首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In contrast to beta(1)-adrenoreceptor (beta(1)-AR) signaling, beta(2)-AR stimulation in cardiomyocytes augments L-type Ca(2+) current in a cAMP-dependent protein kinase (PKA)-dependent manner but fails to phosphorylate phospholamban, indicating that the beta(2)-AR-induced cAMP/PKA signaling is highly localized. Here we show that inhibition of G(i) proteins with pertussis toxin (PTX) permits a full phospholamban phosphorylation and a de novo relaxant effect following beta(2)-AR stimulation, converting the localized beta(2)-AR signaling to a global signaling mode similar to that of beta(1)-AR. Thus, beta(2)-AR-mediated G(i) activation constricts the cAMP signaling to the sarcolemma. PTX treatment did not significantly affect the beta(2)-AR-stimulated PKA activation. Similar to G(i) inhibition, a protein phosphatase inhibitor, calyculin A (3 x 10(-8) M), selectively enhanced the beta(2)-AR but not beta(1)-AR-mediated contractile response. Furthermore, PTX and calyculin A treatment had a non-additive potentiating effect on the beta(2)-AR-mediated positive inotropic response. These results suggest that the interaction of the beta(2)-AR-coupled G(i) and G(s) signaling affects the local balance of protein kinase and phosphatase activities. Thus, the additional coupling of beta(2)-AR to G(i) proteins is a key factor causing the compartmentalization of beta(2)-AR-induced cAMP signaling.  相似文献   

2.
3.
Gong K  Li Z  Xu M  Du J  Lv Z  Zhang Y 《The Journal of biological chemistry》2008,283(43):29028-29036
A growing body of evidence has demonstrated that p38 mitogen-activated protein kinase (MAPK) has a crucial role in various physiological and pathological processes mediated by beta(2)-adrenergic receptors (beta(2)-ARs). However, the detailed mechanism of beta(2)-ARs-induced p38 MAPK activation has not yet been fully defined. The present study demonstrates a novel kinetic model of p38 MAPK activation induced by beta(2)-ARs in human embryonic kidney 293A cells. The beta(2)-AR agonist isoproterenol induced a time-dependent biphasic phosphorylation of p38 MAPK: the early phase peaked at 10 min, and was followed by a delayed phase that appeared at 90 min and was sustained for 6 h. Interestingly, inhibition of the cAMP/protein kinase A (PKA) pathway failed to affect the early phosphorylation but abolished the delayed activation. By contrast, silencing of beta-arrestin-1 expression by small interfering RNA inhibited the early phase activation of p38 MAPK. Furthermore, the NADPH oxidase complex is a downstream target of beta-arrestin-1, as evidenced by the fact that isoproterenol-induced Rac1 activation was also suppressed by beta-arrestin-1 knockdown. In addition, early phase activation of p38 MAPK was prevented by inactivation of Rac1 and NADPH oxidase by pharmacological inhibitors, overexpression of a dominant negative mutant of Rac1, and p47(phox) knockdown by RNA interference. Of note, we demonstrated that only early activation of p38 MAPK is involved in isoproterenol-induced F-actin rearrangement. Collectively, these data suggest that the classic cAMP/PKA pathway is responsible for the delayed activation, whereas a beta-arrestin-1/Rac1/NADPH oxidase-dependent signaling is a heretofore unrecognized mechanism for beta(2)-AR-mediated early activation of p38 MAPK.  相似文献   

4.
Endothelin-1 (ET1) is a vasoactive peptide that stimulates hypertrophy of vascular smooth muscle cells (VSMC) through diverse signaling pathways mediated by G(q)/G(i)/G(13) heterotrimeric G proteins. We have found that ET1 stimulates the activity of cAMP-dependent protein kinase (PKA) in VSMC as profoundly as the G(s)-linked beta-adrenergic agonist, isoproterenol (ISO), but in a transient manner. PKA activation by ET1 was mediated by type-A ET1 receptors (ETA) and recruited an autocrine signaling mechanism distinct from that of ISO, involving G(i)-coupled betagamma subunits of heterotrimeric G proteins, extracellular signal-regulated kinases ERK1/2, cyclooxygenase COX-1 (but not COX-2) and prostacyclin receptors. In the functional studies, inhibition of PKA or COX-1 attenuated ET1-induced VSMC hypertrophy, suggesting the positive role of PKA in this response to ET1. Furthermore, we found that ET1 stimulates a Gbetagamma-mediated, PKA-dependent phosphorylation and inactivation of glycogen synthase kinase-3 (GSK3), an enzyme that regulates cell growth. Together, this study describes that (i) PKA can be transiently activated by G(i)-coupled agonists such as ET1 by an autocrine mechanism involving Gbetagamma/calcium/ERK/COX-1/prostacyclin signaling, and (ii) this PKA activation promotes VSMC hypertrophy, at least in part, through PKA-dependent phosphorylation and inhibition of GSK3.  相似文献   

5.
We have recently reported that arachidonic acid mediates beta(2)-adrenergic receptor (AR) stimulation of [Ca(2+)](i) cycling and cell contraction in embryonic chick ventricular cardiomyocytes (Pavoine, C., Magne, S., Sauvadet, A., and Pecker, F. (1999) J. Biol. Chem. 274, 628-637). In the present work, we demonstrate that beta(2)-AR agonists trigger arachidonic acid release via translocation and activation of cytosolic phospholipase A(2) (cPLA(2)) and increase caffeine-releasable Ca(2+) pools from Fura-2-loaded cells. We also show that beta(2)-AR agonists trigger a rapid and dose-dependent phosphorylation of both p38 and p42/44 MAPKs. Translocation and activation of cPLA(2), as well as Ca(2+) accumulation in sarcoplasmic reticulum stores sensitive to caffeine and amplification of [Ca(2+)](i) cycling in response to beta(2)-AR agonists, were blocked by inhibitors of the p38 or p42/44 MAPK pathway (SB203580 and PD98059, respectively), suggesting a role of both MAPK subtypes in beta(2)-AR stimulation. In contrast, beta(1)-AR stimulation of [Ca(2+)](i) cycling was rather limited by the MAPKs, clearly proving the divergence between beta(2)-AR and beta(1)-AR signaling systems. This study presents the first evidence for the coupling of beta(2)-AR to cardiac cPLA(2) and points out the key role of the MAPK pathway in the intracellular signaling elicited by positive inotropic beta(2)-AR agonists in heart.  相似文献   

6.
Heterotrimeric G protein G(q) stimulates the activity of p38 mitogen-activated protein kinase (MAPK) in mammalian cells. To investigate the signaling mechanism whereby alpha and betagamma subunits of G(q) activate p38 MAPK, we introduced kinase-deficient mutants of mitogen-activated protein kinase kinase 3 (MKK3), MKK4, and MKK6 into human embryonal kidney 293 cells. The activation of p38 MAPK by Galpha(q) and Gbetagamma was blocked by kinase-deficient MKK3 and MKK6 but not by kinase-deficient MKK4. In addition, Galpha(q) and Gbetagamma stimulated MKK3 and MKK6 activities. The MKK3 and MKK6 activations by Galpha(q), but not by Gbetagamma, were dependent on phospholipase C and c-Src. Galpha(q) stimulated MKK3 in a Rac- and Cdc42-dependent manner and MKK6 in a Rho-dependent manner. On the other hand, Gbetagamma activated MKK3 in a Rac- and Cdc42-dependent manner and MKK6 in a Rho-, Rac-, and Cdc42-dependent manner. Gbetagamma-induced MKK3 and MKK6 activations were dependent on a tyrosine kinase other than c-Src. These results suggest that Galpha(q) and Gbetagamma stimulate the activity of p38 MAPK by regulating MKK3 and MKK6 through parallel signaling pathways.  相似文献   

7.
Liu F  He K  Yang X  Xu N  Liang Z  Xu M  Zhao X  Han Q  Zhang Y 《PloS one》2011,6(6):e21520
G protein-coupled receptors (GPCRs) activate mitogen-activated protein kinases through a number of distinct pathways in cells. Increasing evidence has suggested that endosomal signaling has an important role in receptor signal transduction. Here we investigated the involvement of endocytosis in α(1A)-adrenergic receptor (α(1A)-AR)-induced activation of extracellular signal-regulated kinase 1/2 (ERK1/2). Agonist-mediated endocytic traffic of α(1A)-AR was assessed by real-time imaging of living, stably transfected human embryonic kidney 293A cells (HEK-293A). α(1A)-AR was internalized dynamically in cells with agonist stimulation, and actin filaments regulated the initial trafficking of α(1A)-AR. α(1A)-AR-induced activation of ERK1/2 but not p38 MAPK was sensitive to disruption of endocytosis, as demonstrated by 4°C chilling, dynamin mutation and treatment with cytochalasin D (actin depolymerizing agent). Activation of protein kinase C (PKC) and C-Raf by α(1A)-AR was not affected by 4°C chilling or cytochalasin D treatment. U73122 (a phospholipase C [PLC] inhibitor) and Ro 31-8220 (a PKC inhibitor) inhibited α(1B)-AR- but not α(1A)-AR-induced ERK1/2 activation. These data suggest that the endocytic pathway is involved in α(1A)-AR-induced ERK1/2 activation, which is independent of G(q)/PLC/PKC signaling.  相似文献   

8.
Stimulation of the β2-adrenergic receptor (β2AR) on a CD40L/interleukin-4-activated B lymphocyte increases the level of immunoglobulin E (IgE) in a protein kinase A (PKA)- and p38 mitogen-activated protein kinase (MAPK)-dependent manner. However, the mechanism by which β2AR stimulation mediates the increase in the level of p38 MAPK activation has remained unclear. Here we show that the β2AR-induced increase in p38 MAPK activation occurred via a hematopoietic protein tyrosine phosphatase (HePTP)-mediated cross talk between PKA and p38 MAPK. β2AR agonists, cAMP-elevating agents, and PKA inhibitors were used to show that β2AR stimulation resulted in a PKA-dependent increase in p38 MAPK phosphorylation. Pharmacological agents and gene-deficient mice revealed that p38 MAPK phosphorylation was regulated by the G-stimulatory (Gs)/cAMP/PKA pathway independently of the G-inhibitory or β-arrestin-2 pathways. Coimmunoprecipitation and Western blot analysis showed that HePTP was phosphorylated in a PKA-dependent manner, which inactivated HePTP and allowed for increased free p38 MAPK to be phosphorylated by the MAPK cascade that was activated by CD40L. HePTP short hairpin RNA confirmed that HePTP played a role in regulating the level of p38 MAPK phosphorylation in a B cell. Thus, β2AR stimulation on a B cell phosphorylates and inactivates HePTP in a Gs/cAMP/PKA-dependent manner to release bound p38 MAPK, making more available for phosphorylation and subsequent IgE regulation.  相似文献   

9.
Oxidation of membrane cholesterol is a hallmark of many pathological conditions, including cardiovascular diseases. Cholesterol could be oxidized in a result of free radical and enzymatic reactions. Here, we studied the effect of cholesterol oxidation by cholesterol oxidase (ChO) on responses to β-AR stimulation in isolated mouse atria. Acute exposure to ChO led to partial cholesterol oxidation without a significant change in atrial membrane cholesterol content. Pretreatment with ChO itself did not affect contractions and Ca2+ transient amplitude. However, cholesterol oxidation markedly suppressed β-AR-mediated increase in contractility and Ca2+ transient as well as NO levels. At the same time, ChO markedly facilitated β-AR-induced reactive oxygen species (ROS) production. Antioxidant and protein kinase C inhibitor prevented the depressant action of ChO on ISO-dependent contractility, Ca2+ transient and NO production. Similar effects had a selective β2-AR antagonist, which also suppressed the increase in ROS levels after ChO pretreatment. These results suggest that membrane cholesterol oxidation enhances β2-AR-dependent elevation of ROS production, leading to suppression of β-AR-mediated increase in contractility, Ca2+ transient and NO synthesis in mice atria. The oxidative cholesterol modification could contribute to disturbance in β-AR signaling in pathological conditions.  相似文献   

10.
The possible involvement of different kinases in the alpha(1)-adrenoreceptor (AR)-mediated positive inotropic effect (PIE) was investigated in rat papillary muscle and compared with beta-AR-, endothelin receptor- and phorbol ester-induced changes in contractility. The alpha(1)-AR-induced PIE was not reduced by the inhibitors of protein kinase C (PKC), MAPK (ERK and p38), phosphatidyl inositol 3-kinase, or calmodulin kinase II. However, PKC inhibition attenuated the effect of phorbol 12-myristate 13-acetate (PMA) on contractility. alpha(1)-AR-induced PIE was reduced by approximately 90% during inhibition of myosin light chain kinase (MLCK) by 1-(5-chloronaphthalene-1-sulfonyl)1H-hexahydro-1,4-diazepine (ML-9). Endothelin-induced PIE was also reduced by ML-9, but ML-9 had no effect on beta-AR-induced PIE. The Rho kinase inhibitor Y-27632 also reduced the alpha(1)-AR-induced PIE. The alpha(1)-AR-induced PIE in muscle strips from explanted failing human hearts was also sensitive to MLCK inhibition. alpha(1)-AR induced a modest increase in (32)P incorporation into myosin light chain in isolated rat cardiomyocytes. This effect was eliminated by ML-9. The PIE of alpha(1)-AR stimulation seems to be dependent on MLCK phosphorylation.  相似文献   

11.
G protein-activated inwardly rectifying K(+) (GIRK) channels, expressed in atrial myocytes, various neurons, and endocrine cells, represent the paradigmatic target of beta gamma subunits released from activated heterotrimeric G proteins. These channels contribute to physiological slowing of cardiac frequency and synaptic inhibition. They are activated by beta gamma dimers released upon stimulation of receptors coupled to pertussis toxin-sensitive G proteins (G(i/o)), whereas beta gamma released from G(s) do not converge on the channel subunits. This is in conflict with the finding that dimeric combinations of various beta and gamma subunits can activate GIRK channels with little specificity. In the present study, we have overexpressed the major subtypes of cardiac beta-adrenergic receptors (beta(1)-AR and beta(2)-AR) in atrial myocytes by transient transfection. Whereas in native cells beta-adrenergic stimulation with isoproterenol failed to induce measurable GIRK current, robust currents were recorded from myocytes overexpressing either beta(1)-AR or beta(2)-AR. Whereas the beta(2)-AR-induced current showed the same sensitivity to pertussis toxin as the current evoked by the endogenous G(i/o)-coupled muscarinic M(2) receptor, isoproterenol-activated currents were insensitive to pertussis toxin treatment in beta(1)-AR-overexpressing myocytes. In contrast to a recent publication (Leaney, J. L., Milligan, G., and Tinker, A. (2000) J. Biol. Chem. 275, 921-929), sizable GIRK currents could also be activated by isoproterenol when the signaling pathway was reconstituted by transient transfection in two different standard cell lines (Chinese hamster ovary and HEK293). These results demonstrate that specificity of receptor-G protein signaling can be disrupted by overexpression of receptors. Moreover, the alpha subunit of heterotrimeric G proteins does not confer specificity to G beta gamma-mediated signaling.  相似文献   

12.
Cardiac-specific overexpression of the human beta(2)-adrenergic receptor (AR) in transgenic mice (TG4) enhances basal cardiac function due to ligand-independent spontaneous beta(2)-AR activation. However, agonist-mediated stimulation of either beta(1)-AR or beta(2)-AR fails to further enhance contractility in TG4 ventricular myocytes. Although the lack of beta(2)-AR response has been ascribed to an efficient coupling of the receptor to pertussis toxin-sensitive G(i) proteins in addition to G(s), the contractile response to beta(1)-AR stimulation by norepinephrine and an alpha(1)-adrenergic antagonist prazosin is not restored by pertussis toxin treatment despite a G(i) protein elevation of 1.7-fold in TG4 hearts. Since beta-adrenergic receptor kinase, betaARK1, activity remains unaltered, the unresponsiveness of beta(1)-AR is not caused by betaARK1-mediated receptor desensitization. In contrast, pre-incubation of cells with anti-adrenergic reagents such as muscarinic receptor agonist, carbachol (10(-5)m), or a beta(2)-AR inverse agonist, ICI 118,551 (5 x 10(-7)m), to abolish spontaneous beta(2)-AR signaling, both reduce the base-line cAMP and contractility and, surprisingly, restore the beta(1)-AR contractile response. The "rescued" contractile response is completely reversed by a beta(1)-AR antagonist, CGP 20712A. Furthermore, these results from the transgenic animals are corroborated by in vitro acute gene manipulation in cultured wild type adult mouse ventricular myocytes. Adenovirus-directed overexpression of the human beta(2)-AR results in elevated base-line cAMP and contraction associated with a marked attenuation of beta(1)-AR response; carbachol pretreatment fully revives the diminished beta(1)-AR contractile response. Thus, we conclude that constitutive beta(2)-AR activation induces a heterologous desensitization of beta(1)-ARs independent of betaARK1 and G(i) proteins; suppression of the constitutive beta(2)-AR signaling by either a beta(2)-AR inverse agonist or stimulation of the muscarinic receptor rescues the beta(1)-ARs from desensitization, permitting agonist-induced contractile response.  相似文献   

13.
Differences in energy metabolism during beta(1)- and beta(2)-adrenergic receptor (AR) stimulation have been shown to translate to differences in the elicited functional responses. It has been suggested that differential access to glycogen during beta(1)- compared with beta(2)-AR stimulation may influence the peak functional response and modulation of the response during sustained adrenergic stimulation. Interleaved (13)C- and (31)P-NMR spectroscopy was used during beta(1)- and beta(2)-AR stimulation at matched peak workload (2.5 times baseline) in the isolated perfused rat heart to monitor glycogen levels, phosphorylation potential, and intracellular pH. Simultaneous measurements of left ventricular (LV) function [LV developed pressure (LVDP)], heart rate (HR), and rate-pressure product (RPP = LVDP x HR) were also performed. The heart was perfused under both substrate-free (SF) conditions and with exogenous glucose (G). The greater glycogenolysis was observed during beta(1)- than beta(2)-AR stimulation with G (54% vs. 38% reduction, P = 0.006) and SF (92% vs. 79% reduction, P = 0.04) perfusions. The greater beta(1)-AR-mediated glycogenolysis was correlated with greater ability to sustain the initial contractile response. However, with SF perfusion, the duration of this ability was limited: excessive early glycogen depletion caused an earlier decline in LVDP and phosphorylation potential during beta(1)- than beta(2)-AR stimulation. Therefore, endogenous glycogen stores are depleted earlier and to a greater extent, despite a slightly weaker overall inotropic response, during beta(1)- than beta(2)-AR stimulation. These findings are consistent with beta(1)-AR-specific PKA-dependent glycogen phosphorylase kinase signaling.  相似文献   

14.
Stimulation of cardiac beta-adrenergic receptors (beta-AR) activates both the G(s)- and G(i)-coupled signaling cascades, including the phosphoinositide 3 kinase (PI3K) pathway, that have important physiological implications. Multiple isoforms of PI3K exist in the heart. The goals of this study were to examine the intracellular signaling pathways linking beta-AR to PI3K and to identify the PI3K isoform mediating this transactivation in a cardiac context. Acute beta-AR stimulation with isoproterenol resulted in increased tyrosine kinase-associated PI3K activity and phosphorylation of Akt and p70S6K in H9c2 cardiomyocytes. Cotreatment with ICI-118,551, but not CGP-20712, abolished the increase in PI3K activity, suggesting a beta(2)-AR-mediated event. PI3K activation was also abrogated by cotreatment with pertussis toxin, 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolol[3,4-d]pyrimidine (PP2, a selective Src-family tyrosine kinases inhibitor), or AG-1296 [selective platelet-derived growth factor receptor (PDGFR) inhibitor] but not with an inhibitor for protein kinase A, protein kinase C, Ras, adenylyl cyclase, epidermal growth factor receptor, or insulin-like growth factor-1 receptor. beta-AR stimulation induced an increase in tyrosine phosphorylation of PDGFR, which was abolished by inhibition of Src either by PP2 or small interfering RNA. Moreover, H9c2 cardiomyocytes stably transfected with a vector expressing a Gbetagamma sequestrant peptide derived from the COOH-terminus of beta-AR kinase-1 failed to activate PI3K after beta-AR stimulation, suggesting Gbetagamma is required for the transactivation. Furthermore, acute beta-AR stimulation in vivo resulted in increases in PDGFR-associated PI3K and PI3Kalpha isoform activities but not the activities of other isoforms (PI3Kbeta, -delta, -gamma) in adult mouse heart. Taken together, these data provide in vitro and in vivo evidence for a novel mechanism of beta-AR-mediated transactivation of cardiac PI3Kalpha via sequential involvement of Galpha(i)/Gbetagamma, Src, and PDGFR.  相似文献   

15.
We have recently demonstrated that in human heart, beta2-adrenergic receptors (beta2-ARs) are biochemically coupled not only to the classical adenylyl cyclase (AC) pathway but also to the cytosolic phospholipase A2 (cPLA2) pathway (Pavoine, C., Behforouz, N., Gauthier, C., Le Gouvello, S., Roudot-Thoraval, F., Martin, C. R., Pawlak, A., Feral, C., Defer, N., Houel, R., Magne, S., Amadou, A., Loisance, D., Duvaldestin, P., and Pecker, F. (2003) Mol. Pharmacol. 64, 1117-1125). In this study, using Fura-2-loaded cardiomyocytes isolated from adult rats, we showed that stimulation of beta2-ARs triggered an increase in the amplitude of electrically stimulated [Ca2+]i transients and contractions. This effect was abolished with the PKA inhibitor, H89, but greatly enhanced upon addition of the selective cPLA2 inhibitor, AACOCF3. The beta2-AR/cPLA2 inhibitory pathway involved G(i) and MSK1. Potentiation of beta2-AR/AC/PKA-induced Ca2+ responses by AACOCF3 did not rely on the enhancement of AC activity but was associated with eNOS phosphorylation (Ser1177) and L-NAME-sensitive NO production. This was correlated with PKA-dependent phosphorylation of PLB (Ser16). The constraint exerted by the beta2-AR/cPLA2 pathway on the beta2-AR/AC/PKA-induced Ca2+ responses required integrity of caveolar structures and was impaired by Filipin III treatment. Immunoblot analyses demonstrated zinterol-induced translocation of cPLA and its cosedimentation with MSK1, eNOS, PLB, and sarcoplasmic reticulum Ca2+ pump (SERCA) 2a in a low density caveolin-3-enriched membrane fraction. This inferred the gathering of beta2-AR signaling effectors around caveolae/sarcoplasmic reticulum (SR) functional platforms. Taken together, these data highlight cPLA as a cardiac beta2-AR signaling pathway that limits beta2-AR/AC/PKA-induced Ca2+ responses in adult rat cardiomyocytes through the impairment of eNOS activation and PLB phosphorylation.  相似文献   

16.
Chimeric G proteins made by replacing the COOH-terminal heptapeptide of G(alpha)q with the COOH-terminal heptapeptide of G(alpha)s or G(alpha)i were used to assess the relative coupling of beta(3)-adrenergic receptor (beta(3)-AR) splice variants (beta(3A) and beta(3B)) to G(alpha)s and G(alpha)i. The G(alpha)q/s and G(alpha)q/i chimeras transformed the response to receptor activation from regulation of adenylyl cyclase to mobilization of intracellular calcium (Ca(2+)(i)). Complementary high-throughput and single-cell approaches were used to evaluate agonist-induced coupling of the receptor to the G protein chimeras. In cells stably transformed with rat beta(3)-AR, transfected with the G protein chimeras, and evaluated using a scanning fluorometer, beta(3)-AR-induced coupling to G(alpha)q/s produced a rapid eightfold increase in Ca(2+)(i) followed by a slow decay to levels 25% above baseline. G(alpha)q/i also linked rat beta(3)-AR to mobilization of Ca(2+)(i) in a similar time- and agonist-dependent manner, but the net 2.5-fold increase in Ca(2+)(i) was only 30% of the response obtained with G(alpha)q/s. Activation of the rat beta(3)-AR also increased GTP binding to endogenous G(alpha)i threefold in membranes from CHO cells stably transformed with the receptor. A complementary single-cell imaging approach was used to assess the relative coupling of mouse beta(3A)- and beta(3B)-AR to G(alpha)i under conditions established to produce equivalent agonist-dependent coupling of the receptor splice variants to G(alpha)q/s and to increases in intracellular cAMP through endogenous G(alpha)s. The beta(3A)- and beta(3B)-AR coupled equivalently to G(alpha)q/i, but the temporal patterns of Ca(2+)(i) mobilization indicated that coupling was significantly less efficient than coupling to G(alpha)q/s. Collectively, these findings indicate less efficient but equivalent coupling of beta(3A)- and beta(3B)-AR to G(alpha)i vs. G(alpha)s and suggest that differential expression of the splice variants would not produce local differences in signaling networks linked to beta(3)-AR activation.  相似文献   

17.
Kanda Y  Nishio E  Kuroki Y  Mizuno K  Watanabe Y 《Life sciences》2001,68(17):1989-2000
Thrombin is a potent mitogen for vascular smooth muscle cells. However, the signaling pathways by which thrombin mediates its mitogenic response are not fully understood. The ERK (extracellular signal-regulated protein kinase) and JNK (c-Jun N-terminal kinase) members of the mitogen-activated protein kinase (MAPK) family are reported to be activated by thrombin. We have investigated the response to thrombin of another member of the MAPK family, p38 MAPK, which has been suggested to be activated by both stress and inflammatory stimuli in vascular smooth muscle cells. We found that thrombin induced time- and dose-dependent activation of p38 MAPK. Maximal stimulation of p38 MAPK was observed after a 10-min incubation with 1 unit ml(-1) thrombin. GF109203X, a protein kinase C inhibitor, and prolonged treatment with phorbol 12-myristate 13-acetate partially inhibited p38 MAPK activation. A tyrosine kinase inhibitor, genistein, also inhibited p38 MAPK activation in a dose-dependent manner. p38 MAPK activation was inhibited by overexpression of betaARK1ct (beta-adrenergic receptor kinase I C-terminal peptide). p38 MAPK activation was also inhibited by expression of dominant-negative Ras, not by dominant-negative Rac. We next examined the effect of a p38 MAPK inhibitor, SB203580, on thrombin-induced proliferation. SB203580 inhibited thrombin-induced DNA synthesis in a dose-dependent manner. These results suggest that thrombin activates p38 MAPK in a manner dependent on Gbetagamma, protein kinase C, a tyrosine kinase, and Ras, that p38 MAPK has a role in thrombin-induced mitogenic response in the cells.  相似文献   

18.
Understanding the mechanisms that regulate cell migration is important for devising novel therapies to control metastasis or enhance wound healing. Previously, we demonstrated that beta2-adrenergic receptor (beta2-AR) activation in keratinocytes inhibited their migration by decreasing the phosphorylation of a critical promigratory signaling component, the extracellular signal-related kinase (ERK). Here we demonstrate that beta2-AR-induced inhibition of migration is mediated by the activation of the serine/threonine phosphatase PP2A. Pretreating human keratinocytes with the PP2A inhibitor, okadaic acid, prevented the beta2-AR-induced inhibition of migration, either as isolated cells or as a confluent sheet of cells repairing an in vitro "wound" and also prevented the beta2-AR-induced reduction in ERK phosphorylation. Similar results were obtained with human corneal epithelial cells. In keratinocytes, immunoprecipitation studies revealed that beta2-AR activation resulted in the rapid association of beta2-AR with PP2A as well as a 37% increase in association of PP2A with ERK2. Finally, beta2-AR activation resulted in a rapid and transient 2-fold increase in PP2A activity. Thus, we provide the first evidence that beta2-AR activation in keratinocytes modulates migration via a novel pathway utilizing PP2A to alter the promigratory signaling cascade. Exploiting this pathway may result in novel therapeutic approaches for control of epithelial cell migration.  相似文献   

19.
While classically viewed as a prototypic G(s) and adenylyl cyclase-coupled G protein-coupled receptor, recent studies have indicated that some aspects of beta(2)-adrenergic receptor (beta(2)-AR) signaling are inhibited by pertussis toxin, indicating that they are mediated by G(i)/G(o) proteins. These signals include activation of ERK MAPKs and Akt activation, as well as hypertrophic and anti-apoptotic pathways in cardiac myocytes. Studies in cultured cells have suggested the hypothesis that protein kinase A (PKA)-mediated phosphorylation of the beta(2)-AR regulates its coupling specificity with respect to G(s) and G(i). Using a Chinese hamster ovary cell system, we show that mutant beta(2)-ARs with Ala substituted for Ser at consensus PKA sites stimulate robust cyclic AMP accumulation (G(s)) but are unable to activate ERK (G(i)). In contrast, Ser --> Asp mutants are dramatically impaired in their ability to activate adenylyl cyclase but are significantly more active than wild type receptor in activating ERK. Activation of adenylyl cyclase by wild type and Ser --> Ala mutant receptors is not altered by pertussis toxin, whereas adenylyl cyclase stimulated through the Ser --> Asp mutant is enhanced. Activation of ERK by wild type and Ser --> Asp receptors is inhibited by pertussis toxin. To further rigorously test the hypothesis, we utilized a completely reconstituted system of purified recombinant wild type and PKA phosphorylation site mutant beta(2)-ARs and heterotrimeric G(s) and G(i). G protein coupling was measured by receptor-mediated stimulation of GTPgammaS binding to the G protein. PKA-mediated phosphorylation of the beta(2)-AR significantly decreased its ability to couple to G(s), while simultaneously dramatically increasing its ability to couple to G(i). These results are reproduced when a purified recombinant Ser --> Asp mutant beta(2)-AR is tested, whereas the Ser --> Ala receptor resembles the unphosphorylated wild type. These results provide strong experimental support for the idea that PKA-mediated phosphorylation of the beta(2)-adrenergic receptor switches its predominant coupling from G(s) to G(i).  相似文献   

20.
Several extracellular stimuli mediated by G protein-coupled receptors activate c-fos promoter. Recently, we and other groups have demonstrated that signals from G protein-coupled receptors stimulate mitogen-activated protein kinases (MAPKs), extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 MAPK. The activation of these three MAPKs is mediated in part by the G protein betagamma subunit (Gbetagamma). In this study, we characterized the signals from Gbetagamma to c-fos promoter using transient transfection of c-fos luciferase into human embryonal kidney 293 cells. Activation of m2 muscarinic acetylcholine receptor and overexpression of Gbetagamma, but not constitutively active Galphai2, stimulated c-fos promoter activity. The c-fos promoter activation by m2 receptor and Gbetagamma was inhibited by beta-adrenergic receptor kinase C-terminal peptide (betaARKct), which functions as a Gbetagamma antagonist. MEK1 inhibitor PD98059 and kinase-deficient mutant of JNK kinase, but not p38 MAPK inhibitor SB203580, attenuated the m2 receptor- and Gbetagamma-induced c-fos promoter activation. Activated mutants of Ras and Rho stimulated the c-fos promoter activity, and the dominant negative mutants of Ras and Rho inhibited the c-fos promoter activation by m2 receptor and Gbetagamma. Moreover, c-fos promoter activation by m2 receptor, Gbetagamma, and active Rho, but not active Ras, was inhibited by botulinum C3 toxin. These data indicated that both Ras- and Rho-dependent signaling pathways are essential for c-fos promoter activation mediated by Gbetagamma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号