首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Summary In this work, we have developed and optimized an ultrasonication protocol for Escherichia coli recombinant cells, adapted to laboratory-scale release of -galactosidase fusion proteins. After a single sonication treatment of 15 minutes, about 30% of recombinant protein present in the sample remains still associated to cellular debris, and it can not be removed by increasing the sonication time. After a clarification step a second sonication treatment of the resuspended cell debris again releases only a 70% of the remaining product. Therefore, the application of two short, consecutive sonication treatments permits a global recovery yield of about 90%. The use of a new disruption buffer to stabilize -galactosidase allows the fusion proteins to maintain the active form throughout the process.  相似文献   

3.
Heterogeneous patterns of biosynthesis, post-translational processing, and degradation were demonstrated for mutant enzymes in three clinical forms of -galactosidase deficiency (-galactosidosis): juvenile GM1-gangliosidosis, adult GM1-gangliosidosis, and Morquio B disease. The precursor of the mutant enzyme in adult GM1-gangliosidosis was not phosphorylated, and only a small portion of the gene product reached the lysosomes. The enzyme in Morquio B disease was normally processed and transported to lysosomes, but its catalytic activity was low. A common gene mutation in juvenile GM1-gangliosidosis (R201C) produced an enzyme protein that did not aggregate with protective protein in the lysosome, and was rapidly degraded by thiol proteases. This abnormal turnover was similar to that for the normal but dissociated -galactosidase in galactosialidosis. Protease inhibitors restored the enzyme acitivity in fibroblasts of this clinical form. A possible therapeutic approach is discussed for this specific type of enzyme deficiency.  相似文献   

4.
Actin polymerization controls a range of cellular processes, from intracellular trafficking to cell motility and invasion. Generation and elongation of free barbed ends defines the regions of actively polymerizing actin in cells and, consequently, is of importance in the understanding of the mechanisms through which actin dynamics are regulated. Herein we present a method that does not involve cell permeabilization and provides direct visualization of growing barbed ends using photoswitchable β-actin-Dendra2 constructs expressed in murine macrophage and rat mammary adenocarcinoma cell lines. The method exploits the ability of photoconverted (red) G-actin species to become incorporated into pre-existing (green) actin filaments, visualized in two distinct wavelengths using TIRF microscopy. In growing actin filaments, photoconverted (red) monomers are added to the barbed end while only green monomers are recycled from the pointed end. We demonstrate that incorporation of actin into intact podosomes of macrophages occurs constitutively and is amenable to inhibition by cytochalasin D indicating barbed end incorporation. Additionally, actin polymerization does not occur in quiescent invadopodial precursors of carcinoma cells suggesting that the filaments are capped and following epidermal growth factor stimulation actin incorporation occurs in a single but extended peak. Finally, we show that Dendra2 fused to either the N- or the C-terminus of β-actin profoundly affects its localization and incorporation in distinct F-actin structures in carcinoma cells, thus influencing the ability of monomers to be photoconverted. These data support the use of photoswitchable actin-Dendra2 constructs as powerful tools in the visualization of free barbed ends in living cells.  相似文献   

5.
Summary The -galactosidase gene ofStreptococcus thermophilus was cloned into plasmid vector, pVT100-U, and used to transform a strain ofEscherichia coli andSaccharomyces cerevisiae. Transformants which expressed -galactosidase activity were obtained in bothE. coli andSaccharomyces cerevisiae, the highest activity found in a yeast recombinant. The expression and thermostability of the cloned -galactosidase genes from different plasmid constructions were compared with the streptococcal -galactosidase. The recombinant protein was equivalent to the specific activity and thermostability ofS. thermophilus.  相似文献   

6.
7.
The mitochondrial channel VDAC is presumed to fold as a -barrel although the number and identity of transmembrane -strands in the protein are controversial. Previously, a novel multiple alignment algorithm called the Gibbs sampler was used to detect a residue-frequency motif in sequences of bacterial outer-membrane proteins that corresponds to transmembrane -strands in bacterial porins of known structure (Neuwaldet al., 1995,Protein Science,4, 1618. In the present study, this bacterial motif has been used to screen sets of mitochondrial membrane protein sequences, with matches occurring in only two classes of proteins: VDACs and the outer-membrane protein import pore (ISP42, MOM38). These results suggest a structural (and perhaps evolutionary) relatedness between the bacterial and mitochondrial pore proteins, with the mitochondrial subsequences that match the bacterial motif corresponding to transmembrane -strands as in the porins.  相似文献   

8.
Increased emphasis on personalized medicine and novel therapies requires the development of noninvasive strategies for assessing biochemistry in vivo. The detection of enzyme activity and gene expression in vivo is potentially important for the characterization of diseases and gene therapy. Magnetic resonance imaging (MRI) is a particularly promising tool, since it is noninvasive and has no associated radioactivity, yet penetrates deep tissue. We now demonstrate a novel class of dual (1)H/(19)F nuclear magnetic resonance (NMR) lacZ gene reporter molecule to specifically reveal enzyme activity in human tumor xenografts growing in mice. We report the design, synthesis, and characterization of six novel molecules and evaluation of the most effective reporter in mice in vivo. Substrates show a single (19)F NMR signal and exposure to β-galactosidase induces a large (19)F NMR chemical shift response. In the presence of ferric ions, the liberated aglycone generates intense proton MRI T(2) contrast. The dual modality approach allows both the detection of substrate and the imaging of product enhancing the confidence in enzyme detection.  相似文献   

9.
10.
Summary Biosynthesis and processing of the protective protein for -galactosidase in normal and galactosialidosis fibroblasts were investigated using specific antiserum preparations. A 45-kd precursor was processed to a mature 30-kd protein in normal fibroblasts. The mature protective protein was not detected in any of the twelve galactosialidosis fibroblast strains examined in this study. The precursor was not detected in two cases and in the others was of heterogeneous molecular weight, i.e., normal, abnormally low, or abnormally high. These molecular abnormalities were not correlated with clinical manifestations of the patients.  相似文献   

11.

Background  

Antibody fragments are molecules widely used for diagnosis and therapy. A large amount of protein is frequently required for such applications. New approaches using folding reporter enzymes have recently been proposed to increase soluble expression of foreign proteins in Escherichia coli. To date, these methods have only been used to screen for proteins with better folding properties but have never been used to select from a large library of mutants. In this paper we apply one of these methods to select mutations that increase the soluble expression of two antibody fragments in the cytoplasm of E. coli.  相似文献   

12.
13.
A β-glucosidase from Clostridium cellulovorans (CcBG) was fused with one of three different types of cellulases from Clostridium thermocellum, including a cellulosomal endoglucanase CelD (CtCD), a cellulosomal exoglucanase CBHA (CtCA) and a non-cellulosomal endoglucanase Cel9I (CtC9I). Six bifunctional enzymes were constructed with either β-glucosidase or cellulase in the upstream. CtCD-CcBG showed the favorable specific activities on phosphoric acid swollen cellulose (PASC), an amorphous cellulose, with more glucose production (2 folds) and less cellobiose accumulation (3 folds) when compared with mixture of the single enzymes. Moreover, CtCD-CcBG had significantly improved thermal stability with a melting temperature (Tm) of 10.9 °C higher than that of CcBG (54.5 °C) based on the CD unfolding experiments. This bifunctional enzyme is thus useful in industrial application to convert cellulose to glucose.  相似文献   

14.
《Phytochemistry》1987,26(4):927-932
Cotyledons of mature Lens culinaris seeds contain two forms of both α- and β-galactosidase which can be separated by ion exchange chromatography. These forms are present in cotyledon cell walls and protein bodies except β-galactosidase II,which is undetectable in the cell walls of these organs. All the enzymatic forms were active in an acid pH range but each behaved differently with different substrates, both natural and synthetic, and in the action of different effectors on the activity. α-Galactosidase I and II were able to release free sugars from several putative substrate oligosaccharides and all the forms of α and β-galactosidase were seen to release galactose from lentil storage glycoproteins.  相似文献   

15.
Cultured embryonic neurons share a number of characteristic morphological and physiological properties with their counterparts in vivo. For example, differentiating hippocampal neurons in culture develop two distinct classes of processes that serve as dendrites and axons. It has also been shown that the microtubule organization and composition in axons differs from those in dendrites, which may contribute to differential transport of macromolecules into axons or dendrites. We have expressed a neuromodulin--galactosidase fusion gene in cultured mesencephalic neurons in order to study the transport of the neurospecific protein neuromodulin into neurite growth cones. When -galactosidase alone was expressed in neurons, it was found in the cell bodies with diffuse neurite staining. In marked contrast, the neuromodulin--galactosidase fusion protein was rapidly transported into neurites and was concentrated in the growth cones. This system may provide a useful model for studying the structural domain(s) of neuromodulin that are required for transport and accumulation of neuromodulin in the growth cones of neurons.  相似文献   

16.
The possibility of obtaining recombinant fibrillogenic fusion proteins such as transthyretin (TTR) and β2-microglobulin (β2M) with a superfolder green fluorescent protein (sfGFP) was studied. According to the literature data, sfGFP is resistant to denaturating influences, does not aggregate during renaturation, possesses improved kinetic characteristics of folding, and folds well when fused to different polypeptides. The corresponding DNA constructs for expression in Escherichia coli were created. It could be shown that during expression of these constructs in E. coli, soluble forms of the fusion proteins are synthesized. Efficient isolation of the fusion proteins was performed with the help of nickel-affinity chromatography. For this purpose a polyhistidine sequence (6-His-tag) was incorporated into the C-terminus of the sfGFP. We could show that the purified fusion proteins contained full-size sequences of the most amyloidogenic TTR variant, TTR(L55P) and β2M, and also sfGFP possessing fluorescent properties. In the course of fibrillogenesis both fusion proteins demonstrated their ability to form fibrils that were clearly detectable by atomic force microscopy. Furthermore, with the help of confocal microscopy we were able to reveal structures (exhibiting fluorescence) that are formed during fibrillogenesis. Thus, the use of sfGFP has made it possible to avoid formation of inclusion bodies (IB) during the synthesis of recombinant fusion proteins and to obtain soluble forms of TTR(L55P) and β2M that are suitable for further studies.  相似文献   

17.
β-Galactosidase enzymes continue to play an important role in food and pharmaceutical industries. These enzymes hydrolyze lactose in its constituent monosaccharides, glucose and galactose. The industrial use of enzymes presents an increase in process costs reflecting in higher final product value. An alternative to enhance processes’ productivity and yield would be the use of recombinant enzymes and their large-scale fed-batch production. The overexpression of recombinant β-galactosidase from Kluyveromyces sp. was carried out in 2-L bioreactors using Escherichia coli strain BL21 (DE3) as host. Effect of induction time on recombinant enzyme expression was studied by adding 1?mM isopropyl thiogalactoside (IPTG) at 12?h, 18?h and 24?h of cultivation. Glucose feeding strategies were compared employing feedback-controlled DO-stat and ascendant linear pump feeding in bioreactor fed-batch cultivations. Linear feeding strategy with IPTG addition at 18?h of cultivation resulted in approximately 20?g/L and 17,745?U/L of biomass and β-galactosidase activity, respectively. On the other hand, although the feedback-controlled DO-stat feeding strategy induced at 12?h of cultivation led to lower final biomass of 18?g/L, it presented an approximately 2.5 increase in enzymatic activity, resulting in 42,367?U/L, and most importantly it led to the most prominent specific enzymatic activity of approximately 40?U/mgprotein. Comparing to previous results, these results suggest that the DO-stat feeding is a promising strategy for recombinant β-galactosidase enzyme production.  相似文献   

18.
19.
Cell behavior is determined by intrinsic characteristics and complex interactions with microenvironments. This study demonstrated the performance of a murine pancreatic β-cell line, MIN-6, cultured on tissue-culture polystyrene (TCPS), gelatin, type I collagen, and type IV collagen dishes. MIN-6 cells aggregated as clusters on gelatin, type I collagen, and type IV collagen, which was different from the epithelial morphology of cells grown on TCPS. The diameter and survival rate of aggregated cells did not differ significantly regardless of whether the cells were grown on gelatin or type I collagen, while smaller clusters were observed on type IV collagen. Compared with the monolayers on TCPS, the clusters had a higher insulin stimulation index. The mRNA expression levels of Ins1, Pdx-1, NeuroD1 and connexin 36 were upregulated in clusters relative to monolayers. Conversely, E-cadherin and MafA were downregulated when cells were grown on type IV collagen. Monolayers or cell aggregates grown on type IV collagen were subsequently transplanted into diabetic C57BL/6 mice. Animals that received both monolayers and clusters had decreased blood glucose levels and regained body weight. However, the area under curve for the intraperitoneal glucose tolerance test showed that clusters exhibited superior in vivo performance. This study reveals that a type IV collagen substrate promotes β-cell clustering, regulates gene expression and enhances in vivo performance.  相似文献   

20.
Enhanced green fluorescent protein (EGFP) and its yellow variant (Venus) are weakly dimeric under physiological conditions. We designed a simple method to evaluate the dimeric tendency of fluorescent proteins in living mammalian cells. A novel single mutation, A206L, interfering with the hydrophobic interactions of the dimer interface in Venus, contributed to its monomerization, and was as effective as the A206K mutation in this assay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号