首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study examines the positional and activity behavior of a captive slow loris, Nycticebus coucang. The male individual was housed in a primate facility providing a seminatural environment and was subjected to a series of videotape recordings from which 1,878 point observations were taken. The enclosure was designed to allow maximum flexibility of substrate use. Quantitative information detailing activity, positional mode, and substrate geometry was collected using a checklist of 15 variables. Data were tabulated and compared as frequency distributions to describe activity budgets, the use of locomotor and postural modes, and the relation of posture to activity behavior and substrate geometry. The results indicated that almost 90% of the active day may be devoted to behaviors directly or indirectly related to dietary functions. For locomotor behavior, both climbing and walking were associated with the use of diagonal couplets. The loris devoted 52% of its positional behavior to postural modes, favoring the quadrupedal stand, triplets, and sitting. Suspension was found to be used more often in posture than locomotion. Overall, the loris's repertory of positional modes accommodated a wide range of substrate geometries.  相似文献   

2.
Investigations of cross-sectional geometry in nonhuman primate limb bones typically attribute shape ratios to qualitative behavioral characterizations, e.g., leaper, slow climber, brachiator, or terrestrial vs. arboreal quadruped. Quantitative positional behavioral data, however, have yet to be used in a rigorous evaluation of such shape-behavior connections. African apes represent an ideal population for such an investigation because their relatedness minimizes phylogenetic inertia, they exhibit diverse behavioral repertoires, and their locomotor behaviors are known from multiple studies. Cross-sectional data from femoral and humeral diaphyses were collected for 222 wild-shot specimens, encompassing Pan paniscus and all commonly recognized African ape subspecies. Digital representations of diaphyseal cross sections were acquired via computed tomography at three locations per diaphysis. Locomotor behaviors were pooled broadly into arboreal and terrestrial categories, then partitioned into quadrupedal walking, quadrumanous climbing, scrambling, and suspensory categories. Sex-specific taxonomic differences in ratios of principal moments of area (PMA) were statistically significant more often in the femoral diaphysis than the humeral diaphysis. While it appears difficult to relate a measure of shape (e.g., PMA ratio) to individual locomotor modes, general locomotor differences (e.g., percentage arboreal vs. terrestrial locomotion) are discerned more easily. As percentage of arboreal locomotion for a group increases, average cross sections appear more circular. Associations between PMA ratio and specific locomotor behaviors are less straightforward. Individual behaviors that integrate eccentric limb positions (e.g., arboreal scrambling) may not engender more circular cross sections than behaviors that incorporate repetitive sagittal movements (e.g., quadrupedal walking) in a straightforward manner.  相似文献   

3.
In this study, one positional mode, the vertical leap, is selected from the larger repertoire of habitual behaviors of whichCercopithecus aethiops sabaeus is capable, and is quantitatively analyzed. A cinematographic biomechanical analysis of the vertical leap provides a view of the kinematics (time-space properties of the leap) as well as the kinetics (or force properties) of the leap. These are then discussed with regard to anatomical potential. The analysis elucidates three distinct phases of motion during which the moving body segments linked via their connecting joints, affect one another in the production of the leap. The total positional adaptation ofC. a. sabaeus may only be determined after similar analyses are performed for all postural and locomotor modes. The present detailed analysis of vertical leaping is intended to present data for this one positional mode found to be of primary importance in the arboreal environment and in moving from the ground into the trees. In addition a methodology is illustrated for application in similar primate positional studies. A version of this paper was presented at the 43rd Annual Meeting of the American Association of Physical Anthropologists (March, 1974). This research was partially supported by Sigma Xi Grant-in-Aid of Research, Behavioral Science Foundation Fellowship.  相似文献   

4.
Quantitative studies on the positional behavior of members of the Hominoidea are compared in order (1) to identify consistencies across the superfamily, (2) to contrast ape positional behavior with that of Old World monkeys (forest-livingPapio anubis were chosen for study to reduce body size effects), and (3) to identify distinctive behaviors in each of the ape taxa. Differences in the way behaviors were sampled in the various studies necessitated considering posture and locomotion separately. Unimanual arm-hanging and vertical climbing were the most distinctive shared postural and locomotor modes among the apes (the gorilla excepted), constituting ≥5.0% and ≥4.9% of all behavior in each species. Arm-hanging and brachiation (sensu stricto) frequencies were the highest by far in hylobatids. Hand-foot hanging, bipedal posture, and clambering, an orthograde suspensory locomotion assisted by the hindlimbs, were more common in orangutans than in any other hominoid. Sitting and walking were observed in the highest frequencies in the African apes but were no more common than in the baboon. Relatively high frequencies of brachiation (sensu stricto) were reported for all apes except chimpanzees and gorillas. Brachiation and arm-hanging were kinematically different in apes and baboons, involving complete humeral abduction only in the former, whereas vertical climbing appeared to be kinematically similar in apes and baboons. It is concluded that the morphological specializations of the apes may be adaptations to (1) the unique physical demands of arm-hanging and (2) less kinematically distinct, but still quantitatively significant, frequencies of vertical climbing.  相似文献   

5.
This study examines the relationship between positional behavior and morphology for two closely related South American tamarin species, Saguinus fuscicollis illigeri and Saguinus oedipus oedipus. Although never systematically documented, the two species are suspected of exhibiting highly similar yet subtly different locomotor behaviors with a greater propensity for climbing, springing, and more powerful leaping in S. oedipus. Fourteen measurements reflecting biomechanical structuring were taken from the postcranial skeleton of 28 individuals of each species. The data were reduced to principal component scores and subjected to a multiple analysis of variance to determine the extent of intergroup skeletal variation. Areas of significant skeletal diversity were interpreted functionally. The results suggest that the differences in functional patterning among the two species is consistent with the behavioral hypothesis. It is concluded that subtle changes in positional behavior may be capable of altering skeletal morphology.  相似文献   

6.
Although the majority of extant primates are described as "quadrupedal," there is little information available from natural habitats on the locomotor and postural behavior of arboreal primate quadrupeds that are not specialized for leaping. To clarify varieties of quadrupedal movement, a quantitative field study of the positional behavior of a highly arboreal cercopithecine, Macaca fascicularis, was conducted in northern Sumatra. At least 70% of locomotion in travel, foraging, and feeding was movement along continuous substrates by quadrupedalism and vertical climbing. Another 14-25% of locomotion was across substrates by pronograde clambering and vertical clambering. The highest frequency of clambering occurred in foraging for insects, and on the average smaller substrates were used in clambering than during quadrupedal movement. All postural behavior during foraging and feeding was above-substrate, largely sitting. Locomotion across substrates requires grasping branches of diverse orientations, sometimes displaced away from the animal's body. The relatively low frequency of across-substrate locomotion appears consistent with published analyses of cercopithecoid postcranial morphology, indicating specialization for stability of limb joints and use of limbs in parasagittal movements, but confirmation of this association awaits interspecific comparisons that make the distinction between along- and across-substrate forms of locomotion. It is suggested that pronograde clambering as defined in this study was likely a positional mode of considerable importance in the repertoire of Proconsul africanus and is a plausible early stage in the evolution of later hominoid morphology and locomotor behavior.  相似文献   

7.
One reason to measure cross-sectional structural properties of primate long bones is to define mechanically relevant complexes of traits that describe the adaptation of bone to different biomechanical environments. This can be effectively accomplished when congeneric species having different postural and locomotor behaviors are compared. This paper compares the cross-sectional geometry of the femur and humerus in three behaviorally different macaque species as a basis for defining such patterns. Cross-sectional moments of inertia in the standard anatomical planes were calculated at five locations along the diaphyses of the femur and humerus in Macaca fascicularis, M. nemestrina, and M. mulatta. The data suggest that the "barrel-shaped" femur is associated with behaviors for which long limbs and small body size are an asset. This may be associated with, but is not restricted to, leaping behaviors. The data also suggest that structural rigidity of the femur and humerus is greater per unit body weight in primates that spend significant amounts of time in terrestrial environments than in those that are more restricted to climbing in arboreal environments.  相似文献   

8.
Plasma Physics Reports - Two stable operating mode, which were called “jet” and “bell” mode, were observed for Hall thrusters. These modes are distinguished from each other...  相似文献   

9.
Focal animal instantaneous sampling of adult male and female chimpanzee positional behavior was conducted during a 7-month study in the Tai Forest, Ivory Coast, in order to determine whether there are sex differences in the locomotion, posture, substrate use, and height preference of sexually dimorphic adult chimpanzees, and if so, whether these differences support predictions based on body size differences. Results indicate that as predicted, adult male and female chimpanzees differ in their arboreal locomotor behavior, with the larger males using less quadrupedalism and more climbing, scrambling, and aided bipedalism than females during feeding locomotion. There is a sex difference in height preference as well, with female chimpanzees consistently using more arboreal behavior than males, primarily during resting. Although it has been previously demonstrated that separate primate species of differing body size differ in locomotor and postural activities (Fleagle and Mittermeier, 1980; Crompton, 1984), this study clearly demonstrates that body size differences within a species can also be correlated with differences in locomotor behavior. These findings may influence how we interpret sex differences in body size of extinct species. © 1993 Wiley-Liss, Inc.  相似文献   

10.
Vertical climbing is widely accepted to have played an important role in the origins of both primate locomotion and of human bipedalism. Yet, only a few researchers have compared climbing mechanics in quadrupedal primates that vary in their degree of arboreality. It is assumed that primates using vertical climbing with a relatively high frequency will have morphological and behavioral specializations that facilitate efficient climbing mechanics. We test this assumption by examining whether time spent habitually engaged in climbing influences locomotor parameters such as footfall sequence, peak forces, and joint excursions during vertical climbing. Previous studies have shown that during climbing, the pronograde and semiterrestrial Macaca fuscata differs in these parameters compared to the more arboreal and highly specialized, antipronograde Ateles geoffroyi. Here, we examine whether a fully arboreal, quadrupedal primate that does not regularly arm-swing will exhibit gait and force distribution patterns intermediate between those of Macaca fuscata and Ateles geoffroyi. We collected footfall sequence, limb peak vertical forces, and 3D hindlimb excursion data for Macaca fascicularis during climbing on a stationary pole instrumented with a force transducer. Results show that footfall sequences are similar between macaque species, whereas peak force distributions and hindlimb excursions for Macaca fascicularis are intermediate between values reported for M. fuscata and Ateles geoffroyi. These results support the notion that time spent climbing is reflected in climbing mechanics, even though morphology may not provide for efficient mechanics, and highlight the important role of arboreal locomotor activity in determining the pathways of primate locomotor evolution.  相似文献   

11.
Field observations of two sympatric pitheciine species reveal that the positional repertoire of the white-faced saki, Pithecia pithecia, is dominated by leaping behaviors, whereas the bearded saki, Chiropotes satanas, is predominantly quadrupedal. Examination and comparison of the postcranial skeletal morphologies and limb proportions of these species display numerous features associated with their respective locomotor behaviors. These observations accord with associations found in other primate and mammalian groups and with predictions based on theoretical and experimental biomechanics. Preliminary observations of the skeletal morphology of Cacajao calvus demonstrate a marked similarity to that of Chiropotes. The fossil platyrrhine Cebupithecia sarmientoi displays greater similarity to Pithecia, suggesting that its positional repertoire also included significant leaping and clinging behaviors.  相似文献   

12.
The positional behavior of habituated adult chimpanzees and baboons was observed for 784 hr in a year-long study. Comparisons between species were made to establish the distinctiveness of chimpanzee positional behavior and habitat use. Brachiation (sensu stricto, i.e., hand-over-hand suspensory locomotion) was observed in low frequencies among chimpanzees, and its significance for chimpanzee anatomy is judged slight. Although no significant differences were found between sympatric baboons and chimpanzees in the proportion of time spent in the terminal branches, or in the mean diameter of weight-bearing strata, chimpanzees exhibited evidence of a terminal branch adaptation in that they, unlike baboons, used postures among smaller supporting strata different from those used among larger supports. Among chimpanzees, unimanual arm-hanging was most common among the smallest strata and was associated with smaller mean and median support diameter than other postures. Unimanual arm-hanging was the only common behavior among chimpanzees that usually involved complete abduction of the humerus. A number of behaviors often subsumed under the label "quadrumanous climbing" were distinguished in this study. Compared to baboons and other cercopithecoids, chimpanzees did not show increased frequencies of large-stratum vertical climbing, and their vertical climbing did not involve significant humeral abduction. Arm-hanging (i.e., unimanual suspension) and vertical climbing distinguish chimpanzee positional behavior from that of monkeys.  相似文献   

13.
In several groups of mammals, adaptation to differing functional demands is reflected in long bone cross-sectional properties (CSP), which relate to the resistance to compression and to bending loads in the craniocaudal and mediolateral directions. Members of the Sciuromorpha (“squirrel-like” rodents) display a diversity of locomotor ecologies and span three orders of magnitude in terms of body size. The availability of robust phylogenies is rendering them a suitable group to further substantiate the relationship of long bone CSP with locomotor ecology and body mass while taking the phylogenetic non-independence among species into account. Here, we studied 69 species of Sciuromorpha belonging to three lifestyle categories, “arboreal,” “fossorial,” and “aerial” (i.e., gliding). We hypothesized locomotor category specific loading regimes that act on femora during predominant or, in terms of gliding, critical locomotor behaviors of each category. High resolution computed tomography scans of the specimens' femora were obtained and cross-sections in 5% increments were analyzed. Cross-sectional area, the craniocaudal second moment of area (SMAcc), and the mediolateral second moment of area were quantified. Further, a scaling analysis was conducted for each bone cross-section to examine how the CSP scale with body mass. Body mass accounted for variances in CSP with mainly positive allometry. The aerial sciuromorphs showed lower values of CSP compared to the arboreal and fossorial species in the distal epiphysis for all quantified parameters and along the bone for SMAcc. In contrast to previous studies on other mammalian lineages, no differences in CSP were found between the fossorial and the arboreal lifestyles.  相似文献   

14.
We describe phalanges of the KNM-BG 35250 Nacholapithecus kerioi skeleton from the Middle Miocene of Kenya. Phalanges of N. kerioi display similarities to those of Proconsul heseloni despite their enhanced robusticity. They do not show highly specialized features as in living suspensory primates. However, N. kerioi manifests several distinctive features that are observed in neither living arboreal quadrupeds nor P. heseloni or P. nyanzae. The most remarkable of them is its phalangeal elongation. N. kerioi phalanges (particularly pedal) are as long as those of Pan despite its much smaller body size. While lengthened digits enable a secure grip of supports and are especially adaptive for grasping large vertical trunks, the skeletal and soft tissues are subjected to greater stress. Probably, strong selective pressures favored powerful hallucal/pollical assisted grips. Although this functional adaptation does not exclude the possible use of the terrestrial environment, arboreal behavioral modes must have been crucial in its positional repertoire. N. kerioi is distinguished from P. heseloni in the greater size of its manual phalanges over its pedal phalanges. These derived features of N. kerioi suggest positional modes supporting more weight on the forelimb, and which occur more frequently on vertical supports. If Proconsul is referred to as an "above-branch arboreal quadruped" with a deliberate and effective climbing capability, N. kerioi may be thought of as an "orthograde climber". While living apes are powerful orthograde climbers, they are also more or less suspensory specialists. Suspensory behavior (plus climbing) and pronograde quadrupedalism (plus climbing) are the two main arboreal behavioral adaptations in living anthropoids. Thus, N. kerioi is an unusual fossil primate in that it cannot be incorporated into this dichotomy. It is plausible that a N. kerioi-like orthograde climber with large forelimbs and cheiridia was a precursor of suspensory living apes, and N. kerioi may demonstrate what an initial hominoid of this grade might have looked like.  相似文献   

15.
Foraging behaviors exist along a continuum from highly sedentary, ambush foraging, to more continuous searching, or active foraging. Foraging strategies, or modes, are defined based upon locomotor behaviors (e.g. percent time moving, moves per minute). In lizards, traits correlated with ambush and active foraging have been of interest for some time; however, general patterns of correlated evolution between locomotor morphology and locomotor behavior have only recently begun to be quantified. In this study, variation in hindlimb morphology is investigated in a model group of lizard species that vary between active foraging and more sedentary (or mixed) foraging mode. Canonical variates analysis reveals that the two active foraging species occupy similar regions of the morphospace, while the two more sedentary species occupy different regions. The active foraging species have a narrow pelvis with shorter tibia and femora. The more sedentary species have a wide pelvis, long tibia and femora, and slightly longer metatarsals. Phylogenetic patterns of trait variation were examined through ancestral character state reconstruction and show morphological shifts in concert with foraging mode in these species. The observed shifts in locomotor morphology are discussed in light of published data on sprint speed and endurance in these species. Together, the data show that linking morphological variation to variation in stride length and stride frequency is critical to understanding the evolution of locomotor performance. Much more stride length and frequency data are needed among ambush, mixed, and active foraging species because these parameters, and their morphological components, are likely correlated with variation in food acquisition mode.  相似文献   

16.
The large body mass and exclusively arboreal lifestyle of Sumatran orangutans identify them as a key species in understanding the dynamic between primates and their environment. Increased knowledge of primate locomotor ecology, coupled with recent developments in the standardization of positional mode classifications (Hunt et al. [1996] Primates 37:363-387), opened the way for sophisticated multivariate statistical approaches, clarifying complex associations between multiple influences on locomotion. In this study we present a log-linear modelling approach used to identify key associations between orangutan locomotion, canopy level, support use, and contextual behavior. Log-linear modelling is particularly appropriate because it is designed for categorical data, provides a systematic method for testing alternative hypotheses regarding interactions between variables, and allows interactions to be ranked numerically in terms of relative importance. Support diameter and type were found to have the strongest associations with locomotor repertoire, suggesting that orangutans have evolved distinct locomotor modes to solve a variety of complex habitat problems. However, height in the canopy and contextual behavior do not directly influence locomotion: instead, their effect is modified by support type and support diameter, respectively. Contrary to classic predictions, age-sex category has only limited influence on orangutan support use and locomotion, perhaps reflecting the presence of arboreal pathways which individuals of all age-sex categories follow. Effects are primarily related to a tendency for adult, parous females to adopt a more cautious approach to locomotion than adult males and immature subjects.  相似文献   

17.
The present report aims to quantify the use of zygodactylous (opposability of digits II to III) grasping in relation to positional modes and support size and orientation, in the highly arboreal, walking/climbing woolly opossum, Caluromys philander. For this purpose, four captive adult C. philander were intensively video-recorded and their positional behavior, hand grasp, and support size and orientation use were analyzed frame-by-frame. Overall, C. philander used a zygodactylous grasp in 81.3±1.2% of bouts. In terms of support features, this grasp was particularly common on (a) supports that could be wholly and partly held by the animals’ hand and (b) vertical supports in particular. In a comparable manner, zygodactyly dominated during above-support positional modes, but was significantly less used during bridging and suspension. The results show that zygodactyly provided an above-support secure and steady grasp on relatively unstable arboreal supports, by aligning the hand with the main axis of the support. This very likely assisted in controlling over the applied torques during cautious quadrupedal and climbing activities with extended hand contact that characterizes the locomotor strategy of C. philander. These observations need to be further tested by more detailed kinetic studies and on a larger sample of arboreal didelphids.  相似文献   

18.
Anatomical traits associated with locomotion often exhibit specializations for ecological niche, suggesting that locomotor specializations may constitute selective regimes acting on limb skeletal traits. To test this, I sampled 42 species of Mustelidae, encompassing climbing, digging, and swimming specialists, and determined whether trait variation reflects locomotor specialization by performing a principal components analysis on 14 forelimb traits. In addition to Brownian motion models, three Ornstein–Uhlenbeck models of selective regimes were applied to PC scores describing trait variation among mustelids: one without a priori defined phenotypic optima, one with optima based upon locomotor habit, and one with a single phenotypic optimum. PC1, which explained 43.8% of trait variance, represented a trade‐off in long bone gracility and deltoid ridge length vs. long robustness and olecranon process length and distinguished between climbing specialists and remaining mustelids. PC2, which explained 17.4% of trait variance, primarily distinguished the sea otter from other mustelids. Best fitting trait diversification models are selective regimes differentiating between scansorial and nonscansorial mustelids (PC1) and selective regimes distinguishing the sea otter and steppe polecat from remaining mustelids (PC2). Phylogenetic half‐life values relative to branch lengths suggest that, in spite of a strong rate of adaptation, there is still the influence of past trait values. However, simulations of likelihood ratios suggest that the best fitting models are not fully adequate to explain morphological diversification within extant mustelids.  相似文献   

19.
Although many primates can be classified as quadrupeds, quadrupedalism in primates has not in the past received as much detailed attention as some other locomotor modes. In the present study quadrupedalism in primates is analysed in terms of positional behavior (locomotor and postural activities in an environmental context) and a number of categories are defined. For arboreal primates different adaptations are evident in animals of different body sizes. However, all adaptations are related to the exploitation of the small branch setting.  相似文献   

20.
The potential for making functional interpretations from a single postcranial element for marsupials was investigated through morphometric analysis of the calcanea of 61 extant species from Australia and New Guinea. Extant species were grouped into locomotor categories and a canonical variates analysis was carried out on measurements of their calcanea. A relationship between measurements of the calcanea and the locomotor behavior of species was found, allowing for prediction of locomotor behavior from calcaneum morphometrics. This was applied to fossil marsupial taxa, from early–late Miocene/?Pliocene deposits at Riversleigh, in an attempt to determine their locomotor behavior. Hopping (saltatorial) taxa are distinguished from quadruped terrestrial taxa and taxa capable of climbing (arboreal and scansorial) by their relatively longer tuber calcis and wider calcaneal head, by their dorso-ventrally thicker calcaneal head, and by their calcaneocuboid facet being less steeply angled antero-posteriorly. Taxa capable of climbing are distinguished from quadruped terrestrial taxa by their shorter tuber calcis relative to the calcaneal head and by their smaller calcaneo-astragalar facet. The locomotor categories distinguished in this study (arboreal/scansorial, quadruped terrestrial, and saltatorial) highlight differences between species in their use of available substrates and thus are informative with regards to the structural components of their habitat. The results of this analysis can be used, in combination with other data, to make inferences about the habitats of paleocommunities at Riversleigh through the Miocene. The calcaneum is a dense and very robust element and, therefore, has a good chance of being preserved. This method provides a quick and easy way of inferring locomotion and has a wide potential for application to many fossil deposits because it requires only a single element.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号