首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The antiviral protein viperin is a radical SAM enzyme   总被引:1,自引:0,他引:1  
Viperin, an interferon-inducible antiviral protein, is shown to bind an iron-sulfur cluster, based on iron analysis as well as UV-Vis and electron paramagnetic resonance spectroscopic data. The reduced protein contains a [4Fe-4S]1+ cluster whose g-values are altered upon addition of S-adenosylmethionine (SAM), consistent with SAM coordination to the cluster. Incubation of reduced viperin with SAM results in reductive cleavage of SAM to produce 5′-deoxyadenosine (5′-dAdo), a reaction characteristic of the radical SAM superfamily. The 5′-dAdo cleavage product was identified by a combination of HPLC and mass spectrometry analysis.  相似文献   

2.
S A Walstrum  O C Uhlenbeck 《Biochemistry》1990,29(46):10573-10576
When the circular form of the self-splicing intervening sequence of Tetrahymena thermophila was purified by denaturing polyacrylamide gel electrophoresis by standard methods, the rate of its reaction with tetrauridylate decreased 150-fold at 30 degrees C and at least 1000-fold at 0 degrees C. The activity of the self-splicing RNA was restored by heating it to high temperature and letting it renature in the presence of Mg2+. The rate of reaction of tetrauridylate with the self-splicing RNA flanked by exons was also greatly decreased by gel purification. The difference in activation energies for the reaction of native and denatured intervening sequences suggests that a substantial conformational rearrangement of the gel-purified RNA occurs prior to reaction.  相似文献   

3.
Thiamine pyrophosphate (TPP) is an essential cofactor for all forms of life. In Salmonella enterica, the thiH gene product is required for the synthesis of the 4-methyl-5-beta hydroxyethyl-thiazole monophosphate moiety of TPP. ThiH is a member of the radical S-adenosylmethionine (AdoMet) superfamily of proteins that is characterized by the presence of oxygen labile [Fe-S] clusters. Lack of an in vitro activity assay for ThiH has hampered the analysis of this interesting enzyme. We circumvented this problem by using an in vivo activity assay for ThiH. Random and directed mutagenesis of the thiH gene was performed. Analysis of auxotrophic thiH mutants defined two classes, those that required thiazole to make TPP (null mutants) and those with thiamine auxotrophy that was corrected by either L-tyrosine or thiazole (ThiH* mutants). Increased levels of AdoMet also corrected the thiamine requirement of members of the latter class. Residues required for in vivo function were identified and are discussed in the context of structures available for AdoMet enzymes.  相似文献   

4.
5.
Dansylated tight-binding inhibitors are effective fluorophoric probes for detecting conformational changes of enzyme active sites. In this study they have been employed to examine the effect of anions on the conformation of angiotensin-converting enzyme. The efficiency of radiationless energy transfer between enzyme tryptophan residues and an active site-bound dansyl inhibitor has been shown to be enhanced by the addition of chloride. Half-maximal fluorescence enhancement occurs at about 2 mM chloride and is the same for both N-(1-carboxyl-5-dansylamino-pentyl)-glycyl-L-phenylalanine [Ki,app = 50 nM (pH 7.5, 300 mM NaCl)] and N-(1-carboxyl-5-dansylamino-pentyl)-glycyl-L-lysine (Ki,app = 5.7 nM). Other activating anions also evoke similar increases in enzyme-inhibitor energy transfer. Fluorescence changes are not due to binding additional inhibitor molecules but rather to an anion-induced change in protein conformation.  相似文献   

6.
Peptide-hormones are synthesized as higher molecular weight, precursor proteins which must initially undergo limited endoproteolysis to yield the bioactive peptide(s). The ability of two different endoproteinases, gonadotropin-associated peptide (GAP)-releasing enzyme and atrial granule serine proteinase (which are likely to be the physiologically relevant processing enzymes of bovine hypothalamic pro-gonadotropin-releasing hormone/gonadotropin-associated peptide and bovine pro-atrial natriuretic factor precursor proteins, respectively), to act at their own recognition sequences within their relevant pro-hormone proteins has now been contrasted with their ability to act at the recognition sequence for the alternate enzyme or to act at their own recognition sequence when it is placed within the protein framework of the alternate precursor protein. The results show that each enzyme acts with specificity at its own recognition sequence even when it is placed within the framework of the alternate pro-hormone. However, the enzymes fail to act (or act in a non-specific manner) at the alternate recognition sequence even if it is placed within the peptide framework of its own pro-hormone protein. Thus, despite the fact that both recognition sequences are similar in sequence and residue composition and that both contain a doublet of basic amino acids, it appears that sequence and the local conformation assumed by the processing site within the pro-hormone protein are essential for each endoproteinase to act with fidelity. As part of our continuing work, we now also report several newly determined physicochemical properties of hypothalamic GAP-releasing enzyme, the processing enzyme of pro-gonadotropin-releasing hormone/GAP protein.  相似文献   

7.
The major photoproduct in UV-irradiated Bacillus spore DNA is a unique thymine dimer called spore photoproduct (SP, 5-thyminyl-5,6-dihydrothymine). The enzyme spore photoproduct lyase (SP lyase) has been found to catalyze the repair of SP dimers to thymine monomers in a reaction that requires S-adenosylmethionine. We present here the first detailed characterization of catalytically active SP lyase, which has been anaerobically purified from overexpressing Escherichia coli. Anaerobically purified SP lyase is monomeric and is red-brown in color. The purified enzyme contains approximately 3.1 iron and 3.0 acid-labile S(2-) per protein and has a UV-visible spectrum characteristic of iron-sulfur proteins (410 nm (11.9 mM(-1) cm(-1)) and 450 nm (10.5 mM(-1) cm(-1))). The X-band EPR spectrum of the purified enzyme shows a nearly isotropic signal (g = 2.02) characteristic of a [3Fe-4S]1+ cluster; reduction of SP lyase with dithionite results in the appearance of a new EPR signal (g = 2.03, 1.93, and 1.89) with temperature dependence and g values consistent with its assignment to a [4Fe-4S]1+ cluster. The reduced purified enzyme is active in SP repair, with a specific activity of 0.33 micromol/min/mg. Only a catalytic amount of S-adenosylmethionine is required for DNA repair, and no irreversible cleavage of S-adenosylmethionine into methionine and 5'-deoxyadenosine is observed during the reaction. Label transfer from [5'-3H]S-adenosylmethionine to repaired thymine is observed, providing evidence to support a mechanism in which a 5'-deoxyadenosyl radical intermediate directly abstracts a hydrogen from SP C-6 to generate a substrate radical, and subsequent to radical-mediated beta-scission, a product thymine radical abstracts a hydrogen from 5'-deoxyadenosine to regenerate the 5'-deoxyadenosyl radical. Together, our results support a mechanism in which S-adenosylmethionine acts as a catalytic cofactor, not a substrate, in the DNA repair reaction.  相似文献   

8.
Metallo-beta-lactamases (MbetaLs) are zinc-dependent enzymes able to hydrolyze and inactivate most beta-lactam antibiotics. The large diversity of active site structures and metal content among MbetaLs from different sources has limited the design of a pan-MbetaL inhibitor. Here we report the biochemical and biophysical characterization of a novel MbetaL, GOB-18, from a clinical isolate of a Gram-negative opportunistic pathogen, Elizabethkingia meningoseptica. Different spectroscopic techniques, three-dimensional modeling, and mutagenesis experiments, reveal that the Zn(II) ion is bound to Asp120, His121, His263, and a solvent molecule, i.e. in the canonical Zn2 site of dinuclear MbetaLs. Contrasting all other related MbetaLs, GOB-18 is fully active against a broad range of beta-lactam substrates using a single Zn(II) ion in this site. These data further enlarge the structural diversity of MbetaLs.  相似文献   

9.
Abstract Glucose-fructose oxidoreductase (GFOR) is a periplasmic enzyme of the ethanologenic, Gram-negative bacterium Zymomonas mobilis . It contains tightly bound NADP+ as cofactor. In Z. mobilis GFOR-recombinant strains, a precursor form of GFOR was accumulated. To assay the preGFOR for its NADP(H) content and enzymatic activity, it was purified from an overproducing strain. Using SDS-PAGE, the precursor subunit size was determined to approximately 45 kDa (compared with a 40 kDa subunit size for the mature GFOR subunit). The N-terminal amino acid sequence of the precursor was determined. The N-terminal residues of the GFOR matched with the signal sequence from the DNA sequence of the gene gfo . The precursor form of GFOR was enzymatically active and contained the cofactor NADP(H).  相似文献   

10.
Convergent evolution of enzyme active sites is not a rare phenomenon   总被引:1,自引:0,他引:1  
Since convergent evolution of enzyme active sites was first identified in serine proteases, other individual instances of this phenomenon have been documented. However, a systematic analysis assessing the frequency of this phenomenon across enzyme space is still lacking. This work uses the Query3d structural comparison algorithm to integrate for the first time detailed knowledge about catalytic residues, available through the Catalytic Site Atlas (CSA), with the evolutionary information provided by the Structural Classification of Proteins (SCOP) database. This study considers two modes of convergent evolution: (i) mechanistic analogues which are enzymes that use the same mechanism to perform related, but possibly different, reactions (considered here as sharing the first three digits of the EC number); and (ii) transformational analogues which catalyse exactly the same reaction (identical EC numbers), but may use different mechanisms. Mechanistic analogues were identified in 15% (26 out of 169) of the three-digit EC groups considered, showing that this phenomenon is not rare. Furthermore 11 of these groups also contain transformational analogues. The catalytic triad is the most widespread active site; the results of the structural comparison show that this mechanism, or variations thereof, is present in 23 superfamilies. Transformational analogues were identified for 45 of the 951 four-digit EC numbers present within the CSA and about half of these were also mechanistic analogues exhibiting convergence of their active sites. This analysis has also been extended to the whole Protein Data Bank to provide a complete and manually curated list of the all the transformational analogues whose structure is classified in SCOP. The results of this work show that the phenomenon of convergent evolution is not rare, especially when considering large enzymatic families.  相似文献   

11.
Entry of enveloped animal viruses into their host cells always depends on a step of membrane fusion triggered by conformational changes in viral envelope glycoproteins. Vesicular stomatitis virus (VSV) infection is mediated by virus spike glycoprotein G, which induces membrane fusion at the acidic environment of the endosomal compartment. In a previous work, we identified a specific sequence in the VSV G protein, comprising the residues 145-164, directly involved in membrane interaction and fusion. In the present work we studied the interaction of pep[145-164] with membranes using NMR to solve the structure of the peptide in two membrane-mimetic systems: SDS micelles and liposomes composed of phosphatidylcholine and phosphatidylserine (PC:PS vesicles). The presence of medium-range NOEs showed that the peptide has a tendency to form N- and C-terminal helical segments in the presence of SDS micelles. Analysis of the chemical shift index indicated helix-coil equilibrium for the C-terminal helix under all conditions studied. At pH 7.0, the N-terminal helix also displayed a helix-coil equilibrium when pep[145-164] was free in solution or in the presence of PC:PS. Remarkably, at the fusogenic pH, the region of the N-terminal helix in the presence of SDS or PC:PS presented a third conformational species that was in equilibrium with the helix and random coil. The N-terminal helix content decreases pH and the minor beta-structured conformation becomes more prevalent at the fusogenic pH. These data point to a beta-conformation as the fusogenic active structure-which is in agreement with the X-ray structure, which shows a beta-hairpin for the region corresponding to pep[145-164].  相似文献   

12.
Zoocin A is a streptococcolytic enzyme produced by Streptococcus equi subsp. zooepidemicus 4881 that has an unknown site of action on the peptidoglycans of susceptible organisms. Analysis of a mutant strain in which the genes for zoocin A and resistance to zoocin A were inactivated revealed that this strain was more susceptible to beta-lactam antibiotics than the parental organism. Purified zoocin A had weak beta-lactamase activity, bound radioactive penicillin covalently, and its streptococcolytic activity was inhibited by penicillin. Thus, zoocin A is a penicillin-binding protein and presumably is a D-alanyl endopeptidase.  相似文献   

13.
Yeast glyoxalase I is a monomeric enzyme with two active sites   总被引:3,自引:0,他引:3  
The tertiary structure of the monomeric yeast glyoxalase I has been modeled based on the crystal structure of the dimeric human glyoxalase I and a sequence alignment of the two enzymes. The model suggests that yeast glyoxalase I has two active sites contained in a single polypeptide. To investigate this, a recombinant expression clone of yeast glyoxalase I was constructed for overproduction of the enzyme in Escherichia coli. Each putative active site was inactivated by site-directed mutagenesis. According to the alignment, glutamate 163 and glutamate 318 in yeast glyoxalase I correspond to glutamate 172 in human glyoxalase I, a Zn(II) ligand and proposed general base in the catalytic mechanism. The residues were each replaced by glutamine and a double mutant containing both mutations was also constructed. Steady-state kinetics and metal analyses of the recombinant enzymes corroborate that yeast glyoxalase I has two functional active sites. The activities of the catalytic sites seem to be somewhat different. The metal ions bound in the active sites are probably one Fe(II) and one Zn(II), but Mn(II) may replace Zn(II). Yeast glyoxalase I appears to be one of the few enzymes that are present as a single polypeptide with two active sites that catalyze the same reaction.  相似文献   

14.
15.
The PRL phosphatases, which constitute a subfamily of the protein tyrosine phosphatases (PTPs), are implicated in oncogenic and metastatic processes. Here, we report the crystal structure of human PRL-1 determined at 2.7A resolution. The crystal structure reveals the shallow active-site pocket with highly hydrophobic character. A structural comparison with the previously determined NMR structure of PRL-3 exhibits significant differences in the active-site region. In the PRL-1 structure, a sulfate ion is bound to the active-site, providing stabilizing interactions to maintain the canonically found active conformation of PTPs, whereas the NMR structure exhibits an open conformation of the active-site. We also found that PRL-1 forms a trimer in the crystal and the trimer exists in the membrane fraction of cells, suggesting the possible biological regulation of PRL-1 activity by oligomerization. The detailed structural information on the active enzyme conformation and regulation of PRL-1 provides the structural basis for the development of potential inhibitors of PRL enzymes.  相似文献   

16.
The microbial degradation of the plant cell wall is a pivotal biological process that is of increasing industrial significance. One of the major plant structural polysaccharides is mannan, a beta-1,4-linked d-mannose polymer, which is hydrolyzed by endo- and exo-acting mannanases. The mechanisms by which the exo-acting enzymes target the chain ends of mannan and how galactose decorations influence activity are poorly understood. Here we report the crystal structure and biochemical properties of CjMan26C, a Cellvibrio japonicus GH26 mannanase. The exo-acting enzyme releases the disaccharide mannobiose from the nonreducing end of mannan and mannooligosaccharides, harnessing four mannose-binding subsites extending from -2 to +2. The structure of CjMan26C is very similar to that of the endo-acting C. japonicus mannanase CjMan26A. The exo-activity displayed by CjMan26C, however, reflects a subtle change in surface topography in which a four-residue extension of surface loop creates a steric block at the distal glycone -2 subsite. endo-Activity can be introduced into enzyme variants through truncation of an aspartate side chain, a component of a surface loop, or by removing both the aspartate and its flanking residues. The structure of catalytically competent CjMan26C, in complex with a decorated manno-oligosaccharide, reveals a predominantly unhydrolyzed substrate in an approximate (1)S(5) conformation. The complex structure helps to explain how the substrate "side chain" decorations greatly reduce the activity of the enzyme; the galactose side chain at the -1 subsite makes polar interactions with the aglycone mannose, possibly leading to suboptimal binding and impaired leaving group departure. This report reveals how subtle differences in the loops surrounding the active site of a glycoside hydrolase can lead to a change in the mode of action of the enzyme.  相似文献   

17.
Campos LA  Sancho J 《FEBS letters》2003,538(1-3):89-95
Pepsin is an aspartic protease that acts in food digestion in the mammal stomach. An optimal pH of around 2 allows pepsin to operate in its natural acidic environment, while at neutral pH the protein is denatured. Although the pH dependence of pepsin activity has been widely investigated since the 40s, a renewed interest in this protein has been fueled by its homology to the HIV and other aspartic proteases. Recently, an inactive pepsin conformation has been identified that accumulates at mildly acidic pH, whose structure and properties are largely unknown. In this paper, we analyse the conformation of pepsin at different pHs by a combination of spectroscopic techniques, and obtain a detailed characterisation of the intermediate. Our analysis indicates that it is the dominant conformation from pH 4 to 6.5. Interestingly, its near UV circular dichroism spectrum is identical to that of the native conformation that appears at lower pH values. In addition, we show that the intermediate binds the active site inhibitor pepstatin with a strength similar to that of the native conformation. Pepsin thus adopts, in the 6.5-4.0 pH interval, a native-like although catalytically inactive conformation. The possible role of this intermediate during pepsin transportation to the stomach lumen is discussed.  相似文献   

18.
The de novo biosynthesis of arginine in microorganisms and plants is accomplished via several enzymatic steps. The enzyme N-acetyl glutamate kinase (NAGK) catalyzes the phosphorylation of the γ-COO? group of N-acetyl-l-glutamate (NAG) by adenosine triphosphate (ATP) which is the second rate limiting step in arginine biosynthesis pathway. Here we report the crystal structure of putative N-acetyl glutamate kinase (NAGK) from Thermus thermophilus HB8 (TtNAGK) determined at 1.92 Å resolution. The structural analysis of TtNAGK suggests that the dimeric quaternary state of the enzyme and arginine insensitive nature are similar to mesophilic Escherichia coli NAGK. These features are significantly different from its thermophilic homolog Thermatoga maritima NAGK which is hexameric and arginine-sensitive. TtNAGK is devoid of its substrates but contains two sulfates at the active site. Very interestingly the active site of the enzyme adopts a conformation which is not completely open or closed and likely represents an intermediate stage in the catalytic cycle unlike its structural homologs, which all exist either in the open or closed conformation. Engineering arginine biosynthesis pathway enzymes for the production of l-arginine is an important industrial application. The structural comparison of TtNAGK with EcNAGK revealed the structural basis of thermostability of TtNAGK and this information could be very useful to generate mutants of NAGK with increased overall stability.  相似文献   

19.
The p21-activated kinases (PAKs) participate in cytoskeletal control networks, downstream of Rho-family GTPases. A structure of PAK1 in an autoregulated, "off" state showed that a regulatory region, N-terminal to the kinase domain, forces the latter into an inactive conformation, prevents phosphorylation of Thr423 in the activation loop, and promotes dimerization. We have now determined structures at 1.8 A resolution for the free PAK1 kinase domain, with a mutation in the active site that blocks enzymatic activity, and for the same domain with a "phosphomimetic" mutation in the activation loop. The two very similar structures show that even in the absence of a phosphorylated Thr423, the kinase has an essentially active conformation. When Cdc42 binds the regulatory region and dissociates the dimer, PAK1 will be in an "intermediate-active" state, with a capacity to phosphorylate itself or other substrates even prior to modification of its activation loop.  相似文献   

20.
Mass spectrometric analysis of a prion protein (PrP)-containing complex isolated from ram cauda epididymal fluid revealed a protein that showed homology to a carboxylesterase-like protein previously identified in cat urine (cauxin). Using anti-cauxin antibodies, immunoreactive bands were detected in corpus and cauda epididymal fluid from all mammals tested (ram, boar, mouse, and cat). In the ram, the protein was also present in seminal fluid but not found to be associated with sperm. The bands reacting with the anti-cauxin antibody coincided with those having esterase activity in a zymographic assay and its levels paralleled the esterase activity of native epididymal fluids. A partial nucleotide sequence of 1143 bp, corresponding to 380 amino acids, was obtained by RT-PCR amplification from total RNA from the corpus epididymis (zone 6). The deduced protein sequence shows a high degree of homology (up to 90%) with the different cauxin proteins found in databases but only up to 60% with other known carboxylesterases. By PCR, strong mRNA expression was found in the corpus and cauda epididymis, while the testis, kidney, and caput epididymis had low expression. No mRNA was detected in the lung, heart, or liver. These data demonstrate that an epididymal form of the cauxin enzyme is secreted into mammalian epididymal fluid. In the ram, it is associated with a high molecular-weight PrP-associated complex and may be responsible for the majority of the esterase activity in the cauda epididymal fluid of this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号