首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The bifunctional CO dehydrogenase/acetyl-CoA synthase (CODH/ACS) plays a central role in the Wood-Ljungdahl pathway of autotrophic CO(2) fixation. One structure of the Moorella thermoacetica enzyme revealed that the active site of ACS (the A-cluster) consists of a [4Fe-4S] cluster bridged to a binuclear CuNi center with Cu at the proximal metal site (M(p)) and Ni at the distal metal site (M(d)). In another structure of the same enzyme, Ni or Zn was present at M(p). On the basis of a positive correlation between ACS activity and Cu content, we had proposed that the Cu-containing enzyme is active [Seravalli, J., et al. (2003) Proc. Natl. Acad. Sci. U.S.A. 100, 3689-3694]. Here we have reexamined this proposal. Enzyme preparations with a wider range of Ni (1.6-2.8) and Cu (0.2-1.1) stoichiometries per dimer were studied to reexamine the correlation, if any, between the Ni and Cu content and ACS activity. In addition, the effects of o-phenanthroline (which removes Ni but not Cu) and neocuproine (which removes Cu but not Ni) on ACS activity were determined. EXAFS results indicate that these chelators selectively remove M(p). Multifrequency EPR spectra (3-130 GHz) of the paramagnetic NiFeC state of the A-cluster were examined to investigate the electronic state of this proposed intermediate in the ACS reaction mechanism. The combined results strongly indicate that the CuNi enzyme is inactive, that the NiNi enzyme is active, and that the NiNi enzyme is responsible for the NiFeC EPR signal. The results also support an electronic structure of the NiFeC-eliciting species as a [4Fe-4S](2+) (net S = 0) cluster bridged to a Ni(1+) (S = (1)/(2)) at M(p) that is bridged to planar four-coordinate Ni(2+) (S = 0) at M(d), with the spin predominantly on the Ni(1+). Furthermore, these studies suggest that M(p) is inserted during cell growth. The apparent vulnerability of the proximal metal site in the A-cluster to substitution with different metals appears to underlie the heterogeneity observed in samples that has confounded studies of CODH/ACS for many years. On the basis of this principle, a protocol to generate nearly homogeneous preparations of the active NiNi form of ACS was achieved with NiFeC signals of approximately 0.8 spin/mol.  相似文献   

2.
Acetyl coenzyme A synthase (ACS), found in acetogenic and methanogenic organisms, is responsible for the synthesis and breakdown of acetate. The mechanism by which methylcob(III)alamin, CO and coenzyme A are assembled/disassembled at the active-site A-cluster involves a number of biologically unprecedented intermediates. In the past two years, two protein crystal structures have significantly enhanced the understanding of the structure of the active-site A-cluster, responsible for catalysis. The structure reports spawned a number of important questions regarding the metal ion constitution of the active enzyme, the structure(s) of the spectroscopically identified states and the details of the catalytic mechanism. This Commentary addresses these issues in the framework of existing synthetic and chemical precedent studies aimed at developing rational structure–function correlations and presents structural and reactivity targets for future studies.  相似文献   

3.
Eight Ni proteins are known and three of these, CO dehydrogenase (CODH), acetyl-CoA synthase (ACS), and hydrogenase, are Ni-Fe-S proteins. In the last three years, the long-awaited structures of CODH and ACS have been solved. The bioinorganic community was shocked, as the structures of the active sites of CODH and ACS, the C- and A-cluster, respectively, which each had been predicted to consist of a [Fe4S4] cluster bridged to a single Ni, revealed unexpected compositions and arrangements. Crystal structures of ACS revealed major differences in protein conformation and in A-cluster composition; for example, a [Fe4S4] cluster bridged to a binuclear center in which one of the metal binding sites was occupied by Ni, Cu, or Zn. Recent studies have revealed Ni-Ni to be the active state, unveiled the source of the heterogeneity that had plagued studies of CODH/ACS for decades, and produced a metal-replacement strategy to generate highly active and nearly homogeneous enzyme.Abbreviations CFeSP corrinoid iron-sulfur protein - CH3H4folate methyltetrahydrofolate - CODH/ACS carbon monoxide dehydrogenase/acetyl-CoA synthases - ENDOR electron nuclear double resonance - MeTr methyltransferase  相似文献   

4.
A fascinating feature of some bifunctional enzymes is the presence of an internal channel or tunnel to connect the multiple active sites. A channel can allow for a reaction intermediate generated at one active site to be used as a substrate at a second active site, without the need for the intermediate to leave the safety of the protein matrix. One such bifunctional enzyme is carbon monoxide dehydrogenase/acetyl-CoA synthase from Moorella thermoacetica (mtCODH/ACS). A key player in the global carbon cycle, CODH/ACS uses a Ni-Fe-S center called the C-cluster to reduce carbon dioxide to carbon monoxide and uses a second Ni-Fe-S center, called the A-cluster, to assemble acetyl-CoA from a methyl group, coenzyme A, and C-cluster-generated CO. mtCODH/ACS has been proposed to contain one of the longest enzyme channels (138 A long) to allow for intermolecular CO transport. Here, we report a 2.5 A resolution structure of xenon-pressurized mtCODH/ACS and examine the nature of gaseous cavities within this enzyme. We find that the cavity calculation program CAVENV accurately predicts the channels connecting the C- and A-clusters, with 17 of 19 xenon binding sites within the predicted regions. Using this X-ray data, we analyze the amino acid composition surrounding the 19 Xe sites and consider how the protein fold is utilized to carve out such an impressive interior passageway. Finally, structural comparisons of Xe-pressurized mtCODH/ACS with related enzyme structures allow us to study channel design principles, as well as consider the conformational flexibility of an enzyme that contains a cavity through its center.  相似文献   

5.
Acetylcoenzyme A synthase/carbon monoxide dehydrogenase (ACS/CODH) contains two Ni–Fe–S active-site clusters (called A and C) connected by a tunnel through which CO and CO2 migrate. Site-directed mutants A578C, L215F, and A219F were designed to block the tunnel at different points along the region between the two C-clusters. Two other mutant proteins F70W and N101Q were designed to block the region that connects the tunnel at the ββ interface with a water channel also located at that interface. Purified mutant proteins were assayed for Ni/Fe content and examined by electron paramagnetic resonance spectroscopy. Analyses indicate that same metal clusters found in wild-type (WT) ACS/CODH (i.e., the A-, B-, C-, and probably D-clusters) are properly assembled in the mutant enzymes. Stopped-flow kinetics revealed that these centers in the mutants are rapidly reducible by dithionite but are only slowly reducible by CO, suggesting an impaired ability of CO to migrate through the tunnel to the C-cluster. Relative to the WT enzyme, mutant proteins exhibited little CODH or ACS activity (using CO2 as a substrate). Some ACS activity was observed when CO was a substrate, but not the cooperative CO inhibition effect characteristic of WT ACS/CODH. These results suggest that CO and CO2 enter and exit the enzyme at the water channel along the ββ subunit interface. They also suggest two pathways for CO during synthesis of acetylcoenzyme A, including one in which CO enters the enzyme and migrates through the tunnel before binding at the A-cluster, and another in which CO binds the A-cluster directly from the solvent.  相似文献   

6.
Halophilic archaea activate acetate via an (acetate)-inducible AMP-forming acetyl-CoA synthetase (ACS), (Acetate + ATP + CoA Acetyl-CoA + AMP + PPi). The enzyme from Haloarcula marismortui was purified to homogeneity. It constitutes a 72-kDa monomer and exhibited a temperature optimum of 41°C and a pH optimum of 7.5. For optimal activity, concentrations between 1 M and 1.5 M KCl were required, whereas NaCl had no effect. The enzyme was specific for acetate (100%) additionally accepting only propionate (30%) as substrate. The kinetic constants were determined in both directions of the reaction at 37°C. Using the N-terminal amino acid sequence an open reading frame — coding for a 74 kDa protein — was identified in the partially sequenced genome of H. marismortui. The function of the ORF as acs gene was proven by functional overexpression in Escherichia coli. The recombinant enzyme was reactivated from inclusion bodies, following solubilization in urea and refolding in the presence of salts, reduced and oxidized glutathione and substrates. Refolding was dependent on salt concentrations of at least 2 M KCl. The recombinant enzyme showed almost identical molecular and catalytic properties as the native enzyme. Sequence comparison of the Haloarcula ACS indicate high similarity to characterized ACSs from bacteria and eukarya and the archaeon Methanosaeta. Phylogenetic analysis of ACS sequences from all three domains revealed a distinct archaeal cluster suggesting monophyletic origin of archaeal ACS.  相似文献   

7.
The membrane-bound [NiFe]-hydrogenase from Allochromatium vinosum can occur in several inactive or active states. This study presents the first systematic infrared characterisation of the A. vinosum enzyme, with emphasis on the spectro-electrochemical properties of the inactive/active transition. This transition involves an energy barrier, which can be overcome at elevated temperatures. The reduced Ready enzyme can exist in two different inactive states, which are in an apparent acid–base equilibrium. It is proposed that a hydroxyl ligand in a bridging position in the Ni-Fe site is protonated and that the formed water molecule is subsequently removed. This enables the active site to bind hydrogen in a bridging position, allowing the formation of the fully active state of the enzyme. It is further shown that the active site in enzyme reduced by 1 bar H2 can occur in three different electron paramagnetic resonance (EPR)-silent states with a different degree of protonation.Abbreviations BV benzyl viologen - MB methylene blue - MBH membrane-bound hydrogenase - SHE standard hydrogen electrode  相似文献   

8.
Acetyl-CoA synthase (ACS ACS/CODH CODH/ACS) from Moorella thermoacetica catalyzes the synthesis of acetyl-CoA from CO, CoA, and a methyl group of a corrinoid-iron-sulfur protein (CoFeSP). A time lag prior to the onset of acetyl-CoA production, varying from 4 to 20 min, was observed in assay solutions lacking the low-potential electron-transfer agent methyl viologen (MV). No lag was observed when MV was included in the assay. The length of the lag depended on the concentrations of CO and ACS, with shorter lags found for higher [ACS] and sub-saturating [CO]. Lag length also depended on CoFeSP. Rate profiles of acetyl-CoA synthesis, including the lag phase, were numerically simulated assuming an autocatalytic mechanism. A similar reaction profile was monitored by UV-vis spectrophotometry, allowing the redox status of the CoFeSP to be evaluated during this process. At early stages in the lag phase, Co2+FeSP reduced to Co+FeSP, and this was rapidly methylated to afford CH3-Co3+FeSP. During steady-state synthesis of acetyl-CoA, CoFeSP was predominately in the CH3-Co3+FeSP state. As the synthesis rate declined and eventually ceased, the Co+FeSP state predominated. Three activation reductive reactions may be involved, including reduction of the A- and C-clusters within ACS and the reduction of the cobamide of CoFeSP. The B-, C-, and D-clusters in the subunit appear to be electronically isolated from the A-cluster in the connected subunit, consistent with the ~70 Å distance separating these clusters, suggesting the need for an in vivo reductant that activates ACS and/or CoFeSP.Abbreviations ACS acetyl-CoA synthase, also known as CODH (carbon monoxide dehydrogenase) or CODH/ACS or ACS/CODH - CH3-Co3+FeSP, Co2+FeSP, and Co+FeSP corrinoid-iron-sulfur protein with the cobalamin in the methylated 3+, unmethylated 2+, and unmethylated 1+ states - CoA coenzyme A - DTT dithiothreitol - H-THF or THF tetrahydrofolic acid or tetrahydrofolate - MT methyl transferase - MV methyl viologen  相似文献   

9.
Previous studies have indicated that ADP-glucose pyrophosphorylase (ADPGlc PPase) from the cyanobacteriumAnabaena sp. strain PCC 7120 is more similar to higher-plant than to enteric bacterial enzymes in antigenicity and allosteric properties. In this paper, we report the isolation of theAnabaena ADPGlc PPase gene and its expression inEscherichia coli. The gene we isolated from a genomic library utilizes GTG as the start codon and codes for a protein of 48347 Da which is in agreement with the molecular mass determined by SDS-PAGE for theAnabaena enzyme. The deduced amino acid sequence is 63, 54, and 33% identical to the rice endosperm small subunit, maize endosperm large subunit, and theE. coli sequences, respectively. Southern analysis indicated that there is only one copy of this gene in theAnabaena genome. The cloned gene encodes an active ADPGlc PPase when expressed in anE. coli mutant strain AC70R1-504 which lacks endogenous activity of the enzyme. The recombinant enzyme is activated and inhibited primarily by 3-phosphoglycerate and Pi, respectively, as is the nativeAnabaena ADPGlc PPase. Immunological and other biochemical studies further confirmed the recombinant enzyme to be theAnabaena enzyme.  相似文献   

10.
After activation with NiCl2, the recombinant alpha subunit of the Ni-containing alpha2beta2 acetyl-CoA synthase/carbon monoxide dehydrogenase (ACS/CODH) catalyzes the synthesis of acetyl-CoA from CO, CoA, and a methyl group donated from the corrinoid-iron-sulfur protein (CoFeSP). The alpha subunit has two conformations (open and closed), and contains a novel [Fe4S4]-[Nip Nid] active site in which the proximal Nip ion is labile. Prior to Ni activation, recombinant apo-alpha contain only an Fe4S4 cluster. Ni-activated alpha subunits exhibit catalytic, spectroscopic and heterogeneity properties typical of alpha subunits contained in ACS/CODH. Evidence presented here indicates that apo-alpha is a monomer whereas Ni-treated alpha oligomerizes, forming dimers and higher molecular weight species including tetramers. No oligomerization occurred when apo-alpha was treated with Cu(II), Zn(II), or Co(II) ions, but oligomerization occurred when apo-alpha was treated with Pt(II) and Pd(II) ions. The dimer accepted only 0.5 methyl group/alpha and exhibited, upon treatment with CO and under reducing conditions, the NiFeC EPR signal quantifying to 0.4 spin/alpha. Dimers appear to consist of two types of alpha subunits, including one responsible for catalytic activity and one that provides a structural scaffold. Higher molecular weight species may be similarly constituted. It is concluded that Ni binding to the A-cluster induces a conformational change in the alpha subunit, possibly to the open conformation, that promotes oligomerization. These interrelated events demonstrate previously unrealized connections between (a) the conformation of the alpha subunit; (b) the metal which occupies the proximal/distal sites of the A-cluster; and (c) catalytic activity.  相似文献   

11.
Acetyl-CoA synthase (also known as carbon monoxide dehydrogenase) is a bifunctional Ni-Fe-S-containing enzyme that catalyzes the reversible reduction of CO2 to CO and the synthesis of acetyl-coenzyme A from CO, CoA, and a methyl group donated by a corrinoid iron-sulfur protein. The active site for the latter reaction, called the A-cluster, consists of an Fe4S4 cubane bridged to the proximal Ni site (Nip), which is bridged in turn to the so-called distal Ni site. In this review, evidence is presented that Nip achieves a zero-valent state at low potentials and during catalysis. Nip appears to be the metal to which CO and methyl groups bind and then react to form an acetyl-Nip intermediate. Methyl group binding requires reductive activation, where two electrons reduce some site on the A-cluster. The coordination environment of the distal Ni suggests that it could not be stabilized in redox states lower than 2+. The rate at which the [Fe4S4]2+ cubane is reduced is far slower than that at which reductive activation occurs, suggesting that the cubane is not the site of reduction. An intriguing possibility is that Nip2+ might be reduced to the zero-valent state. Reinforcing this idea are Ni-organometallic complexes in which the Ni exhibits analogous reactivity properties when reduced to the zero-valent state. A zero-valent Ni stabilized exclusively with biological ligands would be remarkable and unprecedented in biology.Electronic Supplementary Material Supplementary Material is available in the online version of this article at  相似文献   

12.
Infrared (IR) spectra in combination with chemical analyses have recently shown that the active Ni–Fe site of the soluble NAD+-reducing [NiFe]-hydrogenase from Ralstonia eutropha contains four cyanide groups and one carbon monoxide as ligands. Experiments presented here confirm this result, but show that a variable percentage of enzyme molecules loses one or two of the cyanide ligands from the active site during routine purification. For this reason the redox conditions during the purification have been optimized yielding hexameric enzyme preparations (HoxFUYHI2) with aerobic specific H2–NAD+ activities of 150–185 μmol/min/mg of protein (up to 200% of the highest activity previously reported in the literature). The preparations were highly homogeneous in terms of the active site composition and showed superior IR spectra. IR spectro-electrochemical studies were consistent with the hypothesis that only reoxidation of the reduced enzyme with dioxygen leads to the inactive state, where it is believed that a peroxide group is bound to nickel. Electron paramagnetic resonance experiments showed that the radical signal from the NADH-reduced enzyme derives from the semiquinone form of the flavin (FMN-a) in the hydrogenase module (HoxYH dimer), but not of the flavin (FMN-b) in the NADH-dehydrogenase module (HoxFU dimer). It is further demonstrated that the hexameric enzyme remains active in the presence of NADPH and air, whereas NADH and air lead to rapid destruction of enzyme activity. It is proposed that the presence of NADPH in cells keeps the enzyme in the active state.  相似文献   

13.
The “open” (Aopen) and “closed” (Aclosed) A-clusters of the acteyl-CoA synthase (ACS) enzyme from Moorella thermoacetica have been studied using a combined quantum mechanical (QM)/molecular mechanical (MM) approach. Geometry optimizations of the oxidized, one- and two-electron reduced Aopen state have been carried out for the fully solvated ACS enzyme, and the CO ligand has been modeled in the reduced models. Using a combination of both αopen and αclosed protein scaffolds and the positions of metal atoms in these structures, we have been able to piece together critical parts of the catalytic cycle of ACS. We have replaced the unidentified exogenous ligand in the crystal structure with CO using both a square planar and tetrahedral proximal Ni atom. A one-electron reduced A-cluster that is characterized by a proximal Ni atom in a tetrahedral coordination pattern observed in both the Aopen (lower occupancy proximal Ni) and Aclosed (proximal Zn atom) geometries with three cysteine thiolates and a modeled CO ligand demonstrates excellent agreement with the crystal structure atomic positions, particularly with the displacement of the side chain ring of Phe512 which appears to serve as a structural gate for ligand binding. The QM/MM optimized geometry of the A-cluster of ACS with an uncoordinated, oxidized proximal nickel atom in a square planar geometry demonstrates poor agreement with the atomic coordinates taken from the crystal structure. Based on these calculations, we conclude that the square planar proximal nickel coordination that has been captured in the Aopen structure does not correspond to the ligand-free, oxidized [Fe4S4]2+ − Nip2+ − Nid2+ state. Overall, these computations shed further light on the mechanistic details of protein conformational changes and electronic transitions involved in the ACS catalytic cycle.  相似文献   

14.
Nickel Superoxide Dismutase (NiSOD) and the A-cluster of Carbon Monoxide Dehydrogenase/Acetyl Coenzyme A Synthase (CODH/ACS) both feature active sites with Ni coordinated by thiolate and amide donors. It is likely that the particular set of donors is important in tuning the redox potential of the Ni center(s). We report herein an expansion of our efforts involving the use of 2,2′-dithiodibenzaldehyde (DTDB) as a synthon for metal-thiolate complexes to reactions with Ni complexes of N,N-dimethylethylenediamine (dmen). In the presence of coordinating counterions, these reactions result in monomeric square-planar complexes of the tridentate N2S donor ligand derived from the Schiff-base condensation of dmen and DTDB. In the absence of a coordinating counterion, we have isolated a Ni(II) complex with an asymmetric N2S2 donor set involving one amine and one imine N donor in addition to two thiolate donors. This latter complex is discussed with respect to its relevance to the active site of NiSOD.  相似文献   

15.
4-Hydroxybenzoate oligoprenyltransferase of E. coli, encoded in the gene ubiA, is an important key enzyme in the biosynthetic pathway to ubiquinone. It catalyzes the prenylation of 4-hydroxybenzoic acid in position 3 using an oligoprenyl diphosphate as a second substrate. Up to now, no X-ray structure of this oligoprenyltransferase or any structurally related enzyme is known. Knowledge of the tertiary structure and possible active sites is, however, essential for understanding the catalysis mechanism and the substrate specificity.With homology modeling techniques, secondary structure prediction tools, molecular dynamics simulations, and energy optimizations, a model with two putative active sites could be created and refined. One active site selected to be the most likely one for the docking of oligoprenyl diphosphate and 4-hydroxybenzoic acid is located near the N-terminus of the enzyme. It is widely accepted that residues forming an active site are usually evolutionary conserved within a family of enzymes. Multiple alignments of a multitude of related proteins clearly showed 100% conservation of the amino acid residues that form the first putative active site and therefore strongly support this hypothesis. However, an additional highly conserved region in the amino acid sequence of the ubiA enzyme could be detected, which also can be considered a putative (or rudimentary) active site. This site is characterized by a high sequence similarity to the aforementioned site and may give some hints regarding the evolutionary origin of the ubiA enzyme.Semiempirical quantum mechanical PM3 calculations have been performed to investigate the thermodynamics and kinetics of the catalysis mechanism. These results suggest a near SN1 mechanism for the cleavage of the diphosphate ion from the isoprenyl unit. The 4-hydroxybenzoic acid interestingly appears not to be activated as benzoate anion but rather as phenolate anion to allow attack of the isoprenyl cation to the phenolate, which appeared to be the rate limiting step of the whole process according to our quantum chemical calculations. Our models are a basis for developing inhibitors of this enzyme, which is crucial for bacterial aerobic metabolism. Figure Structure of the model of ubiA oligoprenyltransferase derived from the photosynthetic reaction center (1PRC). Putative active amino acid residues and substrates are shown as capped sticks to describe their location and geometry in the putative active sites. The violet spheres identify Mg2+.This revised version was published online in April 2005 with corrections to Table 3 and the page make-up.  相似文献   

16.
A new efficient immobilization method that enables oriented immobilization of biologically active proteins was developed based on concepts of active site masking and kinetic control. Taq DNA polymerase was immobilized covalently on mixed self-assembled monolayers (SAMs) of ω-carboxylated thiol and ω-hydroxylated thiol through amide bonds between the protein and the carboxyl group in SAMs. Activity of the immobilized enzyme as large as 70% of solution-phase enzyme was achieved by masking the active site of the Taq DNA polymerase prior to the immobilization. In addition, the number of immobilization bonds was controlled by optimizing the carboxyl group concentration in the mixed monolayer. The maximum activity of immobilized Taq DNA polymerase was achieved at 5% of 12-mercaptododecanoic acid. The activity observed with protected immobilized enzyme was approximately 20 times higher than that observed with randomly immobilized enzyme. The maximum activity was acquired at a 1:1 DNA/enzyme masking ratio, immobilization pH 8.3, and within 10 min of reaction time. This concept of the active site masking and kinetic control of the number of covalent bonds between proteins and the surface can be generally applicable to a broad range of proteins to be immobilized on the solid surface with higher activity.  相似文献   

17.
Two isolated alpha subunit mutants (A110C and A222L) of the alpha(2)beta(2) acetyl coenzyme A synthase (ACS)/carbon monoxide dehydrogenase (CODH) from Moorella thermoacetica were designed to block the CO-migrating tunnel in the alpha subunit, allowing comparison with equivalent mutants in ACS/CODH. After Ni activation, both mutants exhibited electron paramagnetic resonance spectra indicating that the A-cluster was properly assembled. ACS activities were similar to those of the wild-type recombinant Ni-activated alpha subunit, suggesting that CO diffuses directly to the A-cluster from solvent rather than through the tunnel as is observed for the "majority" activity of ACS/CODH. Thus, CO appears to migrate to the A-cluster through two pathways, one involving and one not involving the tunnel. The kinetics and extent of reduction of the Fe(4)S(4) cubane in the apo-alpha subunit and the Ni-activated alpha subunit upon exposure to titanium(III) citrate were examined using the stopped-flow method. The extent of reduction was independent of Ni, whereas the kinetics of reduction was Ni-dependent. Apo-alpha subunit reduction was monophasic while Ni-activated alpha subunit reduction was biphasic, with the more rapid phase coincident with that of apo-alpha subunit reduction. Thus, binding of Ni to the A-cluster slows the reduction kinetics of the [Fe(4)S(4)](2+) cubane. An upper limit of two electrons per alpha subunit are transferred from titanium(III) citrate to the Ni subcomponent of the A-cluster during reductive activation. These electrons are accepted quickly relative to the reduction of the [Fe(4)S(4)](2+) cubane. This reduction is probably a prerequisite for methyl group transfer. CO appears to bind to reduced nonfunctional subunits, thereby inhibiting reduction (or promoting reoxidation) of the cubane subcomponent of the A-cluster.  相似文献   

18.
The extractable activity ofl-phenylalanine ammonia-lyase (PAL; EC 4.3.1.5) in cell suspension cultures of bean (Phaseolus vulgaris) is greatly induced following exposure to an elicitor preparation from the cell walls of the phytopathogenic fungusColletotrichum lindemuthianum. Following exogenous application oftrans-cinnamic acid (the product of the PAL reaction) to elicitor-induced cells, the activity of the enzyme rapidly declines. Loss of enzyme activity is accompanied by inhibition of the rate of synthesis of PAL subunits, as determined by [35S]methionine pulse-labelling followed by specific immunoprecipitation; this is insufficient to account for the rapid loss of PAL enzyme activity. Pulse-chase and immune blotting experiments indicate that cinnamic acid does not affect the rate of degradation of enzyme subunits, but rather mediates inactivation of the enzyme. A non-dialysable factor from cinnamicacid-treated bean cells stimulates removal of PAL activity from enzyme extracts in vitro; this effect is dependent on the presence of cinnamic acid. Such loss of enzyme activity in vitro is accompanied by an apparent loss or reduction of the dehydroalanine residue of the enzyme's active site, as detected by active-site-specific tritiation, although levels of immunoprecipitable enzyme subunits do not decrease. Furthermore, cinnamic-acid-mediated loss of enzyme activity in vivo is accompanied, in pulse-chase experiments, by a greater relative loss of35S-labelled enzyme subunits precipitated by an immobilised active-site affinity ligand than of subunits precipitated with anti-immunoglobulin G. It is therefore suggested that a possible mechanism for cinnamic-acid-mediated removal of PAL activity may involve modification of the dehydroalanine residue of the enzyme's active site.Abbreviations AOPP l--aminoxy--phenylpropionic acid - CA trans-cinnamic acid - PAGE polyacrylamide gel electrophoresis - PAL l-phenylalanine ammonia-lyase - SDS sodium dodecyl sulphate  相似文献   

19.

Background

Acute coronary syndrome (ACS) is one of the most common forms of heart disease. Recent studies have shown that interleukin (IL)-8 plays a key role in the development of atherosclerotic plaques, but the relationship between the common genetic variants of IL-8 and ACS has not been extensively studied.

Methods

This case-control study in the Chinese Han population included 675 patients with ACS and 636 age- and sex-matched controls. We investigated IL-8 polymorphisms and their association with susceptibility to ACS. The investigation was replicated in the second study comprising 360 cases and 360 control subjects. The plasma concentration of IL-8 was measured by enzyme-linked immunosorbent assay.

Results

IL-8 −251 A/T polymorphism was associated with increased susceptibility to ACS (P = 0.004; odds ratio = 1.30; 95% confidence interval: 1.12–1.53). The second study yielded similar results. An increased IL-8 level was found in the plasma of acute myocardial infarction patients, suggesting that IL-8 −251 A/T may affect the expression of IL-8.

Conclusion

IL-8 −251 A/T polymorphism is associated with ACS risk in the Chinese Han population and the A allele of IL-8 −251 A/T may be an independent predictive factor for ACS.  相似文献   

20.
The endo--1,4-xylanase (EC 3.2.1.8) from Trichosporon cutaneum was chemically modified using amino acid-specific reagents. The enzyme does not bear arginines essential for activity, since 1,2-cyclohexanedione and 2,3-butanedione, although they modify the enzyme (after chromatographic analysis), have no effect on its activity. Reaction of the enzyme with tetranitromethane and N-acetylimidazole did not result in a significant activity loss as a result of modification of tyrosine residues. The water-soluble carbodiimide 1-[3-(dimethylamino) propyl]-3-ethylcarbodiimide inactivated the xylanase rapidly and completely in a pseudo-first-order process, and kinetic analysis indicated that at least one molecule of carbodiimide binds to the enzyme for inactivation. A mixture of neutral xylooligomers provided significant protection of the enzyme against this carbodiimide inactivation. Reaction of the xylanase with 2,4,6-trinitrobenzene sulfonic acid did not result in a significant activity loss as a result of modification of lysine residues. Titration of the enzyme with 5,5-dithiobis-(2-nitrobenzoic acid) and treatment with iodoacetamide and p-chloromercuribenzoate indicated the presence of a free/active thiol group. Xylan completely protected the enzyme from inactivation by p-hydroxymercuribenzoate, suggesting the presence of cysteine at the substrate-binding site. Inactivation of xylanase by p-hydroxymercuribenzoate could be restored by cysteine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号