首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study was to investigate the ionizing radiation effects, in the form of an electron beam, on itraconazole (ITR) in the solid phase. It was found that the ITR, under the influence of a standard 25 kGy dose of radiation used for the sterilization of drug substances, decomposed at 0.4%. Moreover, a gentle change of colour and a decrease in melting point does not exceed pharmacopoeial standards causing that ITR can be sterilized by radiation method. The use of high 400 kGy radiation doses resulted in a 6.5% decomposition of the ITR and eight radiodegradation products were found. However, with the exception of differential scanning calorimetry (DSC), the X-ray diffraction, Fourier transform infrared spectroscopy (FT-IR) and ultraviolet-visible (UV-vis) methods showed no changes in the form and the morphology of the crystals. The structures of all those compounds were investigated. It was confirmed that the ITR decomposition takes place by dehalogenation (one of Cl atom elimination), the oxidation in isobutyl residue (beside the triazole ring) and C-O bond rupture.KEY WORDS: antifungal azole, DSC, itraconazole, product radiolysis, radiation sterilization  相似文献   

2.
3.
对小球藻(Chlorella Vulgaris)进行高静水压处理,分别通过80MPa,300MPa静水压处理,观察高静水压处理时小球藻生理生化效应。实验结果表明,300MPa压力处理1h能够导致小球藻的大量死亡,少量存活的藻细胞经过5d的“停滞期”后开始正常生长。80MPa的压力下处理2h、6h、12h后小球藻的初期的生长速度明显加快,而到生长末期小球藻生长开始趋于平缓。小球藻干质量为12h实验组最大,而单位蛋白含量随着干质量的增加而下降,几种抗氧化酶活性为6h实验组具有最大活性。经过300MPa压力预处理1h后的小球藻再在80MPa压力下进行处理,发现小球藻干质量为2h再处理实验组最大,蛋白含量为6h再处理实验组最高,抗氧化酶的活性随着压力处理时间的增加而下降。  相似文献   

4.
Reactivation of UV-C-inactivated Pseudomonas aeruginosa bacteriophages D3C3, F116, G101, and UNL-1 was quantified in host cells infected during the exponential phase, during the stationary phase, and after starvation (1 day, 1 and 5 weeks) under conditions designed to detect dark repair and photoreactivation. Our experiments revealed that while the photoreactivation capacity of stationary-phase or starved cells remained about the same as that of exponential-phase cells, in some cases their capacity to support dark repair of UV-inactivated bacteriophages increased over 10-fold. This enhanced reactivation capacity was correlated with the ca. 30-fold-greater UV-C resistance of P. aeruginosa host cells that were in the stationary phase or exposed to starvation conditions prior to irradiation. The dark repair capacity of P. aeruginosa cells that were infected while they were starved for prolonged periods depended on the bacteriophage examined. For bacteriophage D3C3 this dark repair capacity declined with prolonged starvation, while for bacteriophage G101 the dark repair capacity continued to increase when cells were starved for 24 h or 1 week prior to infection. For G101, the reactivation potentials were 16-, 18-, 10-, and 3-fold at starvation intervals of 1 day, 1 week, 5 weeks, and 1.5 years, respectively. Exclusive use of exponential-phase cells to quantify bacteriophage reactivation should detect only a fraction of the true phage reactivation potential.  相似文献   

5.
Procedures were developed for the differential enumeration of an added strain of Lactobacillus plantarum and indigenous lactic acid bacteria (LAB) during the fermentation of brined cucumbers. The added strain was an N,N-nitrosoguanidine-generated mutant that lacked the ability to produce CO2 from malic acid (MDC-). The MDC- phenotype is desirable because CO2 production from malic acid decarboxylation has been shown to contribute to bloater formation in fermented cucumbers. A basal medium containing malic acid and adjusted to pH 4.0 permitted growth of indigenous LAB (predominantly MDC+), but not growth of the added MDC- culture. Transformation of the MDC- culture by electroporation with cloning vector pGK12 conferred chloramphenicol resistance, which permitted selective enumeration of this culture. The reversion frequency of the MDC- mutation was determined by a fluctuation test to be less than 10-10. The level of retention of plasmid pGK12 was greater than 90% after 10 generations in cucumber juice medium at 32°C. With the procedures developed, we were able to establish the ratio of MDC- to MDC+ LAB that results in malic acid retention in fermentations of filter-sterilized cucumber juice and unsterilized whole cucumbers under specified conditions.  相似文献   

6.
7.
As the basic research for the study of mechanism of ventilation in submerged fermentations, the formula of carbon dioxide in the liquid phase was investigated. Carbon dioxide in liquid phase was mainly classified into two groups. One was a gaseous form and the other was a dissociated form. Carbon dioxide was considered to be a weak acids when it dissociated into ionic form, and the dissociation of carbon dioxide was expressed in Henderson-Hasselbalch’s equation. The results in this study showed that those rules concerning the dissolution and dissociation of carbon dioxide held for a model liquid system.  相似文献   

8.
Quantitative studies on the dissolution and dissociation of carbon dioxide in a cultured system were made. The inosine fermentation and the glutamic acid fermentation were employed for this study. According to the results obtained in this experiment, the quantity of dissociated carbonic acid in cultured liquid was given by Henderson-Hasselbalch’s equation with experimental pK′. The method for the direct determination of bicarbonate ion concentration was also investigated. The Warburg direct method gave a satisfactory result for this purpose.

By using the modified Severinghaus CO2 electrode, the relationship between partial pressure of carbon dioxide in effluent gas and that in culturing system was investigated. Partial pressure of carbon dioxide in gas phase was almost equivalent to the average value of dissolved carbon dioxide tension in liquid phase for a given short time of the fermentation. The term of re was introduced in order to study the dynamic characteristics of carbon dioxide evolution in submerged fermentors. The dynamic characteristics of respiration in submerged fermentation was also studied by using biological rab and re.  相似文献   

9.
As a consequence of the increase in global average temperature, grapes with the adequate phenolic and aromatic maturity tend to be overripe by the time of harvest, resulting in increased sugar concentrations and imbalanced C/N ratios in fermenting musts. This fact sets obvious additional hurdles in the challenge of obtaining wines with reduced alcohols levels, a new trend in consumer demands. It would therefore be interesting to understand Saccharomyces cerevisiae physiology during the fermentation of must with these altered characteristics. The present study aims to determine the distribution of metabolic fluxes during the yeast exponential growth phase, when both carbon and nitrogen sources are in excess, using continuous cultures. Two different sugar concentrations were studied under two different winemaking temperature conditions. Although consumption and production rates for key metabolites were severely affected by the different experimental conditions studied, the general distribution of fluxes in central carbon metabolism was basically conserved in all cases. It was also observed that temperature and sugar concentration exerted a higher effect on the pentose phosphate pathway and glycerol formation than on glycolysis and ethanol production. Additionally, nitrogen uptake, both quantitatively and qualitatively, was strongly influenced by environmental conditions. This work provides the most complete stoichiometric model used for Metabolic Flux Analysis of S. cerevisiae in wine fermentations employed so far, including the synthesis and release of relevant aroma compounds and could be used in the design of optimal nitrogen supplementation of wine fermentations.  相似文献   

10.
Mechanical forces play a crucial role in tumor patho-physiology. Compression of cancer cells inhibits their proliferation rate, induces apoptosis and enhances their invasive and metastatic potential. Additionally, compression of intratumor blood vessels reduces the supply of oxygen, nutrients and drugs, affecting tumor progression and treatment. Despite the great importance of the mechanical microenvironment to the pathology of cancer, there are limited studies for the constitutive modeling and the mechanical properties of tumors and on how these parameters affect tumor growth. Also, the contribution of the host tissue to the growth and state of stress of the tumor remains unclear. To this end, we performed unconfined compression experiments in two tumor types and found that the experimental stress-strain response is better fitted to an exponential constitutive equation compared to the widely used neo-Hookean and Blatz-Ko models. Subsequently, we incorporated the constitutive equations along with the corresponding values of the mechanical properties - calculated by the fit - to a biomechanical model of tumor growth. Interestingly, we found that the evolution of stress and the growth rate of the tumor are independent from the selection of the constitutive equation, but depend strongly on the mechanical interactions with the surrounding host tissue. Particularly, model predictions - in agreement with experimental studies - suggest that the stiffness of solid tumors should exceed a critical value compared with that of the surrounding tissue in order to be able to displace the tissue and grow in size. With the use of the model, we estimated this critical value to be on the order of 1.5. Our results suggest that the direct effect of solid stress on tumor growth involves not only the inhibitory effect of stress on cancer cell proliferation and the induction of apoptosis, but also the resistance of the surrounding tissue to tumor expansion.  相似文献   

11.
12.
研究了超高压处理对灵芝生长及其漆酶合成的影响,试验结果表明:灵芝致死率随处理压力的增大而增加,在150MPa下处理30min获得了一株生物量和漆酶产量都大幅增加的菌株G1502,其最大生物量及酶活分别比出发菌株提高了19.34%和282.67%,发酵时间也缩短了1d。  相似文献   

13.
Growth of Streptococcus faecalis in a complex medium was inhibited by xenon, nitrous oxide, argon, and nitrogen at gas pressures of 41 atm or less. The order of inhibitory potency was: xenon and nitrous oxide > argon > nitrogen. Helium appeared to be impotent. Oxygen also inhibited streptococcal growth and it acted synergistically with narcotic gases. Growth was slowed somewhat by 41 atm hydrostatic pressure in the absence of narcotic gases, but the gas effects were greater than those due to pressure. In relation to the sensitivity of this bacterium to pressure, we found that the volume of cultures increased during growth in a volumeter or dilatometer, and that this dilatation was due mainly to glycolysis. A volume increase of 20.3 ± 3.6 ml/mole of lactic acid produced was measured, and this value was close to one of 24 ml/mole lactic acid given for muscle glycolysis, and interestingly, close to the theoretic volume increase of activation calculated from the depression of growth rate by pressure.  相似文献   

14.
By using 7 x 10(8) cells of Saccharomyces cerevisiae per ml with which 25 degrees Brix honey solutions were fermented to 9.5% (wt/vol; 12% vol/vol) ethanol in 2.5 to 3 h at 30 C, i.e., rapid fermentation, the death rate was found to be high, with only 2.1% of the yeast cells surviving at the end of 3 h under anaerobic conditions. As the dissolved oxygen in the medium was increased from 0 to 13 to 20 to 100% in rapid fermentations at 30 C, there was a progressive increase in the percentage of cells surviving. The ethanol production rate and total were not seriously affected by a dissolved oxygen concentration of 13%, but fermentation was retarded by 20% dissolved oxygen and still further decreased as the dissolved oxygen content reached 100%. When the fermentation temperature was decreased to 15 C (at 13% dissolved oxygen), the rate of fermentation decreased, and the fermentation time to 9.5% ethanol (wt/vol) increased to 6 h. It was found that the higher the temperature between 15 and 30 C, the greater the rate of death as initial cell counts were increased from 1.1 x 10(7) to 7.8 x 10(8) cells per ml. At the lowest level of inoculum, 1.1 x 10(7) cells per ml, there was actual multiplication, even at 30 C; however, the fermentation was no longer rapid. The addition of 15% sugar, initially followed after an hour by the remaining 10%, or addition of the sugar in increments of 2.5 or 5% yielded a better survival rate of yeast cells than when the fermentation was initiated with 25% sugar.  相似文献   

15.
It is believed that high concentrations of sodium chloride (NaCl) suppress the biosynthesis of exopolysaccharide (EPS) in lactic acid bacteria (LAB). Nevertheless, overproduction of EPSs due to high salinity stress in solid state fermentation performed on an agar surface was demonstrated in this study using a response surface methodology via a central composite design (CCD). Under optimized conditions with NaCl 4.97% and sucrose 136.5 g/L at 40.79 h of incubation, the EPS yield was 259% (86.36 g/L of EPS), higher than the maximum yield produced with the modified MRS medium containing only 120 g/L of sucrose without NaCl (33.4 g/L of EPS). Biosynthesis of EPS by Lactobacillus confusus TISTR 1498 was independent of biomass production. Our results indicated that high salinity stress can enhance EPS production in solid state fermentation.  相似文献   

16.
17.
High hydrostatic pressure (HHP) is suggested to influence the structure and function of membranes and/or integrated proteins. We demonstrate for the first time HHP-induced dimer dissociation of membrane proteins in vivo with Vibrio cholerae ToxR variants in Escherichia coli reporter strains carrying ctx::lacZ fusions. Dimerization ceased at 20 to 50 MPa depending on the nature of the transmembrane segments rather than on changes in the ToxR lipid bilayer environment.  相似文献   

18.
White clover ramets were grown at various carbon dioxide concentrations(200, 350 and 1000 µl 1–1), defoliated and regrownat the same concentrations. Morphological characteristics, dryweights and non-structural carbohydrate contents of plant organs,diurnal variation of sugar and starch content of leaves, translocationof assimilates and photosynthesis were determined. Carbon dioxide concentration influenced the dry weights, butnot the number and size of the plant organs. However, defoliationof plants at low carbon dioxide concentration resulted in decreasedleaf size and stolon length. Carbon dioxide concentration influencedthe content and diurnal variation of starch and sugar in theleaves. Starch was accumulated at medium carbon dioxide concentrationand sugar at a higher concentration when the storage capacityfor starch seemed to be exceeded. Starch was preferentiallyaccumulated in the first and sugar in the second half of thelight period. Translocation was decreased during the periodsof accumulation. Sugar accumulation in the leaves seemed tobe a consequence of the imbalance between sink and source, whereasstarch accumulation seemed to follow an in-built diurnal pattern.Accumulation of both starch and sugar during the photoperiodwas followed by degradation and export during the dark period.Decreased dark export occurred at low carbon dioxide concentrationwhen neither starch nor sugar was accumulated during the photoperiod. Carbon dioxide, white clover, Trifolium repens L., growth, carbohydrates, starch, sugar, translocation, photosynthesis  相似文献   

19.
A method is presented for an evaluation of the hemodynamic significance of a stenotic lesion in the arterial tree.Twenty-three patients were examined with arteriosclerosis obliterans and intermittent claudication of the same severity. Flow velocity data obtained by angiodensitometry and viscosity values calculated from the hematocrit were inserted into the Poiseuille''s flow formula to obtain the pressure drop across a stenotic lesion in the left external iliac artery. By the same way, the pressure gradient was calculated in 33 “normal” subjects.The normal pressure gradient along the external iliac artery varied between 23 to 110 dynes/cm2 (52 ± 24 dynes/cm2 for mean and S.d), and the normal resistance to flow was 6.08 ± 4.1 dyne sec/cm5).Stenotic lesions of similar dimensions gave widely varying pressure drops (114-4,736 dynes/cm2) (mean and S.d 1,309 ± 1,224 dynes/cm2) indicating a difference in the hemodynamic significance of the various lesions. These values were significantly different (p(t) < 0.001) from the normal values. The resistance across these stenotic lesions ranged between 21 to 768 dyne sec/cm5 (196 ± 192 dyne sec/cm5) for the mean and S.d and this was significantly different from the normal group; p(t) < 0.001.Direct measurement of blood viscosity coupled with angiocinedensitometry at rest and after forced vasodilatation should provide an accurate means of determining the relative significance of a stenotic lesion and distal vessel disease in a given patient on blood flow to the leg.  相似文献   

20.
Thermoelectric materials can be used to harvest low‐grade heat that is otherwise dissipated to the environment. But the conventional thermoelectric materials that are semiconductors or semimetals, usually exhibit a Seebeck coefficient of much less than 1 mV K?1. They are expensive and consist of toxic elements as well. Here, it is demonstrated environmental benign flexible quasi‐solid state ionogels with giant Seebeck coefficient and ultrahigh thermoelectric properties. The ionogels made of ionic liquids and poly(vinylidene fluoride‐co‐hexafluoropropylene) (PVDF‐HFP) can exhibit a giant Seebeck coefficient up to 26.1 mV K?1, the highest for electronic and ionic conductors. In addition, they have a high ionic conductivity of 6.7 mS cm?1 and a low thermal conductivity of 0.176 W m?1 K?1. Their thermoelectric figure of merit (ZT) is thus 0.75. The giant Seebeck coefficient is related to the ion‐dipole interaction between PVDF‐HFP and ionic liquids. Their application in ionic thermoelectric capacitors is also demonstrated for the conversion of intermittent heat into electricity. They are especially important to harvest the low‐grade thermal energy that is abundant on earth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号