首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Investigating the pathways leading to the formation of amyloid protein aggregates and the mechanism of their cytotoxicity is fundamental for a deeper understanding of a broad range of human diseases. Increasing evidence indicates that early aggregates are responsible for the cytotoxic effects. This paper addresses the catalytic role of lipid surfaces in promoting aggregation of amyloid proteins and the permeability changes that these aggregates induce on lipid membranes. Effects of amyloid aggregates on model systems such as monolayers, vesicles, liposomes and supported lipid bilayers are reviewed. In particular, the relevance of atomic force microscopy in detecting both kinetics of amyloid formation and amyloid-membrane interactions is emphasized.  相似文献   

2.
Amyloid deposits from several human diseases have been found to contain membrane lipids. Co-aggregation of lipids and amyloid proteins in amyloid aggregates, and the related extraction of lipids from cellular membranes, can influence structure and function in both the membrane and the formed amyloid deposit. Co-aggregation can therefore have important implications for the pathological consequences of amyloid formation. Still, very little is known about the mechanism behind co-aggregation and molecular structure in the formed aggregates. To address this, we study in vitro co-aggregation by incubating phospholipid model membranes with the Parkinson’s disease-associated protein, α-synuclein, in monomeric form. After aggregation, we find spontaneous uptake of phospholipids from anionic model membranes into the amyloid fibrils. Phospholipid quantification, polarization transfer solid-state NMR and cryo-TEM together reveal co-aggregation of phospholipids and α-synuclein in a saturable manner with a strong dependence on lipid composition. At low lipid to protein ratios, there is a close association of phospholipids to the fibril structure, which is apparent from reduced phospholipid mobility and morphological changes in fibril bundling. At higher lipid to protein ratios, additional vesicles adsorb along the fibrils. While interactions between lipids and amyloid-protein are generally discussed within the perspective of different protein species adsorbing to and perturbing the lipid membrane, the current work reveals amyloid formation in the presence of lipids as a co-aggregation process. The interaction leads to the formation of lipid-protein co-aggregates with distinct structure, dynamics and morphology compared to assemblies formed by either lipid or protein alone.  相似文献   

3.
Ecroyd H  Carver JA 《IUBMB life》2008,60(12):769-774
This mini-review focuses on the processes and consequences of protein folding and misfolding. The latter process often leads to protein aggregation and precipitation with the aggregates adopting either highly ordered (amyloid fibril) or disordered (amorphous) forms. In particular, the amyloid fibril is discussed because this form has gained considerable notoriety due to its close links to a variety of debilitating diseases including Alzheimer's, Parkinson's, Huntington's, and Creutzfeldt-Jakob diseases, and type-II diabetes. In each of these diseases a different protein forms fibrils, yet the fibrils formed have a very similar structure. The mechanism by which fibrils form, fibril structure, and the cytotoxicity associated with fibril formation are discussed. The generic nature of amyloid fibril structure suggests that a common target may be accessible to treat amyloid fibril-associated diseases. As such, the ability of some molecules, for example, the small heat-shock family of molecular chaperone proteins, to inhibit fibril formation is of interest due to their therapeutic potential.  相似文献   

4.
Glycosaminoglycans (GAGs) are frequently associated with amyloid deposits in most amyloid diseases, and there is evidence to support their active role in amyloid fibril formation. The purpose of this study was to obtain structural insight into GAG-protein interactions and to better elucidate the molecular mechanism underlying the effect of GAGs on the amyloid aggregation process and on the related cytotoxicity. To this aim, using Fourier transform infrared and circular diochroism spectroscopy, electron microscopy and thioflavin fluorescence dye we examined the effect of heparin and other GAGs on the fibrillogenesis and cytotoxicity of aggregates formed by the amyloidogenic W7FW14 apomyoglobin mutant. Although this protein is unrelated to human disease, it is a suitable model for in vitro studies because it forms amyloid-like fibrils under physiological conditions of pH and temperature. Heparin strongly stimulated aggregation into amyloid fibrils, thereby abolishing the lag-phase normally detected following the kinetics of the process, and increasing the yield of fibrils. Moreover, the protein aggregates were harmless when assayed for cytotoxicity in vitro. Neutral or positive compounds did not affect the aggregation rate, and the early aggregates were highly cytotoxic. The surprising result that heparin induced amyloid fibril formation in wild-type apomyoglobin and in the partially folded intermediate state of the mutant, i.e., proteins that normally do not show any tendency to aggregate, suggested that the interaction of heparin with apomyoglobin is highly specific because of the presence, in protein turn regions, of consensus sequences consisting of alternating basic and non-basic residues that are capable of binding heparin molecules. Our data suggest that GAGs play a dual role in amyloidosis, namely, they promote beneficial fibril formation, but they also function as pathological chaperones by inducing amyloid aggregation.  相似文献   

5.
The accumulation of amyloid fibers due to protein misfolding is associated with numerous human diseases. For example, the formation of amyloid deposits in neurodegenerative pathologies is correlated with abnormal apoptosis. We report here the in vitro formation of various types of aggregates by Bcl-xL, a protein of the Bcl-2 family involved in the regulation of apoptosis. Bcl-xL forms aggregates in three states, micelles, native-like fibrils, and amyloid fibers, and their biophysical characterization has been performed in detail. Bcl-xL remains in its native state within micelles and native-like fibrils, and our results suggest that native-like fibrils are formed by the association of micelles. Formation of amyloid structures, that is, nonnative intermolecular β-sheets, is favored by the proximity of proteins within fibrils at the expense of the Bcl-xL native structure. Finally, we provide evidence of a direct relationship between the amyloid character of the fibers and the tertiary-structure stability of the native Bcl-xL. The potential causality between the accumulation of Bcl-xL into amyloid deposits and abnormal apoptosis during neurodegenerative diseases is discussed.  相似文献   

6.
The assembly of soluble proteins into ordered fibrillar aggregates with cross-β structure is an essential event of many human diseases. The polypeptides undergoing aggregation are generally small in size. To explore if the small size is a primary determinant for the formation of amyloids under pathological conditions we have created two databases of proteins, forming amyloid-related and non-amyloid deposits in human diseases, respectively. The size distributions of the two protein populations are well separated, with the systems forming non-amyloid deposits appearing significantly larger. We have then investigated the propensity of the 486-residue hexokinase-B from Saccharomyces cerevisiae (YHKB) to form amyloid-like fibrils in vitro. This size is intermediate between the size distributions of amyloid and non-amyloid forming proteins. Aggregation was induced under conditions known to be most effective for amyloid formation by normally globular proteins: (i) low pH with salts, (ii) pH 5.5 with trifluoroethanol. In both situations YHKB aggregated very rapidly into species with significant β-sheet structure, as detected using circular dichroism and X-ray diffraction, but a weak Thioflavin T and Congo red binding. Moreover, atomic force microscopy indicated a morphology distinct from typical amyloid fibrils. Both types of aggregates were cytotoxic to human neuroblastoma cells, as indicated by the MTT assay. This analysis indicates that large proteins have a high tendency to form toxic aggregates, but low propensity to form regular amyloid in vivo and that such a behavior is intrinsically determined by the size of the protein, as suggested by the in vitro analysis of our sample protein.  相似文献   

7.
Phospholipid catalysis of diabetic amyloid assembly   总被引:6,自引:0,他引:6  
Islet amyloid polypeptide (IAPP) is a 37-residue hormone that forms cytotoxic amyloid fibers in the endocrine pancreas of patients with type II diabetes (NIDDM). A potential origin for cytotoxicity is disruption of lipid membranes by IAPP as has been observed in vitro. The cause of amyloid formation during NIDDM is not known, nor is the mechanism by which membrane disruption occurs in vitro. Here, we use kinetic studies in conjunction with assessments of lipid binding and electron microscopy to investigate the interactions of IAPP with phospholipid bilayers and the morphological effects of membranes on IAPP fibers. Fibrillogenesis of IAPP is catalyzed by synthetic and human tissue-derived phospholipids, leading to >tenfold increases in the rate of fibrillogenesis. The molecular basis of this phenomenon includes a strong dependence on the concentration and charge density of the membrane. IAPP binds to lipid membranes of mixed anionic (DOPG) and zwitterionic (DOPC) content. The transition for binding occurs over a physiologically relevant range of anionic content. Membrane binding by IAPP occurs on timescales that are short compared to fibrillogenesis and results in assembly into preamyloid states via ordered interactions at the N but not C terminus of the protein. These assemblies lead both to gross morphological changes in liposomes and to alterations in the appearance of early fibers when compared to liposome-free fibril formation. Intact bilayer surfaces are regenerated upon dissociation of fibers from the membrane surface. These findings offer a structural mechanism of membrane destabilization and suggest that changes in lipid metabolism could induce IAPP fiber formation in NIDDM.  相似文献   

8.
Acidic lipids are known to both catalyze amyloid fiber formation by amyloidogenic peptides/proteins and induce formation of 'amyloid-like' fibrils by non-amyloidogenic proteins. In this work, we describe the application of state-of-the-art time-resolved F?rster resonance energy transfer methodologies to the characterization of the supramolecular structure of the aggregates formed by both a cationic peptide (hexalysyltryptophan) and a basic non-amyloidogenic protein (lysozyme) upon their interaction with negatively-charged fluid membranes (mixtures of zwitterionic phosphatidylcholine and anionic phosphatidylserine). It was concluded that both the peptide and protein induce the formation of multistacked lipid bilayers. Furthermore, upon using conditions that are described in the literature to cause the formation of amyloid-like fibers, lysozyme was found to induce the formation of a 'pinched lamellar' structure, with reduced interbilayer distance in the regions where there is bound protein, and increased interbilayer distance (stabilized by hydration repulsion) outside these areas. No significant lateral domains (lipid demixing) were induced in the membrane by either the cationic peptide or lysozyme.  相似文献   

9.
The formation of fibrillar aggregates has long been associated with neurodegenerative disorders such as Alzheimer and Parkinson diseases. Although fibrils are still considered important to the pathology of these disorders, it is now widely understood that smaller amyloid oligomers are the toxic entities along the misfolding pathway. One characteristic shared by the majority of amyloid oligomers is the ability to disrupt membranes, a commonality proposed to be responsible for their toxicity, although the mechanisms linking this to cell death are poorly understood. Here, we describe the physical basis for the cytotoxicity of oligomers formed by the prion protein (PrP)-derived amyloid peptide PrP(106–126). We show that oligomers of this peptide kill several mammalian cells lines, as well as mouse cerebellar organotypic cultures, and we also show that they exhibit antimicrobial activity. Physical perturbation of model membranes mimicking bacterial or mammalian cells was investigated using atomic force microscopy, polarized total internal reflection fluorescence microscopy, and NMR spectroscopy. Disruption of anionic membranes proceeds through a carpet or detergent model as proposed for other antimicrobial peptides. By contrast, when added to zwitterionic membranes containing cholesterol-rich ordered domains, PrP(106–126) oligomers induce a loss of domain separation and decreased membrane disorder. Loss of raft-like domains may lead to activation of apoptotic pathways, resulting in cell death. This work sheds new light on the physical mechanisms of amyloid cytotoxicity and is the first to clearly show membrane type-specific modes of action for a cytotoxic peptide.  相似文献   

10.
Pancreatic amyloid is found in more than 95 % of type II diabetes patients. Pancreatic amyloid is formed by the aggregation of islet amyloid polypeptide (hIAPP or amylin), which is a 37-residue peptide. Because pancreatic amyloid is cytotoxic, it is believed that its formation is directly associated with the development of the disease. We recently showed that hIAPP amyloid formation follows the nucleation-dependent polymerization mechanism and proceeds via a conformational transition of soluble hIAPP into aggregated beta-sheets. Here, we report that the penta- and hexapeptide sequences, hIAPP(23-27) (FGAIL) and hIAPP(22-27) (NFGAIL) of hIAPP are sufficient for the formation of beta-sheet-containing amyloid fibrils. Although these two peptides differ by only one amino acid residue, they aggregate into completely different fibrillar assemblies. hIAPP(23-27) (FGAIL) fibrils self-assemble laterally into unusually broad ribbons, whereas hIAPP(22-27) (NFGAIL) fibrils coil around each other in a typical amyloid fibril morphology. hIAPP(20-27) (SNNFGAIL) also aggregates into beta-sheet-containing fibrils, whereas no amyloidogenicity is found for hIAPP(24-27) (GAIL), indicating that hIAPP(23-27) (FGAIL) is the shortest fibrillogenic sequence of hIAPP. Insoluble amyloid formation by the partial hIAPP sequences followed kinetics that were consistent with a nucleation-dependent polymerization mechanism. hIAPP(22-27) (NFGAIL), hIAPP(20-27) (SNNFGAIL), and also the known fibrillogenic sequence, hIAPP(20-29) (SNNFGAILSS) exhibited significantly lower kinetic and thermodynamic solubilities than the pentapeptide hIAPP(23-27) (FGAIL). Fibrils formed by all short peptide sequences and also by hIAPP(20-29) were cytotoxic towards the pancreatic cell line RIN5fm, whereas no cytotoxicity was observed for the soluble form of the peptides, a notion that is consistent with hIAPP cytotoxicity. Our results suggest that a penta- and hexapeptide sequence of an appropriate amino acid composition can be sufficient for beta-sheet and amyloid fibril formation and cytotoxicity and may assist in the rational design of inhibitors of pancreatic amyloid formation or other amyloidosis-related diseases.  相似文献   

11.
Misfolding and aggregation of normally soluble proteins into amyloid fibrils and their deposition and accumulation underlies a variety of clinically significant diseases. Fibrillar aggregates with amyloid-like properties can also be generated in vitro from pure proteins and peptides, including those not known to be associated with amyloidosis. Whereas biophysical studies of amyloid-like fibrils formed in vitro have provided important insights into the molecular mechanisms of amyloid generation and the structural properties of the fibrils formed, amyloidogenic proteins are typically exposed to mild or more extreme denaturing conditions to induce rapid fibril formation in vitro. Whether the structure of the resulting assemblies is representative of their natural in vivo counterparts, thus, remains a fundamental unresolved issue. Here we show using Fourier transform infrared spectroscopy that amyloid-like fibrils formed in vitro from natively folded or unfolded beta(2)-microglobulin (the protein associated with dialysis-related amyloidosis) adopt an identical beta-sheet architecture. The same beta-strand signature is observed whether fibril formation in vitro occurs spontaneously or from seeded reactions. Comparison of these spectra with those of amyloid fibrils extracted from patients with dialysis-related amyloidosis revealed an identical amide I' absorbance maximum, suggestive of a characteristic and conserved amyloid fold. Our results endorse the relevance of biophysical studies for the investigation of the molecular mechanisms of beta(2)-microglobulin fibrillogenesis, knowledge about which may inform understanding of the pathobiology of this protein.  相似文献   

12.
The ABri is a 34 residue peptide that is the major component of amyloid deposits in familial British dementia. In the amyloid deposits, the ABri peptide adopts aggregated beta-pleated sheet structures, similar to those formed by the Abeta peptide of Alzheimer's disease and other amyloid forming proteins. As a first step toward elucidating the molecular mechanisms of the beta-amyloidosis, we explored the ability of the environmental variables (pH and peptide concentration) to promote beta-sheet fibril structures for synthetic ABri peptides. The secondary structures and fibril morphology were characterized in parallel using circular dichroism, atomic force microscopy, negative stain electron microscopy, Congo red, and thioflavin-T fluorescence spectroscopic techniques. As seen with other amyloid proteins, the ABri fibrils had characteristic binding with Congo red and thioflavin-T, and the relative amounts of beta-sheet and amyloid fibril-like structures are influenced strongly by pH. In the acidic pH range 3.1-4.3, the ABri peptide adopts almost exclusively random structure and a predominantly monomeric aggregation state, on the basis of analytical ultracentrifugation measurements. At neutral pH, 7.1-7.3, the ABri peptide had limited solubility and produced spherical and amorphous aggregates with predominantly beta-sheet secondary structure, whereas at slightly acidic pH, 4.9, spherical aggregates, intermediate-sized protofibrils, and larger-sized mature amyloid fibrils were detected by atomic force microscopy. With aging at pH 4.9, the protofibrils underwent further association and eventually formed mature fibrils. The presence of small amounts of aggregated peptide material or seeds encourage fibril formation at neutral pH, suggesting that generation of such seeds in vivo could promote amyloid formation. At slightly basic pH, 9.0, scrambling of the Cys5-Cys22 disulfide bond occurred, which could lead to the formation of covalently linked aggregates. The presence of the protofibrils and the enhanced aggregation at slightly acidic pH is consistent with the behavior of other amyloid-forming proteins, which supports the premise that a common mechanism may be involved in protein misfolding and beta-amyloidosis.  相似文献   

13.
It is widely accepted that the formation of amyloid fibrils is one of the natural properties of proteins. The amyloid formation process is associated with a variety of factors, among which the hydrophobic residues play a critical role. In this study, insulin was used as a model to investigate the effect of exposing a critical hydrophobic patch on amyloidogenicity and fibril structure of insulin. Porcine insulin was digested with trypsin to obtain desoctapeptide-(B23–B30) insulin (DOI), whose hydrophilic C-terminal of B-chain was removed and hydrophobic core was exposed. The results showed that DOI, of which the ordered structure (predominantly α-helix) was markedly decreased, was more prone to aggregate than intact insulin. As to the secondary structure of amyloid fibrils, DOI fibrils were similar to insulin fibrils formed under acidic condition, whereas under neutral condition, insulin formed less polymerized aggregates by showing decreased β-sheet contents in fibrils. Further investigation on membrane damage and hemolysis showed that DOI fibrils induced significantly less membrane damage and less hemolysis of erythrocytes compared with those of insulin fibrils. In conclusion, exposing the hydrophobic core of insulin can induce the increase of amyloidogenicity and formation of higher-order polymerized fibrils, which is less toxic to membranes.  相似文献   

14.
Electrostatic interactions between negatively charged membranes and basic peptides/protein domains have been implicated as the driving force for several important processes, often involving membrane aggregation, fusion, or phase separation. Recently, acidic lipids were reported to both catalyze amyloid fiber formation by amyloidogenic proteins/peptides and induce formation of “amyloid-like” fibrils by nonamyloidogenic proteins. This study aims to characterize the structure of the aggregates of a basic protein (lysozyme) and negatively charged membranes (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoserine 4:1 mixture) at the molecular level, using Förster resonance energy transfer. It is concluded that lysozyme induced formation of a “pinched lamellar” structure, with reduced interbilayer distance in the regions where there is bound protein and increased interbilayer distance (stabilized by hydration repulsion) outside these areas.  相似文献   

15.
The aggregation of proteins into amyloid fibrils is the hallmark feature of a group of late-onset degenerative diseases including Alzheimer, Parkinson, and prion diseases. We report here that microcin E492, a peptide naturally produced by Klebsiella pneumoniae that kills bacteria by forming pores in the cytoplasmic membrane, assembles in vitro into amyloid-like fibrils. The fibrils have the same structural, morphological, tinctorial, and biochemical properties as the aggregates observed in the disease conditions. In addition, we found that amyloid formation also occurs in vivo where it is associated with a loss of toxicity of the protein. The finding that microcin E492 naturally exists both as functional toxic pores and as harmless fibrils suggests that protein aggregation into amyloid fibrils is an evolutionarily conserved property of proteins that can be successfully employed by bacteria to fulfill specific physiological needs.  相似文献   

16.
Alpha-synuclein is one of the causative proteins of familial Parkinson disease, which is characterized by neuronal inclusions named Lewy bodies. Lewy bodies include not only alpha-synuclein but also aggregates of other proteins. This fact raises a question as to whether the formation of alpha-synuclein amyloid fibrils in Lewy bodies may occur via interaction with fibrils derived from different proteins. To probe this hypothesis, we investigated in vitro fibril formation of human alpha-synuclein in the presence of preformed fibril seeds of various different proteins. We used three proteins, Escherichia coli chaperonin GroES, hen lysozyme, and bovine insulin, all of which have been shown to form amyloid fibrils. Very surprisingly, the formation of alpha-synuclein amyloid fibril was accelerated markedly in the presence of preformed seeds of GroES, lysozyme, and insulin fibrils. The structural characteristics of the natively unfolded state of alpha-synuclein may allow binding to various protein particles, which in turn triggers the formation (extension) of alpha-synuclein amyloid fibrils. This finding is very important for understanding the molecular mechanism of Parkinson disease and also provides interesting implications into the mechanism of transmissible conformational diseases.  相似文献   

17.
In experiments designed to characterize the basis of amyloid fibril stability through mutational analysis of the Abeta (1-40) molecule, fibrils exhibit consistent, significant structural malleability. In these results, and in other properties, amyloid fibrils appear to more resemble plastic materials generated from synthetic polymers than globular proteins. Thus, like synthetic polymers and plastics, amyloid fibrils exhibit both polymorphism, the ability of one polypeptide to form aggregates of different morphologies, and isomorphism, the ability of different polypeptides to grow into a fibrillar amyloid morphology. This view links amyloid with the prehistorical and 20th century use of proteins as starting materials to make films, fibers, and plastics, and with the classic protein fiber stretching experiments of the Astbury group. Viewing amyloids from the point of view of the polymer chemist may shed new light on a number of issues, such as the role of protofibrils in the mechanism of amyloid formation, the biological potency of fibrils, and the prospects for discovering inhibitors of amyloid fibril formation.  相似文献   

18.
The accumulation of aggregated protein in the cell is associated with the pathology of many diseases and constitutes a major concern in protein production. Intracellular aggregates have been traditionally regarded as nonspecific associations of misfolded polypeptides. This view is challenged by studies demonstrating that, in vitro, aggregation often involves specific interactions. However, little is known about the specificity of in vivo protein deposition. Here, we investigate the degree of in vivo co-aggregation between two self-aggregating proteins, Abeta42 amyloid peptide and foot-and-mouth disease virus VP1 capsid protein, in prokaryotic cells. In addition, the ultrastructure of intracellular aggregates is explored to decipher whether amyloid fibrils and intracellular protein inclusions share structural properties. The data indicate that in vivo protein aggregation exhibits a remarkable specificity that depends on the establishment of selective interactions and results in the formation of oligomeric and fibrillar structures displaying amyloid-like properties. These features allow prokaryotic Abeta42 intracellular aggregates to act as effective seeds in the formation of Abeta42 amyloid fibrils. Overall, our results suggest that conserved mechanisms underlie protein aggregation in different organisms. They also have important implications for biotechnological and biomedical applications of recombinant polypeptides.  相似文献   

19.
Amyloid deposition accompanies over 20 degenerative diseases in human, including Alzheimer's, Parkinson's, and prion diseases. Recent studies revealed the importance of other type of protein aggregates, e.g., non-specific aggregates, protofibrils, and small oligomers in the development of such diseases and proved their increased toxicity for living cells in comparison with mature amyloid fibrils. We carried out a comparative structural analysis of different monomeric and aggregated states of beta(2)-microglobulin, a protein responsible for hemodialysis-related amyloidosis. We investigated the structure of the native and acid-denatured states, as well as that of mature fibrils, immature fibrils, amorphous aggregates, and heat-induced filaments, prepared under various in vitro conditions. Infrared spectroscopy demonstrated that the beta-sheet compositions of immature fibrils, heat-induced filaments and amorphous aggregates are characteristic of antiparallel intermolecular beta-sheet structure while mature fibrils are different from all others suggesting a unique overall structure and assembly. Filamentous aggregates prepared by heat treatment are of importance in understanding the in vivo disease because of their stability under physiological conditions, where amyloid fibrils and protofibrils formed at acidic pH depolymerize. Atomic force microscopy of heat-induced filaments represented a morphology similar to that of the low pH immature fibrils. At a pH close to the pI of the protein, amorphous aggregates were formed readily with association of the molecules in native-like conformation, followed by formation of intermolecular beta-sheet structure in a longer time-scale. Extent of the core buried from the solvent in the various states was investigated by H/D exchange of the amide protons.  相似文献   

20.
Amyloid fibrils are self-assembled fibrous protein aggregates that are associated with a number of presently incurable diseases such as Alzheimer’s and Parkinson’s disease. Millions of people worldwide suffer from amyloid diseases. This review summarizes the unique cross-β structure of amyloid fibrils, morphological variations, the kinetics of amyloid fibril formation, and the cytotoxic effects of these fibrils and oligomers. Alzheimer’s disease is also explored as an example of an amyloid disease to show the various approaches to treat these amyloid diseases. Finally, this review investigates the nanotechnological and biological applications of amyloid fibrils; as well as a summary of the typical biological pathways involved in the disposal of amyloid fibrils and their precursors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号