首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
2.
BACKGROUND: AIDS-associated Kaposi's sarcoma (AIDS-KS) represents one of the most common malignancies associated with human immunodeficiency virus infection. To target effective therapeutic agents to AIDS-KS, we have identified a new target in the form of interleukin-4 receptors (IL-4R). MATERIALS AND METHODS: The expression of IL-4R on AIDS-KS cells and their subunit structure was determined by radioligand receptor binding, cross-linking and Northern and RT-PCR analyses. The in vitro effect of IL-4 and recombinant fusion protein made up of circularly permuted IL-4 and a mutated form of Pseudomonas exotoxin, IL-4(38-37)-PE38KDEL, was examined by clonogenic and protein synthesis inhibition assays. RESULTS: Five AIDS-KS cell lines expressed high-affinity IL-4R with a Kd of 23.5-219 pM. IL-4 appeared to cross-link to one major protein corresponding to 140 kDa and a broad band corresponding to 60-70 kDa. Both cross-linked proteins were immunoprecipitated with an antibody to human IL-4R beta chain. AIDS-KS cells exhibited IL-4R beta-specific mRNA. IL-4 caused a modest inhibition (31-34%) of colony formation in two AIDS-KS cell lines tested. IL-4(38-37)-PE38KDEL was found to be highly effective in inhibiting the protein synthesis in all five AIDS-KS examined. The IC50 ranged from 32 to 1225 pM. The cytotoxic action of IL-4 toxin was blocked by an excess of IL-4, exhibiting the specificity of IL-4(38-37)-PE38KDEL. The cytotoxicity of IL-4 toxin observed by a clonogenic assay corroborated well with the IC50 obtained by protein synthesis inhibition assay. Normal human endothelial cells expressed a negligible number of IL-4R (< 50 sites/cell) and were less sensitive or not sensitive to IL-4(38-37)-PE38KDEL. CONCLUSION: The presence of a new plasma membrane protein in the form of IL-4R on AIDS-KS cells may be targeted by IL-4(38-37)-PE38KDEL for its potential implication in the treatment of AIDS-KS.  相似文献   

3.
Pseudomonas Exotoxin A (PE) and truncated PE have been used to prepare immunotoxin with monoclonal antibodies. Truncated Pseudomonas Exotoxin A (PE38KDEL) was expressed with the pET-32a(+) vector in Escherichia coli under control of a T7 promoter. The recombinant protein was purified by His-Ni(2+) metal affinity chromatography and gel filtration. The biological activity of PE38KDEL was evaluated by the inhibition assay of protein synthesis in rabbit reticulocyte lysate system, and the cytotoxicity was tested in Hut 102 and hepatocellular cell lines by the MTS assay. PE38KDEL can significantly inhibit luciferase synthesis in cell-free protein synthesis assay and was slightly cytotoxic in the Hut 102 and hepatocellular cell lines. The results suggest that PE38KDEL would be useful for the preparation of more potent immunotoxins.  相似文献   

4.
《Cytotherapy》2014,16(8):1121-1131
Background aimsOutcomes for patients with glioblastoma remain poor despite aggressive multimodal therapy. Immunotherapy with genetically modified T cells expressing chimeric antigen receptors (CARs) targeting interleukin (IL)13Rα2, human epidermal growth factor receptor 2, epidermal growth factor variant III or erythropoietin-producing hepatocellular carcinoma A2 has shown promise for the treatment of glioma in preclinical models. On the basis of IL13Rα2 immunotoxins that contain IL13 molecules with one or two amino acid substitutions (IL13 muteins) to confer specificity to IL13Rα2, investigators have constructed CARS with IL13 muteins as antigen-binding domains. Whereas the specificity of IL13 muteins in the context of immunotoxins is well characterized, limited information is available for CAR T cells.MethodsWe constructed four second-generation CARs with IL13 muteins with one or two amino acid substitutions, and evaluated the effector function of IL13-mutein CAR T cells in vitro and in vivo.ResultsT cells expressing all four CARs recognized IL13Rα1 or IL13Rα2 recombinant protein in contrast to control protein (IL4R) as judged by interferon-γ production. IL13 protein produced significantly more IL2, indicating that IL13 mutein–CAR T cells have a higher affinity to IL13Rα2 than to IL13Rα1. In cytotoxicity assays, CAR T cells killed IL13Rα1- and/or IL13Rα2-positive cells in contrast to IL13Rα1- and IL13Rα2-negative controls. Although we observed no significant differences between IL13 mutein–CAR T cells in vitro, only T cells expressing IL13 mutein–CARs with an E13K amino acid substitution had anti-tumor activity in vivo that resulted in a survival advantage of treated animals.ConclusionsOur study highlights that the specificity/avidity of ligands is context-dependent and that evaluating CAR T cells in preclinical animal model is critical to assess their potential benefit.  相似文献   

5.
以抗癌胚抗原(Carcinoembryonic antigen, CEA)单链抗体与假单胞菌外毒素(Pseudomonas exotoxin A, PEA)的截短和修饰形式PE38/KDEL构建重组免疫毒素CEA/PE38/KDEL,并在大肠杆菌菌株BL21(DE3)-star中表达。采用镍离子螯合层析法纯化变性的包涵体样品,并用连续梯度透析的方法对纯化后的包涵体进行复性。采用流式细胞术鉴定复性产物与靶细胞的结合活性,结果表明免疫毒素CEA/PE38/KDEL具有与靶细胞特异性结合的活性。以MTT法检测免疫毒素对肿瘤细胞的体外杀伤活性,结果表明该免疫毒素对SW1116和CNE_2细胞具有特异性杀伤活性。证明了经包涵体复性的抗CEA免疫毒素CEA/PE38/KDEL对表达CEA抗原的肿瘤细胞具有良好的结合和杀伤活性。  相似文献   

6.
为了研究免疫毒素发挥生物学作用的全过程,构建了两种不同形式的基于假单胞菌外毒素(Pseudomonas exotoxin A,PE)的抗癌胚抗原(carcinoembryonic antigen, CEA)免疫毒素CEA(Fv)/PE38/KDEL和PE35/CEA(Fv)/KDEL.用流式细胞术经间接免疫荧光法测定免疫毒素的抗原结合活性.免疫毒素的内化(internalization)通过间接免疫荧光标记的方法在激光共聚焦显微镜下进行检测,采用流式细胞术进行免疫毒素内化的定量分析.细胞凋亡采用FITC-annexin V/PI双荧光染色方法进行分析.用噻唑蓝(MTT)法测定免疫毒素的靶细胞杀伤功能.对两种形式的免疫毒素在各个功能阶段的性质进行研究和比较,全面展现了免疫毒素发挥生物学功能的过程及各个生物作用过程之间的相互影响,为详尽的机制研究和免疫毒素的进一步优化改造提供了重要的依据.  相似文献   

7.
We have previously reported that a variety of solid human tumor cell lines express a large number of receptors for interleukin-13 (IL-13). These receptors could be targeted with a chimeric fusion protein consisting of human IL-13 and a truncated form of Pseudomonas exotoxin (PE). We describe here optimization of critical steps involved in high yield expression of two recombinant chimeric fusion proteins for obtaining highly purified and biologically active cytotoxins in Escherichia coli. The chimeric constructs of human IL-13 and two 38 kDa truncated PEs: (i) PE38 and (ii) PE38QQR, (three lysine residues in PE38 at 590, 606, and 613 substituted with two glutamine and one arginine) were used for protein expression in pET prokaryotic expression vector system with kanamycin as a selection antibiotic. Our results suggest that fresh transformation of E. coli and induction by isopropyl-beta-D-thiogalactopyranoside (IPTG) for 6 h resulted in maximum protein expression. To further improve the yield, we used a genetically modified E. coli strain, BL21(DE3)pLysS, which carries a plasmid for lysozyme with a weak promoter that inhibits T7 RNA polymerase and minimizes protein production in the absence of IPTG. Use of this strain eliminated the need for lysozyme digestion of the induced bacteria to release inclusion bodies, which resulted in expression of purer protein as compared to the conventional BL21(DE3) strain. Additional protocol optimizations included 16 h solubilization of inclusion bodies, constitution of refolding buffer, and timing of dialysis. These proteins were finally purified by Q-Sepharose, mono-Q, and gel filtration chromatography. Between 14-22 and 21-28 mg highly purified and biologically active protein was obtained from 1L of BL21 (DE3) and BL21 (DE3) pLysS bacteria culture, respectively. As IL-13R targeting for brain tumor therapy offers an exciting treatment option, optimization of production of IL-13PE will enhance production of clinical grade material for Phase III clinical trials.  相似文献   

8.
Vascular leak syndrome (VLS) is the major dose-limiting toxicity of immunotoxin therapy. In our previous study, a modified PE38KDEL, denoted PE38KDELKQK, was engineered to eliminate VLS. The PE38KDELKQK-based immunotoxin has been proved to retain potent anti-tumor activity but with a remarkable attenuation in VLS. In the present study, we have constructed and expressed a recombinant immunotoxin CD25-PE38KDELKQK containing humanized anti-CD25 single-chain antibody (scFv) genetically fused to PE38KDELKQK in Escherichia coli. After washing with buffer containing 2 M urea, the purity of inclusion body was about 82%. The denatured inclusion bodies were refolded on-column in Tris buffer (pH 8.0) containing 4mM of GSH and 1 mM of GSSG using a gradient of decreasing urea. We found that the presence of GSH/GSSG (4:1) in the on-column refolding buffer was important for efficient refolding. In addition, slow flow rate was another important factor could increase refolding. Under these conditions, the activity of the refolded protein could reach about 90% of that of the native protein. The refolded proteins were purified to homogeneity ( approximately 95% purity) by a combination of His-Ni(2+) metal affinity chromatography and gel filtration chromatography. The in vitro cytotoxicity assay indicated the purified immunotoxin CD25-PE38KDELKQK had specific cytotoxicity to CD25-positive leukemic cells comparable to wild-type CD25-PE38KDEL (wt). In contrast, CD25-PE38KDELKQK was shown to be much weaker in inducing VLS in mice than wt. The protein expression, purification, and refolding system established in this paper is important for further study on immunotoxin CD25-PE38KDELKQK.  相似文献   

9.
Purpose Immunotoxins as anti-cancer therapeutics have several potential advantages over conventional agents including a high specificity, extraordinary potency, and a lack of an identified mechanism for resistance. It has been clearly demonstrated that Pseudomonas-based immunotoxins have a direct cytotoxic effect. However, delayed and often dramatic antitumor responses seen in human studies with targeted toxins led us to hypothesize that immunologic responses may be a secondary mechanism that enhances the therapeutic efficacy of these novel drugs. Experimental design This hypothesis was tested in a murine system using an immunotoxin, MR1-1 [MR1-1(dsFv)-PE38KDEL], that targets a syngeneic murine homologue of the tumor-specific human epidermal growth factor mutation, EGFRvIII, expressed on a murine cell line. Results Intratumoral treatment with MR1-1 eliminated EGFRvIII-expressing tumors (P < 0.0001). The antitumor activity of MR1-1 was dependent on the expression of EGFRvIII on some, but not all tumors cells, and was significantly inhibited in the absence of CD4+ (P = 0.0193) and CD8+ (P = 0.0193) T cells. MR1-1 induced EGFRvIII-specific immunity (P < 0.0005) and produced long lasting immunity against tumors expressing EGFRvIII as well as EGFRvIII-negative tumors. Conclusions These data suggest that immunotoxins may not be strictly dependent on direct cytotoxicity for their efficacy, but may also be potent inducers of antitumor immunity active even against cells that do not express the targeted antigen.  相似文献   

10.
Bacterial toxins have received a great deal of attention in the development of antitumor agents. Currently, these protein toxins were used in the immunotoxins as a cancer therapy strategy. Despite the successful use of immunotoxins, immunotherapy strategies are still expensive and limited to hematologic malignancies. In the current study, for the first time, a nano-toxin comprised of truncated pseudomonas exotoxin (PE38) loaded silver nanoparticles (AgNPs) were prepared and their cytotoxicity effect was investigated on human breast cancer cells. The PE38 protein was cloned into pET28a and expressed in Escherichia coli, BL21 (DE3), and purified using metal affinity chromatography and was analyzed by 15% sodium dodecyl sulfate-polyacrylamide gel electrophoresis. AgNPs were biologically prepared using cell-free supernatant of E. Coli K12 strain. Nanoparticle formation was characterized by energy dispersive spectroscopy, transmission electron microscopy, and dynamic light scattering. The PE38 protein was loaded on AgNPs and prepared the PE38-AgNPs nano-toxin. Additionally, in vitro release indicated a partial slow release of toxin in about 100 hr. The nano-toxin exhibited dose-dependent cytotoxicity on MCF-7 cells. Also, real-time polymerase chain reaction results demonstrated the ability of nano-toxin to upregulate Bax/Bcl-2 ratio and caspase-3, -8, -9, and P53 apoptotic genes in the MCF-7 tumor cells. Apoptosis induction was determined by Annexin-V/propidium flow cytometry and caspases activity assay after treatment of cancer cells with the nano-toxin. In general, in the current study, the nano-toxin exhibit an inhibitory effect on the viability of breast cancer cells through apoptosis, which suggests that AgNPs could be used as a delivery system for targeting of toxins to cancer cells.  相似文献   

11.
The elusive and enigmatic origin of AIDS-associated Kaposi's sarcoma (AIDS-KS) makes it a complex tumor and therefore difficult to treat. Here we demonstrate that AIDS-KS cells express surface interleukin-4 (IL-4) receptors, and that IL-4 toxin (IL-4(38-37)-PE38KDEL) is specifically cytotoxic to these cells. Intratumoral, intraperitoneal and intravenous administration of IL-4 toxin in nude mice with established subcutaneous AIDS-KS tumors caused considerable anti-tumor activity in a dose-dependent manner, with highest dose producing durable complete responses. Metabolic changes, including cachexia and lymphopenia, induced by KS tumors were prevented by IL-4 toxin treatment. This report establishes IL-4(38-37)-PE38KDEL as an experimental therapeutic agent for the treatment of AIDS-KS.  相似文献   

12.
应用PCR技术分别扩增出编码白喉毒素氨基端 389个氨基酸 (DT3 89)的基因片段及人IL 2全基因 ,将两基因串连插入 pET3a载体 ,构建成含有DT3 89 IL 2融合基因的表达载体 ,转化大肠杆菌BL2 1,经表达、纯化后 ,用3 H Leucine掺入法测定其对HUT 10 2细胞的蛋白合成抑制作用。SDS PAGE电泳分析表明 ,表达产物分子质量 (Mr)约为 5 8kD ;重组嵌合毒素能够特异性地抑制高表达IL 2受体的HUT 10 2细胞的蛋白生物合成 ,且有一定的剂量反应关系 ,其细胞半数抑制浓度 (IC50 )约为 3 3× 10 -11mol/L。为进一步研制特异性的抗IL 2受体高表达肿瘤和相关疾病的药物打下了基础。  相似文献   

13.
IL-1018-57-PE40高效表达、纯化及细胞活性之研究   总被引:1,自引:0,他引:1  
以IL-10的功能短肽(40肽,即IL-10第18号至57号氨基酸)为导向部分与PE40(绿脓杆菌外毒素除去受体结合区后的剩余部分)融合分别构建了IL-101857PE40的胞质和胞周质表达质粒,其中,IL101857PE40在Rosettablue(DE3)中以高效胞质可溶形式表达,在BL21(DE3)pLysS中以胞周质分泌形式表达;表达宿主菌Rosettablue(DE3)超声波破碎后,依次通过硫酸铵盐析、疏水层析、铜离子亲和层析、阴离子交换层析纯化后,得96%重组毒素纯品;细胞活性实验、细胞ELISA和荧光标记实验表明,构建的IL101857PE40符合免疫毒素的作用机理。因此,该实验为PE免疫毒素的规模制备和纯化做了一定的有益的探索。  相似文献   

14.
Interleukin (IL)-13 receptor alpha2 (IL-13Ralpha2) chain is an essential binding component for IL-13-mediated ligand binding. Recently, we have demonstrated that this receptor chain also plays an important role in the internalization of IL-13. To study the mechanism of IL-13 internalization, we generated mutated IL-13Ralpha2 chains that targeted trileucine residues (Leu(335), Leu(336), and Leu(337)) in the transmembrane domain and a tyrosine motif (Tyr(343)) in the intracellular domain and transfected these cDNAs in COS-7 cells. Cells that expressed a C-terminally truncated IL-13Ralpha2 chain (Delta335) did not bind IL-13, suggesting that the trileucine region modulates IL-13 binding. Truncation of IL-13Ralpha2 chain with a mutation in the trileucine region resulted in significantly decreased internalization compared with wild type IL-13Ralpha2 chain transfected cells. COS-7 cells transfected with tyrosine motif mutants exhibited a similar internalization level compared with wild type IL-13Ralpha2 chain transfected cells; however, dissociation of cell surface IL-13 was faster compared with wild type IL-13Ralpha2 transfectants. These results were further confirmed by determining the cytotoxicity of a chimeric protein composed of IL-13 and a mutated form of Pseudomonas exotoxin (IL13-PE38QQR) to cells that expressed IL-13Ralpha2 chain mutants. We further demonstrate that the IL-13Ralpha2 chain is not ubiquitinated and that internalization of IL-13Ralpha2 did not depend on ubiquitination. Together, our findings suggest that the dileucine motif in the trileucine region and tyrosine motif participate in IL-13Ralpha2 internalization in distinct manners.  相似文献   

15.
We created a novel mutated form of human interleukin-13 (IL-13) in which a positively charged arginine (R) at position 112 was substituted to a negatively charged aspartic acid (D). This mutant, termed IL-13R112D, was expressed in Escherichia coli and purified to near homogeneity. IL-13R112D was found to be a potent IL-13 agonist with 5-10-fold improved binding affinity to IL-13 receptors compared with wild-type IL-13 (wtIL-13). The conclusion of IL-13 agonist activity was drawn on the basis of approximately 10-fold improved activity over wtIL-13 in several assays: (a) inhibition of CD14 expression in primary monocytes; (b) proliferation of TF-1 and B9 cell lines; and (c) activation of STAT6 in Epstein-Barr virus-immortalized B cells, primary monocytes, and THP-1 monocytic cell line. Furthermore, mutant IL-13R112D neutralized the cytotoxic activity of a chimeric fusion protein composed of wtIL-13 and a Pseudomonas exotoxin A (IL-13-PE38) approximately 10 times better than wtIL-13. Based on these results, it was concluded that IL-13R112D interacts with much stronger affinity than wtIL-13 on all cell types tested and that Arg-112 plays an important role in the interaction with its receptors (IL-13R). Thus, these results suggest that IL-13R112D may be a useful ligand for the study of IL-13 interaction with its receptors or, alternatively, in designing specific targeted agents for IL-13R-positive malignancies.  相似文献   

16.
Vascular leak syndrome (VLS) is the major dose-limiting toxicity of immunotoxin and interleukin-2 therapy. It has been evidenced that VLS-inducing molecules share a three-amino acid consensus motif, (x)D(y), which may be responsible for initiating VLS. Here we have constructed a recombinant immunotoxin (SMFv-PE38KDEL) by genetically fusing PE38KDEL to a single-chain antibody derived from SM5-1 monoclonal antibody, which has a high specificity for melanoma, hepatocellular carcinoma and breast cancer. In order to eliminate VLS induced by this PE38KDEL-based immunotoxin, a panel of mutants were generated by changing amino acid residues adjacent to its three (x)D(y) motifs in the three-dimensional structure. One of the SMFv-PE38KDEL mutants, denoted as mut1, displayed a similar protein synthesis inhibitory in a reticulocyte lysate translation assay compared to the wild-type SMFv-PE38KDEL (wt). The in vitro cytotoxicity assay indicated that mut1 specifically killed SM5-1 binding protein-positive tumor cells, although its cytotoxicity was slightly less than wt. In contrast, mut1 was shown to be much weaker in inducing VLS in mice than wt. The LD50 values of wt and mut1 in mice were investigated with the result that the LD50 of mut1 was about tenfold higher than that of wt. The in vivo antitumor activity of wt and mut1 were also compared in tumor-bearing nude mice. Both wt and mut1 were effective in inhibiting the tumor growth but mut1 showed improved therapeutic efficacy. These studies suggest mut1 may be a novel PE-based immunotoxin with much less toxicity for clinical use. Hao Wang, Shuichuan Song and Geng Kou contributed equally to this paper.  相似文献   

17.
嵌合蛋白sTNFR II-IgG Fc的克隆、表达与活性分析   总被引:4,自引:1,他引:3  
肿瘤坏死因子是一种重要的炎性细胞因子,目前已知许多免疫疾病与之相关,为了抑制TNF的生物学活性,将可溶性TNFR Ⅱ(sTNFR Ⅱ)和人IgG Fc分子通过柔性短肽相连,构建成一个嵌合蛋白,在大肠杆菌中进行表达,并获得了纯化蛋白。实验证明该嵌合蛋白能够自发形成聚合体,识别并结合TNF蛋白,同单体sTNFR Ⅱ相比,对TNF的中和活性得到了较大的提高。  相似文献   

18.
Two interleukin 13 receptors (IL-13Rs) have been identified as IL-13Ralpha1 and IL-13Ralpha2. IL-13Ralpha1 is composed of a heterodimer consisting of IL-13Ralpha1 and IL-4 receptor alpha (IL-4Ralpha) as a signaling subunit. In contrast, IL-13Ralpha2 is known as a decoy receptor for IL-13. In this study, we investigated the expression of IL-13Rs on human fibroblasts. IL-13Ralpha2 was significantly up-regulated after stimulation with tumor necrosis factor-alpha (TNF-alpha) and/or IL-4. In contrast, IL-13Ralpha1 was constitutively detectable and was not up-regulated. After the induction of IL-13alpha2 by IL-4, STAT6 phosphorylation through IL-13Ralpha1 by IL-13 was inhibited. We also detected large intracellular pools of IL-13Ralpha2 in fibroblasts quantitatively. Furthermore, mobilization of the IL-13Ralpha2 protein stores from the cytoplasm to the cell surface was prevented by an inhibitor of protein transport, brefeldin-A. These results indicate that TNF-alpha and IL-4 synergistically up-regulate the expression of IL-13Ralpha2 decoy receptor on human fibroblasts by inducing gene expression and mobilizing intracellular receptors, and thus may down-regulate the IL-13 signaling.  相似文献   

19.
Pseudomonas exotoxin-based immunotoxins, including LMB-2 (antiTac(Fv)-PE38), are proposed to traffic to the trans-Golgi network (TGN) and move by a retrograde pathway to the endoplasmic reticulum, where they undergo translocation to the cytoplasm, a step that is essential for cytotoxicity. The retrograde transport pathways used by LMB-2 are not completely understood, so it is unclear if transit through specific organelles is critical for maximal cytotoxic activity. In this study, we used Chinese hamster ovary (CHO) cell lines that express chimeric constructs of CD25, the Tac antigen, attached to the cytoplasmic domain of the TGN-targeted transmembrane proteins, TGN38 and furin. These chimeras are both targeted to the TGN, but the itineraries they follow are quite different. LMB-2 was incubated with the two cell lines, and the efficiency of cell killing was determined using cell viability and cytotoxicity assays. LMB-2 that is targeted through the endocytic recycling compartment to the TGN via Tac-TGN38 kills the cells more efficiently than immunotoxins delivered through the late endosomes by Tac-furin. Although the processing to the 37 kDa active fragment was more efficient in Tac-furin cells than in Tac-TGN38 cells, this was not associated with enhanced cytotoxicity – presumably because the toxin was also degraded more rapidly in these cells. These data indicate that trafficking through specific organelles is an important factor modulating toxicity by LMB-2.  相似文献   

20.
The alpha(2-)macroglobulin receptor (alpha(2)MR) has been reported to mediate the internalization of the urokinase plasminogen activator receptor (uPAR) via ligand binding to both receptors. To target malignant uPAR-expressing cells and to determine whether uPAR can internalize without ligand binding to alpha(2)MR, we engineered two recombinant toxins, ATF-PE38 and ATF-PE38KDEL. Each consists of the amino-terminal fragment (ATF) of human urokinase and a truncated form of Pseudomonas exotoxin (PE) devoid of domain Ia, which binds alpha(2)MR. ATF-PE38 and ATF-PE38KDEL were cytotoxic toward malignant uPAR-bearing cells, with IC(50) values as low as 0.02 ng/ml (0.3 pM). Cytotoxicity could be blocked using either recombinant urokinase or free ATF, indicating that the cytotoxicity of the recombinant toxins was specific. Radiolabeled ATF-PE38 had high affinity for uPAR (K(d) = 0.4-8 nM) on a variety of different malignant cell types and internalized at a rate similar to that of ATF. The cytotoxicity was not diminished by receptor-associated protein, which binds and shields the alpha(2)MR from other proteins, or by incubation with phorbol myristate acetate, which is known to decrease the number of alpha(2)MRs in U937 cells or by antibodies to alpha(2)MR. Therefore, these recombinant toxins appear to internalize via uPAR without association with the alpha(2)MR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号