首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Plant volatiles play important roles in signalling between plants and insects, but their role in communication among plants remains controversial. Previous research on plant–plant communication has focused on interactions between neighbouring plants, largely overlooking the possibility that volatiles function as signals within plants. Here, we show that volatiles released by herbivore-wounded leaves of hybrid poplar ( Populus deltoides  ×  nigra ) prime defences in adjacent leaves with little or no vascular connection to the wounded leaves. Undamaged leaves exposed to volatiles from wounded leaves on the same stem had elevated defensive responses to feeding by gypsy moth larvae ( Lymantria dispar L.) compared with leaves that did not receive volatiles. Volatile signals may facilitate systemic responses to localized herbivory even when the transmission of internal signals is constrained by vascular connectivity. Self-signalling via volatiles is consistent with the short distances over which plant response to airborne cues has been observed to occur and has apparent benefits for emitting plants, suggesting that within-plant signalling may have equal or greater ecological significance than signalling between plants.  相似文献   

3.
Jasmonate-regulated Arabidopsis stress signalling network   总被引:12,自引:0,他引:12  
  相似文献   

4.
The mitogen-activated and stress-activated protein kinases transduce signals from plasma membrane signalling machinery into the nucleus to modulate gene expression. By regulating the genomic response to environmental cues (growth factors, stresses) these pathways determine whether a cell re-enters the cell cycle, undergoes cell cycle arrest, senescence or apoptosis. We are particularly interested in how these pathways integrate with each other, and interact with the cell cycle machinery to achieve these discrete biological responses.  相似文献   

5.
This review compares endophytic symbiotic and pathogenic root–microbe interactions and examines how the development of root structures elicited by various micro-organisms could have evolved by recruitment of existing plant developmental pathways. Plants are exposed to a multitude of soil micro-organisms which affect root development and performance. Their interactions can be of symbiotic and pathogenic nature, both of which can result in the formation of new root structures – how does the plant regulate the different outcomes of interactions with microbes? The idea that pathways activated in plant by micro-organisms could have been `hijacked' from plant developmental pathways is not new, it was essentially proposed by P. S. Nutman in 1948, but at that time, the molecular evidence to support that hypothesis was missing. Genetic evidence for overlaps between different plant–microbe interactions have previously been examined. This review compares the physiological and molecular plant responses to symbiotic rhizobia with those to arbuscular mycorrhizal fungi, pathogenic nematodes and the development of lateral roots and summarises evidence from both molecular and cellular studies for substantial overlaps in the signalling pathways underlying root–micro-organism interactions. A more difficult question has been why plant responses to micro-organisms are so similar, even though the outcomes are very different. Possible hypotheses for divergence of signalling pathways and future approaches to test these ideas are presented.  相似文献   

6.
Sensing and signalling during plant flooding.   总被引:10,自引:0,他引:10  
Flooding is a major issue for plant survival in many regions of the world. Soil inundation induces multiple plant physiological dysfunctions, leading to a decline in plant growth and survival capacity. Some of the most important effects of flooding include a reduction in water and nutrient uptake and a decrease in metabolism. Prolonged soil flooding will also ultimately lead to anoxia conditions with profound effects on plant respiratory metabolism. However, it is still unclear which signals and which sensory mechanisms are responsible for triggering the plant response. In contrast, it is now established that flooding responses are typified by enhanced ethylene production, accompanied by a signalling cascade which includes a network of hormones and other common secondary signalling molecules. In recent years, there has been significant progress in the understanding of some of the signalling pathways involved during plant stress responses. Here, we present an overview of recent hypothesises on sensing and signalling during plant flooding.  相似文献   

7.
Plants sense and respond to endogenous signals and environmental cues to ensure optimal growth and development. Plant cells must integrate the myriad transduction events into a comprehensive network of signalling pathways and responses. The phytohormone auxin occupies a central place within this transduction network, frequently acting in conjunction with other signals, to co-ordinately regulate cellular processes such as division, elongation and differentiation. As a non-cell autonomous signal, auxin also interacts with other signalling pathways to regulate inter-cellular developmental processes. As part of this especially themed edition of Plant Molecular Biology, we will review examples of `cross-talk' between auxin and other signalling pathways. Given the current state of knowledge, we have deliberately focused our efforts reviewing auxin interactions with other phytohormone and light signalling pathways. We conclude by discussing how new genomic approaches and the Arabidopsis genome sequence are likely to impact this area of research in the future.  相似文献   

8.
9.
Lipids are the primary form of energy storage and a major component of plasma membranes, which form the interface between the cell and the extracellular environment. Several lipids — including phosphoinositide, phosphatidic acid, sphingolipids, lysophospholipids, oxylipins, and free fatty acids — also serve as substrates for the generation of signalling molecules. Abiotic stresses, such as drought and temperature stress, are known to affect plant growth. In addition, abiotic stresses can activate certain lipid-dependent signalling pathways that control the expression of stress-responsive genes and contribute to plant stress adaptation. Many studies have focused either on the enzymatic production and metabolism of lipids, or on the mechanisms of abiotic stress response. However, there is little information regarding the roles of plant lipids in plant responses to abiotic stress. In this review, we describe the metabolism of plant lipids and discuss their involvement in plant responses to abiotic stress. As such, this review provides crucial background for further research on the interactions between plant lipids and abiotic stress.  相似文献   

10.
Cellular information processing requires the coordinated activity of a large network of intracellular signalling pathways. Cross-talk between pathways provides for complex non-linear responses to combinations of stimuli, but little is known about the density of these interactions in any specific cell. Here, we have analysed a large-scale survey of pathway interactions carried out by the Alliance for Cellular Signalling (AfCS) in RAW 264.7 macrophages. Twenty-two receptor-specific ligands were studied, both alone and in all pairwise combinations, for Ca2+ mobilization, cAMP synthesis, phosphorylation of many signalling proteins and for cytokine production. A large number of non-additive interactions are evident that are consistent with known mechanisms of cross-talk between pathways, but many novel interactions are also revealed. A global analysis of cross-talk suggests that many external stimuli converge on a relatively small number of interaction mechanisms to provide for context-dependent signalling.  相似文献   

11.
12.
During their evolution, plants have acquired diverse capabilities to sense their environment and modify their growth and development as required. The versatile utilization of solar radiation for photosynthesis as well as a signal to coordinate developmental responses to the environment is an excellent example of such a capability. Specific light quality inputs are converted to developmental outputs mainly through hormonal signalling pathways. Accordingly, extensive interactions between light and the signalling pathways of every known plant hormone have been uncovered in recent years. One such interaction that has received recent attention and forms the focus of this review occurs between light and the signalling pathway of the jasmonate hormone with roles in regulating plant defence and development. Here the recent research that revealed new mechanistic insights into how plants might integrate light and jasmonate signals to modify their growth and development, especially when defending themselves from either pests, pathogens, or encroaching neighbours, is discussed.  相似文献   

13.
14.
Current evidences support a central role in signal transduction and turgor regulation for plasma membrane anion channels. The present review focuses on these channels as putative targets for plant hormones. Various approaches have been developed to investigate the contribution of anion channels to hormone responses at the level of integrated responses of intact cells or organs, or to study directly the hormonal regulation of anion channels at the membrane level. These approaches are mainly discussed for two biological models, stomatal guard cells and hypocotyl or coleoptile cells, both cell types being equipped with several types of anion channels. Membrane potential and anion flux measurements, together with pharmacological studies using anion channel inhibitors, reveal that anion permeabilities are involved in the responses of guard cells or hypocotyl cells to abscisic acid and/or auxin. In a few instances, a modulation of anion channel activity can be detected in voltage-clamp or patch-clamp experiments. From these data and other studies, anion channel activation seems to constitute a very early step in many transduction cascades within response pathways to endogenous hormonal signals, but also to abiotic and biotic environmental signals such as light or molecules involved in plant-pathogen interactions. This points to plasma membrane anion channels as major actors in plant signalling networks.  相似文献   

15.
16.
17.
18.
Visible light is the basic energetic driver of plant biomass production through photosynthesis. The constantly fluctuating availability of light and other environmental factors means that the photosynthetic apparatus must be able to operate in a dynamic fashion appropriate to the prevailing conditions. Dynamic regulation is achieved through an array of homeostatic control mechanisms that both respond to and influence cellular energy and reductant status. In addition, light availability and quality are continuously monitored by plants through photoreceptors. Outside the laboratory growth room, it is within the context of complex changes in energy and signalling status that plants must regulate pathways to deal with biotic challenges, and this can be influenced by changes in the highly energetic photosynthetic pathways and in the turnover of the photosynthetic machinery. Because of this, defence responses are neither simple nor easily predictable, but rather conditioned by the nutritional and signalling status of the plant cell. This review discusses recent data and emerging concepts of how recognized defence pathways interact with and are influenced by light-dependent processes. Particular emphasis is placed on the potential roles of the chloroplast, photorespiration, and photoreceptor-associated pathways in regulating the outcome of interactions between plants and pathogenic organisms.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号