首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Interactions between subunit a and oligomeric subunit c are essential for the coupling of proton translocation to rotary motion in the ATP synthase. A pair of previously described mutants, R210Q/Q252R and P204T/R210Q/Q252R [L.P. Hatch, G.B. Cox and S.M. Howitt, The essential arginine residue at position 210 in the a subunit of the Escherichia coli ATP synthase can be transferred to position 252 with partial retention of activity, J. Biol. Chem. 270 (1995) 29407-29412] has been constructed and further analyzed. These mutants, in which the essential arginine of subunit a, R210, was switched with a conserved glutamine residue, Q252, are shown here to be capable of both ATP synthesis by oxidative phosphorylation, and ATP-driven proton translocation. In addition, lysine can replace the arginine at position 252 with partial retention of both activities. The pH dependence of ATP-driven proton translocation was determined after purification of mutant enzymes, and reconstitution into liposomes. Proton translocation by the lysine mutant, and to a lesser extent the arginine mutant, dropped off sharply above pH 7.5, consistent with the requirement for a positive charge during function. Finally, the rates of ATP synthesis and of ATP-driven proton translocation were completely inhibited by treatment with DCCD (N,N′-dicyclohexylcarbodiimide), while rates of ATP hydrolysis by the mutants were not significantly affected, indicating that DCCD modification disrupts the F1-Fo interface. The results suggest that minimal requirements for proton translocation by the ATP synthase include a positive charge in subunit a and a weak interface between subunit a and oligomeric subunit c.  相似文献   

2.
Leon Bae 《BBA》2009,1787(9):1129-177
Previous work has shown that the essential R210 of subunit a in the Escherichia coli ATP synthase can be switched with a conserved glutamine Q252 with retention of a moderate level of function, that a third mutation P204T enhances this function, and that the arginine Q252R can be replaced by lysine without total loss of activity. In this study, the roles of P204T and R210Q were examined. It was concluded that the threonine in P204T is not directly involved in function since its replacement by alanine did not significantly affect growth properties. Similarly, it was concluded that the glutamine in R210Q is not directly involved with function since replacement by glycine results in significantly enhanced function. Not only did the rate of ATP-driven proton translocation increase, but also the sensitivity of ATP hydrolysis to inhibition by N,N′-dicyclohexylcarbodiimide (DCCD) rose to more than 50%. Finally, mutations at position E219, a residue near the proton pathway, were used to test whether the Arginine-switched mutant uses the normal proton pathway. In a wild type background, the E219K mutant was confirmed to have greater function than the E219Q mutant, as has been shown previously. This same unusual result was observed in the triple mutant background, P204T/R210Q/Q252R, suggesting that the Arginine-switched mutants are using the normal proton pathway from the periplasm.  相似文献   

3.
Cassette site-directed mutagenesis was employed to generate mutations in the a subunit (uncB (a) gene) of F1F0ATP synthase. Using sequence homology with similar subunits of other F1F0ATP synthases as a guide, 20 mutations were targeted to a region of the a subunit thought to constitute part of the proton translocation mechanism. ATP-driven proton pumping activity is lost with the substitution of lys, ile, val, or glu for arginine 210. Substitution of val, leu, gln, or glu for asparagine 214 does not completely block proton conduction, however, replacement of asparagine 214 with histidine does reduce enzyme activity below that necessary for significant function. Two or three mutations were constructed in each of four nonpolar amino acids, leucine 207, leucine 211, alanine 217, and glycine 218. Certain specific mutations in these positions result in partial loss of F1F0ATP synthase activity, but only the substitution of arginine for alanine 217 reduces ATP-driven proton pumping activity to undetectable levels. It is concluded that of the six amino acids studied, only arginine 210 is an essential component of the proton translocation mechanism. Fractionation of cell-free extracts of a subunit mutation strains generally reveals normal amounts of F1 specifically bound to the particulate fraction. One possible exception is the arginine 210 to isoleucine mutation which results in somewhat elevated levels of free F1 detectable in the soluble fraction. For nearly all a subunit mutations, F1F0-mediated ATP hydrolysis activity remains sensitive to inhibition by dicyclohexylcarbodiimide in spite of the fact that the mutations block proton translocation.  相似文献   

4.
The interface between the c-subunit oligomer and the a subunit in the F0 sector of the ATP synthase is believed to form the core of the rotating motor powered by the protonic flow. Besides the essential cAsp61 and aArg210 residues (Escherichia coli numbering), a few other residues at this interface, although nonessential, show a high degree of conservation, among these aGlu219. The homologous residue aGlu210 in the ATP synthase of the photosynthetic bacterium Rhodobacter capsulatus has been substituted by a lysine. Inner membranes prepared from the mutant strain showed approximately half of the ATP synthesis activity when driven both by light and by acid-base transitions. As estimated with the ACMA assay, proton pumping rates in the inner membranes were also reduced to a similar extent in the mutant. The most striking impairment of ATP synthesis in the mutant, a decrease as low as 12 times as compared to the wild-type, was observed in the absence of a transmembrane electrical membrane potential (Delta(phi)) at low transmembrane pH difference (Delta(pH)). Therefore, the mutation seems to affect both the mechanism responsible for coupling F1 with proton translocation by F0, and the mechanism determining the relative contribution of Delta(pH) and Delta(phi) in driving ATP synthesis.  相似文献   

5.
Analysis of the atp operon from the thermoalkaliphilic Bacillus sp. TA2.A1 and comparison with other atp operons from alkaliphilic bacteria reveals the presence of a conserved lysine residue at position 180 (Bacillus sp. TA2.A1 numbering) within the a subunit of these F(1)F(o)-ATP synthases. We hypothesize that the basic nature of this residue is ideally suited to capture protons from the bulk phase at high pH. To test this hypothesis, a heterologous expression system for the ATP synthase from Bacillus sp. TA2.A1 (TA2F(1)F(o)) was developed in Escherichia coli DK8 (Deltaatp). Amino acid substitutions were made in the a subunit of TA2F(1)F(o) at position 180. Lysine (aK180) was substituted for the basic residues histidine (aK180H) or arginine (aK180R), and the uncharged residue glycine (aK180G). ATP synthesis experiments were performed in ADP plus P(i)-loaded right-side-out membrane vesicles energized by ascorbate-phenazine methosulfate. When these enzyme complexes were examined for their ability to perform ATP synthesis over the pH range from 7.0 to 10.0, TA2F(1)F(o) and aK180R showed a similar pH profile having optimum ATP synthesis rates at pH 9.0-9.5 with no measurable ATP synthesis at pH 7.5. Conversely, aK180H and aK180G showed maximal ATP synthesis at pH values 8.0 and 7.5, respectively. ATP synthesis under these conditions for all enzyme forms was sensitive to DCCD. These data strongly imply that amino acid residue Lys(180) is a specific adaptation within the a subunit of TA2F(1)F(o) to facilitate proton capture at high pH. At pH values near the pK(a) of Lys(180), the trapped protons readily dissociate to reach the subunit c binding sites, but this dissociation is impeded at neutral pH values causing either a blocking of the proposed H(+) channel and/or mechanism of proton translocation, and hence ATP synthesis is inhibited.  相似文献   

6.
Approximately 37 amino acids at the amino-terminus of subunit a of the Escherichia coli ATP synthase are found localized to the periplasm. Results indicate that a single amino acid substitution, H15D, disrupts assembly of subunit a and causes a loss of ATP synthase function. In this study, a conserved region of nine amino acids, 11-19, was initially mutagenized randomly, generating no mutants that could grow on succinate-minimal medium. Subsequent mutagenesis, confined to residues His(14), His(15), and Asn(17), indicated that constructs containing H15D were the most deleterious. Four single mutants were constructed and analyzed: H15A, H14D, H15A, and H15D. Only H15D was significantly impaired, with respect to ATP-driven proton translocation, passive proton permeability through F(o), and sensitivity of membrane-bound ATPase to DCCD. Immunoblot analysis indicated very low levels of subunit a from H15D. Cysteine mutations were constructed at positions 14, 15, 17, and 18. Residues 14, 15, and 17 were shown to be accessible in the periplasmic space, while residue 18 was not, indicating that this region was stably folded. While both His(14) and His(15) are conserved among a group of bacteria, results presented here indicate that they are not equivalent, and that a specific role for His(15) in the assembly or structure of the ATP synthase is supported.  相似文献   

7.
We have determined the nucleotide sequence of the URF A6L and ATPase 6 genes of the mitochondrial DNA of wild-type Chinese hamster ovary (CHO) cells and of two independently isolated, cytoplasmically inherited CHO mutant cell lines that are resistant to oligomycin, an inhibitor of the mitochondrial ATP synthase (ATPase) complex. Comparison of the nucleotide sequences of the mutants with that of their parental cell line revealed a single nucleotide difference, a G-to-A transition at nucleotide 433 of the ATPase 6 gene. This single base pair change predicts a nonconservative amino acid change, with a glutamic acid residue being replaced by a lysine residue at amino acid 145 of the ATPase 6 gene product in the mutants. This glutamic acid residue and several others in the surrounding amino acid sequence are conserved among all species examined to date. Analyses of several of the biochemical properties of the oligomycin-resistant CHO mutants indicate that the glutamic acid residue at position 145 of subunit 6 of the mitochondrial ATP synthase complex is important for the binding of oligomycin to the enzyme complex, but is not essential for proton translocation.  相似文献   

8.
The first cytoplasmic loop of subunit a of the Escherichia coli ATP synthase has been analyzed by cysteine substitution mutagenesis. 13 of the 26 residues tested were found to be accessible to the reaction with 3-(N-maleimidylpropionyl)-biocytin. The other 13 residues predominantly found in the central region of the polypeptide chain between the two transmembrane spans were more resistant to labeling by 3-(N-maleimidylpropionyl)-biocytin while in membrane vesicle preparations. This region of subunit a contains a conserved residue Glu-80, which when mutated to lysine resulted in a significant loss of ATP-driven proton translocation. Other substitutions including glutamine, alanine, and leucine were much less detrimental to function. Cross-linking studies with a photoactive cross-linking reagent were carried out. One mutant, K74C, was found to generate distinct cross-links to subunit b, and the cross-linking had little effect on proton translocation. The results indicate that the first transmembrane span (residues 40-64) of subunit a is probably near one or both of the b subunits and that a less accessible region of the first cytoplasmic loop (residues 75-90) is probably near the cytoplasmic surface, perhaps in contact with b subunits.  相似文献   

9.
The importance of the second transmembrane span of subunit a of the ATP synthase from Escherichia coli has been established by two approaches. First, biochemical analysis of five cysteine-substitution mutants, four of which were previously constructed for labeling experiments, revealed that only D119C, found within the second transmembrane span, was deleterious to ATP synthase function. This mutant had a greatly reduced growth yield, indicating inefficient ATP synthesis, but it retained a significant level of ATP-driven proton translocation and sensitivity to N,N(')-dicyclohexyl-carbodiimide, indicating more robust function in the direction of ATP hydrolysis. Second, the entire second transmembrane span was probed by alanine-insertion mutagenesis at six different positions, from residues 98 to 122. Insertions at the central four positions from residues 107 to 117 resulted in the inability to grow on succinate minimal medium, although normal levels of membrane-bound ATPase activity and significant levels of subunit a were detected. Double mutants were constructed with a mutation that permits cross-linking to the b subunit. Cross-linked products in the mutant K74C/114iA were seen, indicating no major disruption of the a-b interface due to the insertion at 114. Analysis of the K74C/110iA double mutant indicated that K74C is a partial suppressor of 110iA. In summary, the results support a model in which the amino-terminal, cytoplasmic end of the second transmembrane span has close contact with subunit b, while the carboxy-terminal, periplasmic end is important for proton translocation.  相似文献   

10.
The a subunit of F1F0 ATP synthase contains a highly conserved region near its carboxyl terminus which is thought to be important in proton translocation. Cassette site-directed mutagenesis was used to study the roles of four conserved amino acids Gln-252, Phe-256, Leu-259, and Tyr-263. Substitution of basic amino acids at each of these four sites resulted in marked decreases in enzyme function. Cells carrying a subunit mutations Gln-252-->Lys, Phe-256-->Arg, Leu-259-->Arg, and Tyr-263-->Arg all displayed growth characteristics suggesting substantial loss of ATP synthase function. Studies of both ATP-driven proton pumping and proton permeability of stripped membranes indicated that proton translocation through F0 was affected by the mutations. Other mutations, such as the Phe-256-->Asp mutation, also resulted in reduced enzyme activity. However, more conservative amino acid substitutions generated at these same four positions produced minimal losses of F1F0 ATP synthase. The effects of mutations and, hence, the relative importance of the amino acids for enzyme function appeared to decrease with proximity to the carboxyl terminus of the a subunit. The data are most consistent with the hypothesis that the region between Gln-252 and Tyr-263 of the a subunit has an important structural role in F1F0 ATP synthase.  相似文献   

11.
Subunit a is a membrane-bound stator subunit of the ATP synthase and is essential for proton translocation. The N-terminus of subunit a in E. coli is localized to the periplasm, and contains a sequence motif that is conserved among some bacteria. Previous work has identified mutations in this region that impair enzyme activity. Here, an internal deletion was constructed in subunit a in which residues 6–20 were replaced by a single lysine residue, and this mutant was unable to grow on succinate minimal medium. Membrane vesicles prepared from this mutant lacked ATP synthesis and ATP-driven proton translocation, even though immunoblots showed a significant level of subunit a. Similar results were obtained after purification and reconstitution of the mutant ATP synthase into liposomes. The location of subunit a with respect to its neighboring subunits b and c was probed by introducing cysteine substitutions that were known to promote cross-linking: a_L207C + c_I55C, a_L121C + b_N4C, and a_T107C + b_V18C. The last pair was unable to form cross-links in the background of the deletion mutant. The results indicate that loss of the N-terminal region of subunit a does not generally disrupt its structure, but does alter interactions with subunit b.  相似文献   

12.
G Kaim  P Dimroth 《The EMBO journal》1998,17(20):5887-5895
The mechanism by which ion-flux through the membrane-bound motor module (F0) induces rotational torque, driving the rotation of the gamma subunit, was probed with a Na+-translocating hybrid ATP synthase. The ATP-dependent occlusion of 1 (22)Na+ per ATP synthase persisted after modification of the c subunit ring with dicyclohexylcarbodiimide (DCCD), when 22Na+ was added first and ATP second, but not if the order of addition was reversed. These results support the model of ATP-driven rotation of the c subunit oligomer (rotor) versus subunit a (stator) that stops when either a 22Na+-loaded or a DCCD-modified rotor subunit reaches the Na+-impermeable stator. The ATP synthase with a Na+-permeable stator catalyzed 22Na+out/Na+in-exchange after reconstitution into proteoliposomes, which was not significantly affected by DCCD modification of the c subunit oligomer, but was abolished by the additional presence of ATP or by a membrane potential (DeltaPsi) of 90 mV. We propose that in the idling mode of the motor, Na+ ions are shuttled across the membrane by limited back and forth movements of the rotor against the stator. This motional flexibility is arrested if either ATP or DeltaPsi induces the switch from idling into a directed rotation. The Propionigenium modestum ATP synthase catalyzed ATP formation with DeltaPsi of 60-125 mV but not with DeltapNa+ of 195 mV. These results demonstrate that electric forces are essential for ATP synthesis and lead to a new concept of rotary-torque generation in the ATP synthase motor.  相似文献   

13.
The most prominent residue of subunit a of the F(1)F(o) ATP synthase is a universally conserved arginine (aR227 in Propionigenium modestum), which was reported to permit no substitution with retention of ATP synthesis or H(+)-coupled ATP hydrolysis activity. We show here that ATP synthases with R227K or R227H mutations in the P.modestum a subunit catalyse ATP-driven Na(+) transport above or below pH 8.0, respectively. Reconstituted F(o) with either mutation catalysed 22Na(+)(out)/Na(+)(in) exchange with similar pH profiles as found in ATP-driven Na(+) transport. ATP synthase with an aR227A substitution catalysed Na(+)-dependent ATP hydrolysis, which was completely inhibited by dicyclohexylcarbodiimide, but not coupled to Na(+) transport. This suggests that in the mutant the dissociation of Na(+) becomes more difficult and that the alkali ions remain therefore permanently bound to the c subunit sites. The reconstituted mutant enzyme was also able to synthesise ATP in the presence of a membrane potential, which stopped at elevated external Na(+) concentrations. These observations reinforce the importance of aR227 to facilitate the dissociation of Na(+) from approaching rotor sites. This task of aR227 was corroborated by other results with the aR227A mutant: (i) after reconstitution into liposomes, F(o) with the aR227A mutation did not catalyse 22Na(+)(out)/Na(+)(in) exchange at high internal sodium concentrations, and (ii) at a constant (Delta)pNa(+), 22Na(+) uptake was inhibited at elevated internal Na(+) concentrations. Hence, in mutant aR227A, sodium ions can only dissociate from their rotor sites into a reservoir of low sodium ion concentration, whereas in the wild-type the positively charged aR227 allows the dissociation of Na(+) even into compartments of high Na(+) concentration.  相似文献   

14.
Two point mutants of Chlamydomonas reinhardtii, previously found by recombination and complementation analysis to map in the chloroplast atpB gene encoding the beta subunit of the CF1/CF0 ATP synthase, are here shown to be missense alterations near the 5' end of that gene. One mutant (ac-u-c-2-9) has a change at amino acid position 47 of the beta subunit from leucine (CTA) to arginine (CGA). In the second mutant (ac-u-c-2-29), the codon AAA (lysine) is changed to AAC (asparagine) at position 154. Spontaneous revertants of each mutant were isolated that restore the original wild type base pair. Northern analysis of total RNA and in vivo pulse labeling followed by immunoprecipitation reveals that both mutant atpB genes are transcribed and translated normally. However, immunoblots show that the amount of beta subunit associated with mutant thylakoids is only approximately 3% of that seen in wild type and that the CF1 alpha and gamma subunits are missing entirely. The disruption of ATP synthase complex assembly in these mutants is much more severe than in Escherichia coli beta subunit gene point mutants, which retain significant amounts of alpha and beta subunits on their membranes (Noumi, T., Oka, N., Kanazawa, H., and Futai, M. (1986) J. Biol. Chem. 261, 7070-7075). These results support the hypothesis that there are differences in assembly of the ATP synthase between E. coli and chloroplasts. In particular they indicate that beta must be present for assembly of the alpha and gamma subunits of CF1 onto chloroplast membranes.  相似文献   

15.
FoF1 ATP synthase couples proton flow through the integral membrane portion Fo (ab2c10) to ATP-synthesis in the extrinsic F1-part ((alphabeta)3gammadeltaepsilon) (Escherichia coli nomenclature and stoichiometry). Coupling occurs by mechanical rotation of subunits c10gammaepsilon relative to (alphabeta)3deltaab2. Two residues were found to be essential for proton flow through ab2c10, namely Arg210 in subunit a (aR210) and Asp61 in subunits c (cD61). Their deletion abolishes proton flow, but "horizontal" repositioning, by anchoring them in adjacent transmembrane helices, restores function. Here, we investigated the effects of "vertical" repositioning aR210, cD61, or both by one helical turn towards the N- or C-termini of their original helices. Other than in the horizontal the vertical displacement changes the positions of the side chains within the depth of the membrane. Mutant aR210A/aN214R appeared to be short-circuited in that it supported proton conduction only through EF1-depleted EFo, but not in EFoEF1, nor ATP-driven proton pumping. Mutant cD61N/cM65D grew on succinate, retained the ability to synthesize ATP and supported passive proton conduction but apparently not ATP hydrolysis-driven proton pumping.  相似文献   

16.
《BBA》2019,1860(8):679-687
Functioning as a nanomotor, ATP synthase plays a vital role in the cellular energy metabolism. Interactions at the rotor and stator interface are critical to the energy transmission in ATP synthase. From mutational studies, we found that the γC87K mutation impairs energy coupling between proton translocation and nucleotide synthesis/hydrolysis. An additional glutamine mutation at γR242 (γR242Q) can restore efficient energy coupling to the γC87K mutant. Arrhenius plots and molecular dynamics simulations suggest that an extra hydrogen bond could form between the side chains of γC87K and βTPE381 in the γC87K mutant, thus impeding the free rotation of the rotor complex. In the enzyme with γC87K/γR242Q double mutations, the polar moiety of γR242Q side chain can form a hydrogen bond with γC87K, so that the amine group in the side chain of γC87K will not hydrogen-bond with βE381. As a conclusion, the intra-subunit interaction between positions γC87 and γR242 modulates the energy transmission in ATP synthase. This study should provide more information of residue interactions at the rotor and stator interface in order to further elucidate the energetic mechanism of ATP synthase.  相似文献   

17.
(1) We constructed Escherichia coli strain JP17 with a deletion in the ATP synthase beta-subunit gene. JP17 is completely deficient in ATP synthase activity and expresses no beta-subunit. Expression of normal beta-subunit from a plasmid restores haploid levels of ATP synthase in membranes. JP17 was shown to be efficacious for studies of beta-subunit mutations. Site-directed mutants were studied directly in JP17. Randomly generated chromosomal mutants were identified by PCR and DNA sequencing, cloned, and expressed in JP17. (2) Eight novel mutations occurring within the putative catalytic nucleotide-binding domain were characterized with respect to their effects on catalysis and structure. The mutations beta C137S, beta G152D, beta G152R, beta E161Q, beta E161R, and beta G251D each impaired catalysis without affecting enzyme assembly or oligomeric structure and are of interest for future studies of catalytic mechanism. The mutations beta D301V and beta D302V, involving strongly conserved carboxyl residues, caused oligomeric instability of F1. However, growth characteristics of these mutants suggested that neither carboxyl side chain is critical for catalysis. (3) The mutations beta R398C and beta R398W rendered ATP synthase resistant to aurovertin, giving strong support to the view that beta R398 is a key residue in the aurovertin-binding site. Neither beta R398C or beta R398W impaired catalysis significantly.  相似文献   

18.
To investigate the possible role of basic residues in H+ translocation through vacuolar-type H+-pumping pyrophosphatases (V-PPases), conserved arginine and lysine residues predicted to reside within or close to transmembrane domains of an Arabidopsis thaliana V-PPase (AVP1) were subjected to site-directed mutagenesis. One of these mutants (K461A) exhibited a "decoupled" phenotype in which proton-pumping but not hydrolysis was inhibited. Similar results were reported previously for an E427Q mutant, resulting in the proposal that E427 might be involved in proton translocation. However, the double mutant E427K/K461E has a wild type phenotype, suggesting that E427 and K461 form a stabilising salt bridge, but that neither residue plays a critical role in proton translocation.  相似文献   

19.
20.
This paper presents a study of the role of positive charge in the P(i) binding site of Escherichia coli ATP synthase, the enzyme responsible for ATP-driven proton extrusion and ATP synthesis by oxidative phosphorylation. Arginine residues are known to occur with high propensity in P(i) binding sites of proteins generally and in the P(i) binding site of the betaE catalytic site of ATP synthase specifically. Removal of natural betaArg-246 (betaR246A mutant) abrogates P(i) binding; restoration of P(i) binding was achieved by mutagenesis of either residue betaAsn-243 or alphaPhe-291 to Arg. Both residues are located in the P(i) binding site close to betaArg-246 in x-ray structures. Insertion of one extra Arg at beta-243 or alpha-291 in presence of betaArg-246 retained P(i) binding, but insertion of two extra Arg, at both positions simultaneously, abrogated it. Transition state stabilization was measured using phosphate analogs fluoroaluminate and fluoroscandium. Removal of betaArg-246 in betaR246A caused almost complete loss of transition state stabilization, but partial rescue was achieved in betaN243R/betaR246A and alphaF291R/betaR246A. BetaArg-243 or alphaArg-291 in presence of betaArg-246 was less effective; the combination of alphaF291R/betaN243R with natural betaArg-246 was just as detrimental as betaR246A. The data demonstrate that electrostatic interaction is an important component of initial P(i) binding in catalytic site betaE and later at the transition state complex. However, since none of the mutants showed significant function in growth tests, ATP-driven proton pumping, or ATPase activity assays, it is apparent that specific stereochemical interactions of catalytic site Arg residues are paramount.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号