE2 and PGD2. Both monocyte derived DC and freshly isolated blood myeloid DC expressed little COX-2 constitutively, though COX-2 expression was rapidly but transiently upregulated in response to lipopolysaccharide stimulation. COX-2 mRNA was detectable within 1 h of LPS exposure, peaked at 4-6 h, and rapidly declined thereafter. COX-2 expression was accompanied by DC synthesis of PGE2, with peak levels present at 6-18 h post-stimulation. In contrast, PGD2 synthesis was not detected at any time point. When DC were activated with LPS in the presence of nimesulide, a COX-2 selective inhibitor, IL-10 synthesis was inhibited, indicating that endogenous prostaglandins regulate DC cytokine production. PGE2 production by DC may therefore modulate DC and T-cell function, thereby shaping the character of the immune response.  相似文献   

16.
Labor is preceded by cervical ripening through upregulation of interleukin (IL)-1beta, IL-8, and increased prostaglandin synthesis via inducible type 2 cyclooxygenase (COX-2). Progesterone maintains myometrial quiescence during pregnancy. In this study, we examined the effects of IL-1beta and progesterone on IL-8 and prostaglandin E2 (PGE2) synthesis and IL-8 and COX-2 mRNA and promoter activity in amnion cells and lower segment fibroblast (LSF) cells. In both cell types, progesterone had no effect on basal IL-8 or PGE2 synthesis. In LSF cells, IL-1beta significantly increased IL-8 and PGE2 synthesis and COX-2 and IL-8 mRNA expression, but progesterone significantly attenuated these effects. In prelabor amnion cells, IL-1beta also increased IL-8 and PGE2 synthesis and both COX-2 and IL-8 mRNA and promoter expression; however, progesterone significantly attenuated these effects on IL-8 and PGE2 synthesis and COX-2 expression. In postlabor amnion cells, IL-1beta increased IL-8 and PGE2 synthesis and COX-2 expression, but progesterone did not attenuate the effect of IL-1beta upon IL-8 synthesis. Progesterone repression of IL-8 and COX-2 in LSF cells suggests that IL-8 and COX-2 have similar regulatory mechanisms in LSF cells and that progesterone may play a role in maintenance of cervical competence. The lack of effect of progesterone on IL-8 in postlabor cells may be the result of downregulation of the progesterone receptor during labor.  相似文献   

17.
Chowdhury TT  Bader DL  Lee DA 《Biorheology》2006,43(3-4):413-429
*NO and PGE2 are inflammatory mediators derived from the inducible iNOS and COX enzymes and are potentially important pharmacological targets in OA. Both mechanical loading and IL-1beta will influence the release of *NO and PGE2. Accordingly, the current study examines the effect of dynamic compression on *NO and PGE2 release by human chondrocytes cultured in agarose constructs in the presence and absence of selective iNOS and COX-2 inhibitors. The current data demonstrate that IL-1beta induced nitrite and PGE2 release and inhibited [3H]-thymidine and 35SO4 incorporation. Inhibitor experiments indicate that 1400W and NS-398 either partially reversed or abolished IL-1beta induced nitrite and PGE2 release. IL-1beta induced inhibition of cell proliferation and proteoglycan synthesis was partially reversed with 1400W but was not influenced by NS-398. For the dynamic loading experiments, 1400W and NS-398 either reduced or abolished the compression-induced inhibition of *NO and PGE2 release in the presence of IL-1beta. The IL-1beta induced inhibition of cell proliferation was not influenced by 1400W or NS-398 whereas strain-induced stimulation of proteoglycan synthesis in the presence of IL-1beta was enhanced by 1400W. The data obtained using human chondrocytes demonstrate that IL-1beta induced *NO and PGE2 release via an iNOS-driven-COX-2 inter-dependent pathway. This response could be reversed by dynamic compression. These data indicate interactions exist between the NOS and COX pathways, a finding which will provide new insights in the development of pharmacological or biophysical treatments for cartilage disorders such as OA.  相似文献   

18.
Interleukin-1 (IL-1) is a potent inducer of prostaglandin E2 (PGE2) synthesis. We previously showed that ceramide accumulates in fibroblasts treated with IL-1 and that it enhances IL-1-induced PGE2 production. The present study was undertaken to determine the mechanism(s) by which ceramide and IL-1 interact to enhance PGE2 production by examining their respective effects on the rate-limiting enzymes in PGE2 synthesis, cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX-2), and cytosolic phospholipase A2 (cPLA2). IL-1-induced PGE2 synthesis required 8 h even though COX-1 was constitutively expressed (both mRNA and protein) and enzymatically active in untreated cells. Conversely, COX-2 mRNA was barely detectable in untreated cells but within 2 h, ceramide or IL-1 alone induced a 5 and 20 fold increase in COX-2 mRNA, respectively. However, IL-1 induced COX-2 protein synthesis was only detectable 6-7 h after maximal COX-2 mRNA induction; COX-2 protein accumulation was not induced by ceramide alone. Ceramide however, reduced the length of time required for IL- 1 to induce COX-2 protein accumulation and increased COX-2 protein accumulation. IL-1 induced a 15 fold increase in COX-1 mRNA including an alternatively spliced form of COX-1. IL-1, but not ceramide induced cPLA2 mRNA and protein expression which corresponded with the initiation of PGE2 synthesis. These observations indicate that, (1) while either ceramide or IL-1 rapidly induced COX-2 mRNA, COX-2 protein only accumulated in IL- 1 treated cells after a delay of 6-7 h, (2) IL-1-induced PGE2 synthesis required both COX-2 and cPLA2 protein synthesis and, (3) ceramide enhanced (temporally and quantitatively) IL-1-induced COX-2 protein accumulation resulting in enhanced PGE2 production.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号