首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
DNA metabarcoding refers to the DNA-based identification of multiple species from a single complex and degraded environmental sample. We developed new sampling and extraction protocols suitable for DNA metabarcoding analyses targeting soil extracellular DNA. The proposed sampling protocol has been designed to reduce, as much as possible, the influence of local heterogeneity by processing a large amount of soil resulting from the mixing of many different cores. The DNA extraction is based on the use of saturated phosphate buffer. The sampling and extraction protocols were validated first by analysing plant DNA from a set of 12 plots corresponding to four plant communities in alpine meadows, and, second, by conducting pilot experiments on fungi and earthworms. The results of the validation experiments clearly demonstrated that sound biological information can be retrieved when following these sampling and extraction procedures. Such a protocol can be implemented at any time of the year without any preliminary knowledge of specific types of organisms during the sampling. It offers the opportunity to analyse all groups of organisms using a single sampling/extraction procedure and opens the possibility to fully standardize biodiversity surveys.  相似文献   

2.
A method is described for the rapid purification of high quality lambda DNA. The method can be used from either liquid or plate lysates and on a small scale or a large scale. It relies on the preadsobtion of all polyanions present in the lysate to an "insoluble" anion-exchange matrix (DEAE or TEAE). Phage particles are then disrupted by combined treatment with EDTA/proteinase K and the resulting DNA is precipitated by the addition of the cationic detergent cetyl (or hexadecyl)-trimethyl ammonium bromide-CTAB ("soluble" anion-exchange matrix). The precipitated CTAB-DNA complex is then exchanged to Na-DNA and ethanol precipitated. The resultant purified DNA is suitable for enzymatic reactions and provides a high quality template for dideoxy-sequence analysis.  相似文献   

3.
Single-cell genomic sequencing using Multiple Displacement Amplification   总被引:1,自引:0,他引:1  
Single microbial cells can now be sequenced using DNA amplified by the Multiple Displacement Amplification (MDA) reaction. The few femtograms of DNA in a bacterium are amplified into micrograms of high molecular weight DNA suitable for DNA library construction and Sanger sequencing. The MDA-generated DNA also performs well when used directly as template for pyrosequencing by the 454 Life Sciences method. While MDA from single cells loses some of the genomic sequence, this approach will greatly accelerate the pace of sequencing from uncultured microbes. The genetically linked sequences from single cells are also a powerful tool to be used in guiding genomic assembly of shotgun sequences of multiple organisms from environmental DNA extracts (metagenomic sequences).  相似文献   

4.
Tkachuk A  Kim M  Kravchuk O  Savitsky M 《PloS one》2011,6(10):e26422
Transgenic insects are a promising tool in sterile insect techniques and population replacement strategies. Such transgenic insects can be created using nonautonomous transposons, which cannot be transferred without a transposase source. In biocontrol procedures where large numbers of insects are released, there is increased risk of transgene remobilization caused by external transposase sources that can alter the characteristics of the transgenic organisms lead horizontal transgene transfer to other species. Here we describe a novel, effective method for transgene stabilization based on the introduction of directed double-strand breaks (DSB) into a genome-integrated sequence and their subsequent repair by the single-strand annealing (SSA) pathway. Due to the construct's organization, the repair pathway is predictable, such that all transposon and marker sequences can be deleted, while preserving integration of exogenous DNA in the genome. The exceptional conservation of DNA repair pathways makes this method suitable for a broad range of organisms.  相似文献   

5.
Aims: To develop a simple, rapid and inexpensive soil DNA extraction protocol. Methods and Results: The protocol relies on the use of superparamagnetic silica‐magnetite nanoparticles for the isolation and purification of DNA from soil samples. DNA suitable for use in molecular biology applications was obtained from a number of soil samples. Conclusions: The DNA extracted using the tested method successfully permitted the PCR amplification of a fragment of the bacterial 16S rDNA gene. The extracted DNA could also be restriction endonuclease digested. Significance and Impact of the Study: The protocol reported here is simple and permits rapid isolation of PCR‐ready soil DNA. The method requires only small quantities of soil sample, is scalable and suitable for automation.  相似文献   

6.
High‐copy transposons have been effectively exploited as mutagens in a variety of organisms. However, their utility for phenotype‐driven forward genetics has been hampered by the difficulty of identifying the specific insertions responsible for phenotypes of interest. We describe a new method that can substantially increase the throughput of linking a disrupted gene to a known phenotype in high‐copy Mutator (Mu) transposon lines in maize. The approach uses the Illumina platform to obtain sequences flanking Mu elements in pooled, bar‐coded DNA samples. Insertion sites are compared among individuals of suitable genotype to identify those that are linked to the mutation of interest. DNA is prepared for sequencing by mechanical shearing, adapter ligation, and selection of DNA fragments harboring Mu flanking sequences by hybridization to a biotinylated oligonucleotide corresponding to the Mu terminal inverted repeat. This method yields dense clusters of sequence reads that tile approximately 400 bp flanking each side of each heritable insertion. The utility of the approach is demonstrated by identifying the causal insertions in four genes whose disruption blocks chloroplast biogenesis at various steps: thylakoid protein targeting (cpSecE), chloroplast gene expression (polynucleotide phosphorylase and PTAC12), and prosthetic group attachment (HCF208/CCB2). This method adds to the tools available for phenotype‐driven Mu tagging in maize, and could be adapted for use with other high‐copy transposons. A by‐product of the approach is the identification of numerous heritable insertions that are unrelated to the targeted phenotype, which can contribute to community insertion resources.  相似文献   

7.
The isolation of chloroplast DNA fromChlamydomonas reinhardtii requires the efficient separation of this AT-rich genome from the GC-rich nuclear genome by density-gradient centrifugation. We describe a simple and efficient method for separating these DNA fractions by using a sodium iodide gradient in combination with the DNA-binding dye, bisbenzimide. The yield of chloroplast DNA is close to the theoretical maximum and the DNA is suitable for restriction enzyme analysis and cloning. This method is applicable to the isolation of AT-rich plastid genomes from other organisms and may be appropriate as a general method for separating species of DNA that differ in their AT/GC ratios. An erratum to this article is available at .  相似文献   

8.
Phylogenetic analysis of the bacterial communities in marine sediments.   总被引:25,自引:13,他引:12       下载免费PDF全文
For the phylogenetic analysis of microbial communities present in environmental samples microbial DNA can be extracted from the sample, 16S rDNA can be amplified with suitable primers and the PCR, and clonal libraries can be constructed. We report a protocol that can be used for efficient cell lysis and recovery of DNA from marine sediments. Key steps in this procedure include the use of a bead mill homogenizer for matrix disruption and uniform cell lysis and then purification of the released DNA by agarose gel electrophoresis. For sediments collected from two sites in Puget Sound, over 96% of the cells present were lysed. Our method yields high-molecular-weight DNA that is suitable for molecular studies, including amplification of 16S rRNA genes. The DNA yield was 47 micrograms per g (dry weight) for sediments collected from creosote-contaminated Eagle Harbor, Wash. Primers were selected for the PCR amplification of (eu)bacterial 16S rDNA that contained linkers with unique 8-base restriction sites for directional cloning. Examination of 22 16S rDNA clones showed that the surficial sediments in Eagle Harbor contained a phylogenetically diverse population of organisms from the Bacteria domain (G. J. Olsen, C. R. Woese, and R. Overbeek, J. Bacteriol. 176:1-6, 1994) with members of six major lineages represented: alpha, delta, and gamma Proteobacteria; the gram-positive high G+C content subdivision; clostridia and related organisms; and planctomyces and related organisms. None of the clones were identical to any representatives in the Ribosomal Database Project small subunit RNA database. The analysis of clonal representives in the first report using molecular techniques to determine the phylogenetic composition of the (eu)bacterial community present in coastal marine sediments.  相似文献   

9.
Y. T. Tchan 《Plant and Soil》1959,10(3):220-232
Summary 1. A number of criticisms can be levelled at the existing methods of microbiological assay of available soil nutrients. These criticisms are examined in some detail.2. A new method for the microbiological assay of available soil nutrient is described using algae as the test organisms.3. The new technique overcomes the criticisms levelled at previous methods.4. The simplicity of the method makes it suitable for general use.  相似文献   

10.
采用灭菌的水稻田土壤为基质,分别投加细菌基因组DNA和细菌活体,应用该方法提取细胞内和细胞外DNA。结果表明,DNA提取效率平均在75.4%-82.3%,DNA纯度OD260/280在1.75-1.85之间。用细菌16S rDNA通用引物PCR表明,DNA纯度能满足PCR要求,细胞内DNA与细胞外DNA互不污染。  相似文献   

11.
Pelizzola M  Ecker JR 《FEBS letters》2011,585(13):235-2000
  相似文献   

12.
环境DNA技术在地下生态学中的应用   总被引:2,自引:0,他引:2  
于水强  王文娟  B. Larry Li 《生态学报》2015,35(15):4968-4976
地下生态过程是生态系统结构、功能和过程研究中最不确定的因素。由于技术和方法的限制,作为"黑箱"的地下生态系统已经成为限制生态学发展的瓶颈,也是未来生态学发展的主要方向。环境DNA技术,是指从土壤等环境样品中直接提取DNA片段,然后通过DNA测序技术来定性或定量化目标生物,以确定目标生物在生态系统中的分布及功能特征。环境DNA技术已成功用于地下生态过程的研究。目前,环境DNA技术在土壤微生物多样性及其功能方面的研究相对成熟,克服了土壤微生物研究中不能培养的问题,可以有效地分析土壤微生物的群落组成、多样性及空间分布,尤其是宏基因组学技术的发展,使得微生物生态功能方面的研究成为可能;而且,环境DNA技术已经在土壤动物生态学的研究中得到了初步应用,可快速分析土壤动物的多样性及其分布特征,更有效地鉴定出未知的或稀少的物种,鉴定土壤动物类群的幅度较宽;部分研究者通过提取分析土壤中DNA片段信息对生态系统植物多样性及植物分类进行了研究,其结果比传统的植物分类及物种多样性测定更精确,改变了以往对植物群落物种多样性模式的理解。同时,环境DNA技术克服传统根系研究方法中需要洗根、分根、只能测定单物种根系的局限,降低根系研究中细根区分的误差,并探索性地用于细根生物量的研究。主要综述了基于环境DNA技术的分子生物学方法在土壤微生物多样性及功能、土壤动物多样性、地下植物多样性及根系生态等地下生态过程研究中的应用进展。环境DNA技术对于以土壤微生物、土壤动物及地下植物根系为主体的地下生态学过程的研究具有革命性意义,并展现出良好的应用前景。可以预期,分子生物学技术与传统的生态学研究相结合将成为未来地下生态学研究的一个发展趋势。  相似文献   

13.
Lamour K  Finley L 《Mycologia》2006,98(3):514-517
We present a strategy to recover high molecular weight genomic DNA from large numbers of isolates of Phytophthora. Included are steps for generating mycelial mass in 24-well reuseable deep well plates, efficient lyophilization and disruption of the mycelium and genomic DNA extraction with 96-well glass fiber filter plates. The resulting DNA is consistently high molecular weight and is suitable for applications that require high quality DNA such as AFLP analysis and TILLING. A single operator easily can manage mycelium preparation and/or DNA extraction from 384 isolates in a single day and this approach might be useful for other fungi or fungi-like organisms that can be grown in liquid media.  相似文献   

14.
Earthworms are known for their important role within the functioning of an ecosystem, and their diversity can be used as an indicator of ecosystem health. To date, earthworm diversity has been investigated through conventional extraction methods such as handsorting, soil washing or the application of a mustard solution. Such techniques are time consuming and often difficult to apply. We showed that combining DNA metabarcoding and next-generation sequencing facilitates the identification of earthworm species from soil samples. The first step of our experiments was to create a reference database of mitochondrial DNA (mtDNA) 16S gene for 14 earthworm species found in the French Alps. Using this database, we designed two new primer pairs targeting very short and informative DNA sequences (about 30 and 70 bp) that allow unambiguous species identification. Finally, we analysed extracellular DNA taken from soil samples in two localities (two plots per locality and eight samples per plot). The two short metabarcode regions led to the identification of a total of eight earthworm species. The earthworm communities identified by the DNA-based approach appeared to be well differentiated between the two localities and are consistent with results derived from inventories collected using the handsorting method. The possibility of assessing earthworm communities from hundreds or even thousands of localities through the use of extracellular soil DNA will undoubtedly stimulate further ecological research on these organisms. Using the same DNA extracts, our study also illustrates the potential of environmental DNA as a tool to assess the diversity of other soil-dwelling animal taxa.  相似文献   

15.
Several DNA probes for polychlorinated biphenyl (PCB)-degrading genotypes were constructed from PCB-degrading bacteria. These laboratory-engineered DNA probes were used for the detection, enumeration, and isolation of specific bacteria degrading PCBs. Dot blot analysis of purified DNA from toxic organic chemical-contaminated soil bacterial communities showed positive DNA-DNA hybridization with a 32P-labeled DNA probe (pAW6194, cbpABCD). Less than 1% of bacterial colonies isolated from garden topsoil and greater than 80% of bacteria isolated from PCB-contaminated soils showed DNA homologies with 32P-labeled DNA probes. Some of the PCB-degrading bacterial isolates detected by the DNA probe method did not show biphenyl clearance. The DNA probe method was found to detect additional organisms with greater genetic potential to degrade PCBs than the biphenyl clearance method did. Results from this study demonstrate the usefulness of DNA probes in detecting specific PCB-degrading bacteria, abundance of PCB-degrading genotypes, and genotypic diversity among PCB-degrading bacteria in toxic chemical-polluted soil environments. We suggest that the DNA probe should be used with caution for accurate assessment of PCB-degradative capacity within soils and further recommend that a combination of DNA probe and biodegradation assay be used to determine the abundance of PCB-degrading bacteria in the soil bacterial community.  相似文献   

16.
Several DNA probes for polychlorinated biphenyl (PCB)-degrading genotypes were constructed from PCB-degrading bacteria. These laboratory-engineered DNA probes were used for the detection, enumeration, and isolation of specific bacteria degrading PCBs. Dot blot analysis of purified DNA from toxic organic chemical-contaminated soil bacterial communities showed positive DNA-DNA hybridization with a 32P-labeled DNA probe (pAW6194, cbpABCD). Less than 1% of bacterial colonies isolated from garden topsoil and greater than 80% of bacteria isolated from PCB-contaminated soils showed DNA homologies with 32P-labeled DNA probes. Some of the PCB-degrading bacterial isolates detected by the DNA probe method did not show biphenyl clearance. The DNA probe method was found to detect additional organisms with greater genetic potential to degrade PCBs than the biphenyl clearance method did. Results from this study demonstrate the usefulness of DNA probes in detecting specific PCB-degrading bacteria, abundance of PCB-degrading genotypes, and genotypic diversity among PCB-degrading bacteria in toxic chemical-polluted soil environments. We suggest that the DNA probe should be used with caution for accurate assessment of PCB-degradative capacity within soils and further recommend that a combination of DNA probe and biodegradation assay be used to determine the abundance of PCB-degrading bacteria in the soil bacterial community.  相似文献   

17.
AIMS: To establish a sensitive and specific polymerase chain reaction (PCR)-based method for detecting Pythium myriotylum in soils. METHODS AND RESULTS: Oospores of P. myriotylum were separated from large soil particles by flotation in sucrose solution. The thick-walled oospores were disrupted by vortex with sea sand and its DNA was extracted by the Cetyl trimethyl Ammonium Bromide (CTAB) method. The recovered DNA was verified by PCR amplification of a 150-bp target sequence of P. myriotylum. Samples of 10 g of soil were assayed; thus, the detection limit by PCR-based method was 10 oospores per gram soil. The method was successfully applied for the detection of P. myriotylum in soils collected in March, prior to planting of ginger crops. CONCLUSIONS: A PCR-based method for detecting P. myriotylum from soil was achieved. SIGNIFICANCE AND IMPACT OF THE STUDY: The PCR method has allowed us to monitor the presence of P. myriotylum in soil prior planting season as a way of reducing or eliminating disease.  相似文献   

18.
DNA isolation from some fungal organisms is difficult because they have cell walls or capsules that are relatively unsusceptible to lysis. Beginning with a yeast Saccharomyces cerevisiae genomic DNA isolation method, we developed a 30-min DNA isolation protocol for filamentous fungi by combining cell wall digestion with cell disruption by glass beads. High-quality DNA was isolated with good yield from the hyphae of Crinipellis perniciosa, which causes witches' broom disease in cacao, from three other filamentous fungi, Lentinus edodes, Agaricus blazei, Trichoderma stromaticum, and from the yeast S. cerevisiae. Genomic DNA was suitable for PCR of specific actin primers of C. perniciosa, allowing it to be differentiated from fungal contaminants, including its natural competitor, T. stromaticum.  相似文献   

19.
一种简单、有效的适于PCR操作的放线菌DNA提取方法   总被引:15,自引:0,他引:15  
目的:利用改良酶法发展了一种从微量(几百微升)发酵液中快速安全的提取放线菌基因组DNA的方法。方法:利用溶菌酶破壁,蛋白酶K和SDS除蛋白,成功提取较高质量的放线菌基因组DNA,所得的DNA可作为PCR反应的模板进行16SrRNA等基因有效扩增。结果:能从海绵和土壤分离的放线菌中成功提取基因组DNA。结论:该方法操作简单、费用低廉、不使用酚、氯仿等有毒害作用有机试剂,非常适于长期从事放线菌操作的研究人员。为大量放线菌菌株的快速鉴别、高通量筛选和系统分类研究创造了条件。  相似文献   

20.
Methods for DNA extraction from Candida albicans   总被引:9,自引:0,他引:9  
Three different methods are described for the extraction of total genomic DNA from the dimorphic fungus Candida albicans. One method, which enables a large number of cultures to be processed simultaneously, involves pulverizing dried cells with glass beads and then allowing the disrupted cells to break apart, autolyse, by incubation in a solution which includes sorbitol and a nonionic detergent. DNA extraction by a second method with a French pressure cell can be utilized on cultures in any phase of growth, but is not practical for processing numerous samples. The third method, which involves induction of spheroplasts, is commonly used for DNA extraction from various yeasts but is not suited for processing many samples simultaneously. The DNA extracted with the three procedures is comparable in quality; in particular, it is of high molecular size (greater than 30 kbp) and reacts readily with DNA-modifying enzymes such as restriction endonucleases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号