首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Paweł Olejniczak 《Plant Ecology》2011,212(11):1927-1935
A positive effect of herbivory on plant reproduction (overcompensation) has been documented mostly in monocarpic plants. Iteroparous perennials can be used to test whether enhanced reproduction in 1 year has negative future consequences as predicted by optimal allocation models. This study was intended to verify this prediction in the iteroparous herb Sedum maximum, applying mechanically simulated herbivory. I monitored 132 labelled S. maximum individuals during 2 years of study. They were randomly assigned to two groups: clipped and control. Infructescence dry mass, total seed dry mass, seed size, germination rate and an increase of root dry mass during the season were assessed in the experimental plants. Since only roots can survive to the next season, root dry mass was considered a reliable measure of allocation to future performance. Clipped plants showed increased fruit and seed dry mass versus the controls, with no other aspect of reproduction affected. Apical bud removal also had a positive effect on increase of root dry mass. The results indicate true overcompensation in response to simulated herbivory with no future costs of increased reproduction. Moreover, increased plant reproduction as a result of herbivory is likely to persist in the following years: clipping increased not only seed production but also root growth. This response is inconsistent with the results of optimal allocation models and the discrepancy is probably due to violation of the resource limitation assumption. Plants adapted to tolerate herbivory seem not to reproduce at the maximum rate when undamaged, but rather withhold resources to be allocated to reproduction after herbivory.  相似文献   

2.
In an earlier work a model of the autocrine and paracrine pathways of tumor growth control was developed (Michelson and Leith. 1991. Autocrine and paracrine growth factors in tumor growth.Bull. math. Biol. 53, 639–656). The target population, a generic tumor, was modeled as a single, homogeneous population using the standard Verhulst equation of logistic growth. Mitogenic signals were represented by modifications to the Malthusian growth parameter and adaptational signals were represented by modifications to the carrying capacity. Three growth scenarios were described: (1) normal tissue wound healing, (2) unperturbed tumor growth, and (3) tumor growth in a radiation damaged environment, a phenomenon termed the Tumor Bed Effect (TBE). In this paper, we extend those results to include a “triad” of growth factor controls (autocrine, paracrine and endocrine) and heterogeneity of the target population. The heterogeneous factors in the model represent either intrinsic, epigenetic or environmental differences in both normally differentiating tissues and tumors. Three types of growth are modeled: (1) normal tissue differentiation or wound healing, assuming no communication between differentiated and undifferentiated cell compartments; (2) normal wound healing with feedback inhibition, due to signalling from the differentiated compartment; and (3) the development of hypoxia in a spherical tumor. The signal processing within the triad is discussed for each model and biologically reasonable constraints are defined for limits on growth control.  相似文献   

3.
We formulate a Dynamic Energy Budget (DEB) model for the growth and reproduction of individual organisms based on partitioning of net production (i.e. energy acquisition rate minus maintenance rate) between growth and energy reserves. Reproduction uses energy from reserves. The model describes both feeding and non-feeding stages, and hence is applicable to embryos (which neither feed nor reproduce), juveniles (which feed but do not reproduce), and adults (which commonly both feed and reproduce). Embryonic growth can have two forms depending on the assumptions for acquisition of energy from yolk. By default, when the energy acquisition rate exceeds the maintenance rate, a fixed proportion of the resulting net production is spent on growth (increase in structural biomass), and the remaining portion is channelled to the reserves. Feeding organisms, however, modulate their allocation of net production energy in response to their total energy content (energy in the reserves plus energy bounded to structural biomass). In variable food environment an organism alternates between periods of growth, no-growth, and balanced-growth. In the latter case the organism adopts an allocation strategy that keeps its total energy constant. Under constant environmental conditions, the growth of a juvenile is always of von Bertalanffy type. Depending on the values of model parameters there are two long-time possibilities for adults: (a) von Bertalanffy growth accompanied by reproduction at a rate that approaches zero as the organism approaches asymptotic size, or (b) abrupt cessation of growth at some finite time, following which, the rate of reproduction is constant. We illustrate the model's applicability in life history theory by studying the optimum values of the energy allocation parameters for constant environment and for each of the dynamic regimes described above. Received: 11 May 1998 / Revised version: 18 February 2000 / Published online: 4 October 2000  相似文献   

4.
In this paper we consider a general illness-death stochastic model in which the transition intensities all vary proportionally to a time function ϕ(t). We extend Chiang's earlier work to include processes which are both reversible and have parameters which are time varying, and obtain survival time distributions and the expectation and variance of survival times.  相似文献   

5.
We examined interspecific and intraspecific variation in tree seedling survival as a function of allocation to carbohydrate reserves and structural root biomass. We predicted that allocation to carbohydrate reserves would vary as a function of the phenology of shoot growth, because of a hypothesized tradeoff between aboveground growth and carbohydrate storage. Intraspecific variation in levels of carbohydrate reserves was induced through experimental defoliation of naturally occurring, 2-year-old seedlings of four northeastern tree species –Acer rubrum, A. saccharum, Quercus rubra, and Prunus serotina– with shoot growth strategies that ranged from highly determinate to indeterminate. Allocation to root structural biomass varied among species and as a function of light, but did not respond to the defoliation treatments. Allocation to carbohydrate reserves varied among species, and the two species with the most determinate shoot growth patterns had the highest total mass of carbohydrate reserves, but not the highest concentrations. Both the total mass and concentrations of carbohydrate reserves were significantly reduced by defoliation. Seedling survival during the year following the defoliation treatments did not vary among species, but did vary dramatically in response to defoliation. In general, there was an approximately linear relationship between carbohydrate reserves and subsequent survival, but no clear relationship between allocation to root structural biomass and subsequent survival. Because of the disproportionate amounts of reserves stored in roots, we would have erroneously concluded that allocation to roots was significantly and positively related to seedling survival if we had failed to distinguish between reserves and structural biomass in roots. Received: 14 December 1999 / Accepted: 2 June 1999  相似文献   

6.
An organism's life history is closely interlinked with its allocation of energy between growth and reproduction at different life stages. Theoretical models have established that diminishing returns from reproductive investment promote strategies with simultaneous investment into growth and reproduction (indeterminate growth) over strategies with distinct phases of growth and reproduction (determinate growth). We extend this traditional, binary classification by showing that allocation‐dependent fecundity and mortality rates allow for a large diversity of optimal allocation schedules. By analyzing a model of organisms that allocate energy between growth and reproduction, we find twelve types of optimal allocation schedules, differing qualitatively in how reproductive allocation increases with body mass. These twelve optimal allocation schedules include types with different combinations of continuous and discontinuous increase in reproduction allocation, in which phases of continuous increase can be decelerating or accelerating. We furthermore investigate how this variation influences growth curves and the expected maximum life span and body size. Our study thus reveals new links between eco‐physiological constraints and life‐history evolution and underscores how allocation‐dependent fitness components may underlie biological diversity.  相似文献   

7.
A new, more realistic model of the action of ionizing radiation on mammalian cells growingin vitro is presented. Although this model requires a large number of parameters, these are linked to biologically observable quantities rather than being abstract sensitivities, as had previously been the case. Three different stochastic processes are required: {X(t);t ∈ [0, τ]}, representing damage alterations during irradiation; {(X(t), S(t));t ∈ [τ, τ+T D]}, representing changes in both damageX(t) and cell cycle positionS(t) during the post-irradiation cell cycle; and {N x(t);t ∈ [0,T G]}, representing the subsequent colony growth process conditioned on the value ofX(τ+T D). The assumptions used to define these processes extend a previous model of short term DNA damage formation and repair (Nelson S. J. 1982,Radiat. Res. 92, 120–145) to include the influence of cell cycle progression on damage in the irradiated cell and the effect of permanent inherited damage on the daughter cells' colony growth pattern. Expressions corresponding to commonly measured radiation effects are derived from the model and compared with predictions from previous models. It is found that these previous models oversimplified the mechanism of radiation action because they did not adequately represent repair during irradiation, the influence of radiation-induced cycle delays and damage inheritance by any daughter cells. Suggestions are then made for ways in which the new model can be used to test the importance of these effects.  相似文献   

8.
Mammalian white blood cells are known to bias the direction of their movement along concentration gradients of specific chemical stimuli, a phenomenon called chemotaxis. Chemotaxis of leukocyte cells is central to the acute inflammatory response in living organisms and other critical physiological functions. On a molecular level, these cells sense the stimuli termed chemotactic factor (CF) through specific cell surface receptors that bind CF molecules. This triggers a complex signal transduction process involving intracellular biochemical pathways and biophysical events, eventually leading to the observable chemotactic response. Several investigators have shown theoretically that statistical fluctuations in receptor binding lead to “noisy” intracellular signals, which may explain the observed imperfect chemotactic response to a CF gradient. The most recent dynamic model (Tranquillo and Lauffenburger,J. Math. Biol. 25, 229–262. 1987) couples a scheme for intracellular signal transduction and cell motility response with fluctuations in receptor binding. However, this model employs several assumptions regarding receptor dynamics that are now known to be oversimplifications. We extend the earlier model by accounting for several known and speculated chemotactic receptor dynamics, namely, transient G-protein signaling, cytoskeletal association, and receptor internalization and recycling, including statistical fluctuations in the numbers of receptors among the various states. Published studies are used to estimate associated constants and ensure the predicted receptor distribution is accurate. Model analysis indicates that directional persistence in uniform CF concentrations is enhanced by increasing rate constants for receptor cytoskeletal inactivation, ternary complex dissociation, and binary complex dissociation, and by decreasing rate constants for receptor internalization and recycling. For most rate constants, we have detected an optimal range that maximizes orientation bias in CF gradients. We have also examined different desensitization and receptor recycling mechanisms that yield experimentally documented orientation behavior. These yield novel insights into the relationship between receptor dynamics and leukocyte chemosensory movement behavior.  相似文献   

9.
Accelerating rhizome growth is crucial to enhancing propagule production in rhubarb (Rheum rhabarbarum L.) because the crop is propagated through rhizome divisions. This can be achieved through manipulating source-sink activity. This study tested the hypothesis that synthetic plant growth retardants Prohexadione-Ca and CCC enhance rhizome growth in rhubarb. Two different concentrations of these plant growth retardants and GA3 (positive control) were foliarly applied on the cultivar German Wine at three stages of shoot growth under greenhouse conditions. Both Prohexadione-Ca and CCC favorably enhanced rhizome growth through suppressing shoot growth. CCC at 3000 mg L−1 produced the best results and the effect was apparent when applied at 12 weeks after shoot emergence. The rhizome diameter, fresh weight, and the number of viable buds were enhanced significantly in plants sprayed with CCC 3000 mg L−1. Both Prohexadione-Ca and CCC were equally effective in enhancing dry mass and starch allocation preferentially toward the rhizome. Prohexadione-Ca- and CCC-induced rhizome growth enhancement could possibly be due to their known role as GA biosynthesis inhibitors or through increasing photosynthetic efficiency and preferentially reallocating carbohydrates to the rhizome.  相似文献   

10.
Understanding decisions about the allocation of resources into colony growth and reproduction in social insects is one of the challenging issues in sociobiology. In their seminal paper, Macevicz and Oster predicted that, for most annual insect colonies, a bang–bang strategy should be favoured by selection, i.e. a strategy characterised by an “ergonomic phase” with exponential colony growth followed by a “reproductive phase” with all resources invested into the production of sexuals. Yet, there is empirical evidence for the simultaneous investment into the production of workers and sexuals in annual colonies (graded control). We, therefore, re-analyse and extend the original model of Macevicz and Oster. Using basic calculus, we can show that sufficiently strong negative correlation between colony size and worker efficiency or increasing mortality of workers with increasing colony size will favour the evolution of graded allocation strategies. By similar reasoning, graded control is predicted for other factors limiting colony productivity (for example, if queens’ egg laying capacity is limited).  相似文献   

11.
绿色巴夫藻受紫外(UV-B)胁迫后的超补偿生长效应   总被引:1,自引:0,他引:1  
以绿色巴夫藻(Pavlova viridis)为实验材料,设置了18、36、54、65、86和108 J·m-2 6个UV-B辐射剂量处理组,以无紫外辐射为对照,解除胁迫后,处理组和对照组在相同接种密度和相同条件下培养12 d,测定了生长过程中的吸光值、生物量、叶绿素a、类胡萝卜素、可溶性蛋白质和胞内多糖含量.结果表明,在UV-B胁迫下,绿色巴夫藻细胞生长受到显著抑制,6个处理组细胞的相对增长率比对照下降了16.15%~60.00% (P<0.05).但在胁迫解除后,各胁迫处理的藻细胞生长指标均显著高于对照(P<0.05),证明绿色巴夫藻在胁迫后的恢复生长中出现超补偿生长现象.恢复培养第12天,最大吸光值、生物量、叶绿素a、类胡萝卜素、可溶性蛋白质和胞内多糖含量分别比对照提高了22.38%、15.00%、26.15%、23.81%、11.63%和27.58%.藻类中存在超补偿生长特性为微藻生物活性物质的开发提供了有效途径.  相似文献   

12.
Aya Imaji  Kenji Seiwa 《Oecologia》2010,162(2):273-281
Optimal carbon allocation to growth, defense, or storage is a critical trait in determining the shade tolerance of tree species. Thus, examining interspecific differences in carbon allocation patterns is useful when evaluating niche partitioning in forest communities. We hypothesized that shade-tolerant species allocate more carbon to defense and storage and less to growth compared to shade-intolerant species. In gaps and forest understory, we measured relative growth rates (RGR), carbon-based defensive compounds (condensed tannin, total phenolics), and storage compounds (total non-structural carbohydrate; TNC) in seedlings of two tree species differing in shade tolerance. RGR was greater in the shade-intolerant species, Castanea crenata, than in the shade-tolerant species, Quercus mongolica var. grosseserrata, in gaps, but did not differ between the species in the forest understory. In contrast, concentrations of condensed tannin and total phenolics were greater in Quercus than in Castanea at both sites. TNC pool sizes did not differ between the species. Condensed tannin concentrations increased with increasing growth rate of structural biomass (GRstr) in Quercus but not in Castanea. TNC pool sizes increased with increasing GRstr in both species, but the rate of increase did not differ between the species. Accordingly, the amount of condensed tannin against TNC pool sizes was usually higher in Quercus than in Castanea. Hence, Quercus preferentially invested more carbon in defense than in storage. Such a large allocation of carbon to defense would be advantageous for a shade-tolerant species, allowing Quercus to persist in the forest understory where damage from herbivores and pathogens is costly. In contrast, the shade-intolerant Castanea preferentially invested more carbon in growth rather than defense (and similar amounts in storage as Quercus), ensuring establishment success in gaps, where severe competition occurs for light among neighboring plants. These contrasting carbon allocation patterns are closely associated with strategies for persistence in these species’ respective habitats.  相似文献   

13.
During recovery from social stress in a visible burrow system (VBS), during which a dominance hierarchy is formed among the males, rats display hyperphagia and gain weight preferentially as visceral adipose tissue. By proportionally increasing visceral adiposity, social stress may contribute to the establishment of metabolic disorder. Amylin was administered to rats fed ad libitum during recovery from VBS stress in an attempt to prevent hyperphagia and the resultant gain in body weight and fat mass. Amylin treatment reduced food intake, weight gain, and accumulation of fat mass in male burrow rats, but not in male controls that spent time housed with a single female rather than in the VBS. Amylin did not alter neuropeptide Y (NPY), agouti-related peptide (AgRP), or proopiomelanocortin (POMC) mRNA expression in the arcuate nucleus of the hypothalamus as measured at the end of the recovery period, nor did it affect plasma corticosterone or leptin. Amylin exerted most of its effect on food intake during the first few days of recovery, possibly through antagonism of NPY and/or increasing leptin sensitivity. The potential for chronic social stress to contribute to metabolic disorder is diminished by amylin treatment, though the neuroendocrine mechanisms behind this effect remain elusive.  相似文献   

14.
We extend a non-Tikhonov asymptotic embedding, proposed earlier, for calculation of conduction velocity restitution curves in ionic models of cardiac excitability. Conduction velocity restitution is the simplest non-trivial spatially extended problem in excitable media, and in the case of cardiac tissue it is an important tool for prediction of cardiac arrhythmias and fibrillation. An idealized conduction velocity restitution curve requires solving a non-linear eigenvalue problem with periodic boundary conditions, which in the cardiac case is very stiff and calls for the use of asymptotic methods. We compare asymptotics of restitution curves in four examples, two generic excitable media models, and two ionic cardiac models. The generic models include the classical FitzHugh–Nagumo model and its variation by Barkley. They are treated with standard singular perturbation techniques. The ionic models include a simplified “caricature” of Noble (J. Physiol. Lond. 160:317–352, 1962) model and Beeler and Reuter (J. Physiol. Lond. 268:177–210, 1977) model, which lead to non-Tikhonov problems where known asymptotic results do not apply. The Caricature Noble model is considered with particular care to demonstrate the well-posedness of the corresponding boundary-value problem. The developed method for calculation of conduction velocity restitution is then applied to the Beeler–Reuter model. We discuss new mathematical features appearing in cardiac ionic models and possible applications of the developed method.  相似文献   

15.
The availability of the myeloid hemopoietic growth factors (HGF) granulocyte- and granulocyte/macrophage-colony stimulating factor (G-CSF and GM-CSF) has enhanced the therapeutic index of high-dose chemotherapeutic antitumoral regimens (HDCT), as well as the rate of severe damage to immune competence. We investigated some immune functions before, during and after one course of HDCT for poor-risk breast cancer and compared the effects of G-CSF and GM-CSF on the immune recovery. They exerted different influences on the functions we examined and showed distinctive patterns of both qualitative and quantitative in vivo activities on the immune system. The main findings were that (a) granulocyte and lymphocyte recovery rates were faster in the patients receiving G-CSF; (b) looking at the lymphocyte compartment, this difference was restricted to the CD3+/CD8+ and CD56+ lymphocyte subsets; (c) the reconstitution rate of CD19+ lymphocytes was slow in both groups; (d) at the end of follow-up HLA-DR expression by CD3+ lymphocytes was higher in the GM-CSF group; (e) the lymphocyte proliferative capacity was restored at a faster rate in the GM-CSF group, whereas cytotoxic activities recovered better in the G-CSF group; (f) the early repopulating phase was characterized by higher interleukin-6 serum levels in the GM-CSF group. Overall, GM-CSF seemed to exert an earlier effect on all T lymphocyte subsets, preventing them from a complete drop during the long-lasting “nadir” of the cell count, whereas G-CSF appeared to boost them strongly, though a few days later, hastening their final recovery. The distinct pattern of the cytokine cascade induced by each factor, consistent with the different functional changes, seemed to account for the peculiarities of their immune modulations. Received: 4 August 1998 / Accepted: 30 April 1999  相似文献   

16.
D. Sugiura  M. Tateno 《Oecologia》2013,172(4):949-960
We investigated the nitrogen and carbohydrate allocation patterns of trees under heterogeneous light environments using saplings of the devil maple tree (Acer diabolicum) with Y-shaped branches. Different branch groups were created: all branches of a sapling exposed to full light (L-branches), all branches exposed to full shade (S-branches), and half of the branches of a sapling exposed to light (HL-branches) and the other half exposed to shade (HS-branches). Throughout the growth period, nitrogen was preferentially allocated to HL-branches, whereas nitrogen allocation to HS-branches was suppressed compared to L- and S-branches. HL-branches with the highest leaf nitrogen content (Narea) also had the highest rates of growth, and HS-branches with the lowest Narea had the lowest observed growth rates. In addition, net nitrogen assimilation, estimated using a photosynthesis model, was strongly correlated with branch growth and whole-plant growth. In contrast, patterns of photosynthate allocation to branches and roots were not affected by the light conditions of the other branch. These observations suggest that tree canopies develop as a result of resource allocation patterns, where the growth of sun-lit branches is favoured over shaded branches, which leads to enhanced whole-plant growth in heterogeneous light environments. Our results indicate that whole-plant growth is enhanced by the resource allocation patterns created for saplings in heterogeneous light environments.  相似文献   

17.
A Model of Shoot: Root Partitioning with Optimal Growth   总被引:9,自引:3,他引:6  
A shoot: root partitioning model is presented, which is a developmentof previous approaches in the area. The model incorporates asa physiologically reasonable apparent ‘goal’ forthe plant, the assumption that the partitioning of growth betweenthe shoot and root maximizes the plant specific growth ratein balanced exponential growth. The analysis is concerned principallywith plant growth being a function of carbon and nitrogen only,although it is indicated how other nutrients, or growth factors,may be incorporated. Plant growth is driven by the environmentalconditions, and partitioning is defined entirely in terms ofthe shoot: root ratio and carbon and nitrogen status of theplant. In its basic form the model requires the definition ofa single plant growth parameter, along with the shoot and rootspecific activities and structural composition. Shoot: root partitioning, specific growth rate, vegetative phase  相似文献   

18.
Summary The response to a single defoliation was studied on three clones of Themeda triandra collected in the short, mid, and tall grassland regions of the Serengeti National Park (Tanzania). These sites represent a gradient of decreasing grazing intensity. Growth, allocation pattern, and several morphometric traits were monitored during an 80-day period. Clipped plants of the short and medium clones fully compensated for the reduction of biomass, while plants of the tall clone showed overcompensation. During the first two weeks after clipping, clipped plants showed lower relative growth rates than unclipped ones, whereas the opposite was observed later on. Clipped plants compensated for the removal of leaf area by producing new leaves with lower specific weights and higher nitrogen content. They also produced more, smaller tillers. Although clipped plants mobilized nonstructural carbohydrates from roots and crowns, this did not account for a significant amount of growth. Relative growth rates of unclipped plants of the short clone were higher. The relative growth rate of the short clone diminished less after clipping, but also exhibited the lowest increase later. The tall clone was the most negatively affected early, but showed the highest compensation later. Compared to the other clones, the short ecotype showed many of the characteristics that defoliation induced in each individual of any clone: higher allocation to leaf area production, higher relative growth rate, higher number but smaller size of tillers, and lower leaf specific weights.  相似文献   

19.
尚无证据表明顶端优势强的物种存在广义顶端优势潜在“成本”  相似文献   

20.
The possible role of neuropeptide Y (NPY) was studied in rats with hypermetabolism and hyperphagia induced by thyroxine (50-100-200 microg/day s.c. for 3-4 weeks). Both metabolic rate and body temperature increased quickly with thyroxine treatment, while hyperphagia started to develop only after 2 weeks of treatment. The weight gain rate progressively decreased or stopped. The NPY-induced hyperphagia was not altered significantly during thyroxine treatment (in severe thyrotoxicosis it was rather suppressed); the fasting-induced hyperphagia was smaller than in controls following 1 week of treatment, and it became enhanced only after 3 weeks, when the deficit in body weight indicated a certain level of starvation already prior to the food deprivation. The NPY-antagonist D-Tyr27,36,D-Thr32-NPY27,36 suppressed this fasting-induced hyperphagia, suggesting that endogenous NPY is involved in this late phase. In conclusion, hyperthyroidism per se does not increase the NPY activity, instead the quickly developing hyperthermia may inhibit the NPY actions; NPY may, however, be activated by a concurrent hypermetabolism-induced starvation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号