首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
A method for the surgical preparation of a bile fistula in the sculpin Myoxocephalus quadricornis is presented. This model was used in demonstrating the conversion of 14C-cholesterol into bile acids. The main acid metabolite was cholic acid and the presence of dihydroxy bile acids was also demonstrated. The amount of labelled compounds which was recovered in the bile was small both in case of parenteral administration to fistulated sculpins and after peroral administration to intact animals. This may be attributable to slow metabolism at the low ambient temperature these animals require to survive.  相似文献   

6.
7.
8.
9.
10.
11.
Human bile contains a factor with cholesterol nucleation-promoting activity that binds to concanavalin A-Sepharose. In this study we have investigated the effect of this activity on the dynamics of lipid solubilization in supersaturated model bile. A concanavalin A binding protein fraction of human bile was mixed with model bile and the effect on the distribution of cholesterol and phospholipid between mixed micelles and phospholipid/cholesterol vesicles was studied by means of density gradient ultracentrifugation. The nucleation-promoting activity containing fraction induced a transfer of cholesterol and phospholipid from the micellar to the vesicular phase. This led to a decrease in the density of the vesicular fraction. We have also studied the effect of promoting activity on the nucleation time of an isolated vesicle fraction. A decrease of the nucleation time of 10.7 +/- 1.3 to 2.3 +/- 0.3 days was observed. In conclusion, a concanavalin A binding protein fraction from human bile stimulated cholesterol nucleation via a double effect; it increased the amount of vesicular cholesterol and phospholipid, and it also directly induced nucleation of cholesterol from the vesicles.  相似文献   

12.
The effect of chenodeoxycholic (CDCA), ursodeoxycholic (UDCA), tauroursodeoxycholic (TUDCA), cholic (CA), ursocholic (UCA) acids, analogues of CDCA and UDCA with a cyclopropyl ring at C22, C23 (cypro-CDCA and cypro-UDCA) and 23-methylursodeoxycholic acid (MUDCA) on cholesterol 7 alpha-hydroxylase was studied in rat liver microsomes. Cypro-analogues consisted of a mixture of four diasteroisomers, while MUDCA was the racemic mixture of two enantiomers. Each steroid was added to liver microsomes at concentrations ranging from 10 to 200 microM. With the exception of UCA and CA, all the bile acids inhibited cholesterol 7 alpha-hydroxylase activity. The inhibition shown by cypro-CDCA and cypro-UDCA was stronger than that observed with the corresponding natural compounds. 22S,23S cypro-UDCA exhibited an inhibitory effect which was more pronounced than that of the diasteroisomer mixture. The isomer 22R,23S was less effective and decreased cholesterol 7 alpha-hydroxylase activity in a manner comparable to that of UDCA. The effect of CDCA, UDCA and the cyclopropyl analogues was also tested with respect to HMG-CoA reductase and acylCoA cholesterol acyltransferase (ACAT) activities. ACAT was stimulated by the isomer 22S,23S cypro-UDCA but not affected by the other bile acids. No effect was observed as regards HMG-CoA reductase.  相似文献   

13.
Effect of ethanol on cholesterol and bile acid metabolism   总被引:3,自引:0,他引:3  
Ethanol feeding increased significantly levels of hepatic esterified cholesterol and serum free and esterified cholesterol in rats. Incorporation of intraperitoneally administered [(14)C]acetate into cholesterol was significantly increased. Labeling of cholesterol was also enhanced in liver slices from animals pretreated with ethanol and incubated with [(14)C]-acetate. Ethanol consumption prolonged the half-excretion time of labeled cholic or chenodeoxycholic acids, increased slightly the pool size, and decreased daily excretion. By contrast, supplementation of the diet with cholesterol shortened the half-excretion time, did not modify pool size, and increased daily excretion. When ethanol and cholesterol feeding were combined, the effects of ethanol prevailed and there was suppression of the adaptive changes in bile acid metabolism induced by cholesterol feeding. There was also a greater accumulation of esterified cholesterol in the liver than that produced by cholesterol alone, ethanol administration alone, or the summation of both effects. Thus, cholesterol accumulation produced by ethanol feeding is associated with both enhanced cholesterogenesis and decreased bile acid excretion. Both mechanisms may play a role, but the latter is probably predominant in these studies in which cholesterol accumulation was markedly enhanced by the addition of cholesterol to the ethanol-containing diet.  相似文献   

14.
The present study was directed toward providing additional information in man on the nature of a potential alternative pathway to cholic acid not involving an initial 7α-hydroxylation of cholesterol. Two bile fistula patients and one normal subject each received 25-hydroxy[G-3H]cholesterol; [14C]cholic and [14C] chenodeoxycholic acids were also simultaneously administered to one bile fistula patient and normal subject. The labeled 25-hydroxycholesterol was found to be poorly converted to primary bile acids by all three patients; the range of conversion was 9.7 to 18.9%. Cholic acid was favored over chenodeoxycholic acid by a margin of about 1.4/1. It is concluded that a pathway to primary bile acid via the 25-hydroxylation of cholesterol is of minor importance under conditions of normal or accelerated synthesis in man.  相似文献   

15.
16.
The effects of bile duct ligation on bile acid and cholesterol metabolism were examined in male Wistar strain rats. Quantitative and qualitative changes of bile acids and cholesterol in serum and urine occurred; beta-muricholic acid predominantly increased in serum and urine and the ratio of urinary cholic acid and beta-muricholic acid changed from about 5:3 on day 1 to about 1:8 on day 5 under biliary obstruction. The form of the increased urinary bile acids was mainly taurine-conjugated and partly sulfated. Under conditions of bile duct ligation on day 5, 14C-labeled 3 beta-hydroxy-5-cholenoic, lithocholic, and chenodeoxycholic acids were intragastrically administered to the rats after pretreatment with antibiotics and the metabolites of these three acids were investigated. 3 beta-Hydroxy-5-cholenoic acid was most efficiently converted to beta-muricholic acid. The present study strongly suggested the presence of an alternative metabolic pathway induced by bile duct ligation, which caused the change in composition of urinary bile acids, and especially the marked increase in beta-muricholic acid formation. A possible alternative pathway for bile acid biosynthesis under biliary obstruction in rats is postulated.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号