首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transposable elements (TEs) account for approximately 45% of the human genome. TEs have proliferated randomly and integrated into functional genes during hominoid radiation. They appear as right-handed B-DNA double helices and slightly elongated left-handed Z-DNAs. Human endogenous retrovirus (HERV) families are widely distributed in human chromosomes at a ratio of 8%. They contain a 5′-long terminal repeat (LTR)-gag-pol-env-3′-LTR structure. LTRs contain the U3 enhancer and promoter region, transcribed R region, and U5 region. LTRs can influence host gene expression by acting as regulatory elements. In this review, we describe the alternative promoters derived from LTR elements that overlap Z-DNA by comparing Z-hunt and DeepZ data for human functional genes. We also present evidence showing the regulatory activity of LTR elements containing Z-DNA in GSDML. Taken together, the regulatory activity of LTR elements with Z-DNA allows us to understand gene function in relation to various human diseases.  相似文献   

2.
Long terminal repeats (LTRs) of human endogenous retrovirus (HERV) have contributed to the structural change or genetic variation of primate genome that are connected to speciation and evolution. Using genomic DNAs that were derived from hominoid primates (chimpanzee, gorilla, orangutan, and gibbon), we performed PCR amplification and identified thirty HERV-W LTR elements. These LTR elements showed a 82-98% sequence similarity with HERV-W LTR (AF072500). Specifically, additional sequences (GCCACCACCACTGTTT in the gorilla and TGCTGCTGACTCCCATCC in the gibbon) were noticed. Clone OR3 from the orangutan and clone GI2 from the gibbon showed a 100% sequence similarity, although they are different species. This indicates that both LTR elements were proliferated during the last 2 to 5 million years from the integration of the original LTR element. A phylogenetic tree that was obtained by the neighbor-joining method revealed a wide overlap of the LTR elements across species, suggesting that the HERV-W LTR family evolved independently during the hominoid evolution.  相似文献   

3.
Retrovirus-like sequences and their solitary (solo) long terminal repeats (LTRs) are common repetitive elements in eukaryotic genomes. We reported previously that the tandemly arrayed genes encoding U2 snRNA (the RNU2 locus) in humans and apes contain a solo LTR (U2-LTR) which was presumably generated by homologous recombination between the two LTRs of an ancestral provirus that is retained in the orthologous baboon RNU2 locus. We have now sequenced the orthologous U2-LTRs in human, chimpanzee, gorilla, orangutan, and baboon and examined numerous homologs of the U2-LTR that are dispersed throughout the human genome. Although these U2-LTR homologs have been collectively referred to as LTR13 in the literature, they do not display sequence similarity to any known retroviral LTRs; however, the structure of LTR13 closely resembles that of other retroviral LTRs with a putative promoter, polyadenylation signal, and a tandemly repeated 53-bp enhancer-like element. Genomic blotting indicates that LTR13 is primate-specific; based on sequence analysis, we estimate there are about 2,500 LTR13 elements in the human genome. Comparison of the primate U2-LTR sequences suggests that the homologous recombination event that gave rise to the solo U2-LTR occurred soon after insertion of the ancestral provirus into the ancestral U2 tandem array. Phylogenetic analysis of the LTR13 family confirms that it is diverse, but the orthologous U2-LTRs form a coherent group in which chimpanzee is closest to the humans; orangutan is a clear outgroup of human, chimpanzee, and gorilla; and baboon is a distant relative of human, chimpanzee, gorilla, and orangutan. We compare the LTR13 family with other known LTRs and consider whether these LTRs might play a role in concerted evolution of the primate RNU2 locus. Received: 29 September 1997 / Accepted: 16 January 1998  相似文献   

4.
Hepatocellular carcinoma (HCC) is one of the deadliest cancers. Research on HCC so far primarily focused on genes and provided limited information on genomic repeats, which constitute more than half of the human genome and contribute to genomic stability. In line with this, repeat dysregulation was significantly shown to be pathological in various cancers and other diseases. In this study, we aimed to determine the full repeat expression profile of HCC for the first time. We utilised two independent RNA-seq datasets obtained from primary HCC tumours with matched normal tissues of 20 and 17 HCC patients, respectively. We quantified repeat expressions and analysed their differential expression. We also identified repeats that are cooperatively expressed with genes by constructing a gene coexpression network. Our results indicated that HCC tumours in both datasets harbour 24 differentially expressed repeats and even more elements were coexpressed with genes involved in various metabolic pathways. We discovered that two L1 elements (L1M3b, L1M3de) were downregulated and a handful of HERV subfamily repeats (HERV-Fc1-int, HERV3-int, HERVE_a-int, HERVK11D-int, HERVK14C-int, HERVL18-int) were upregulated with the exception of HERV1_LTRc, which was downregulated. Various LTR elements (LTR32, LTR9, LTR4, LTR52-int, LTR70) and MER elements (MER11C, MER11D, MER57C1, MER9a1, MER74C) were implicated along with few other subtypes including Charlie12, MLT2A2, Tigger15a, Tigger 17b. The only satellite repeat differentially expressed in both datasets was GSATII, whose expression was upregulated in 33 (>90%) out of 37 patients. Notably, GSATII expression correlated with HCC survival genes. Elements discovered here promise future studies to be considered for biomarker and HCC therapy research. The coexpression pattern of the GSATII satellite with HCC survival genes and the fact that it has been upregulated in the vast majority of patients make this repeat particularly stand out for HCC.  相似文献   

5.
6.
7.
8.
9.
10.
11.
Human endogenous retroviruses (HERV) sequences account for about 8% of the human genome. Through comparative genomics and literature mining, we identified a total of 29 human-specific HERV-K insertions. We characterized them focusing on their structure and flanking sequence. The results showed that four of the human-specific HERV-K insertions deleted human genomic sequences via non-classical insertion mechanisms. Interestingly, two of the human-specific HERV-K insertion loci contained two HERV-K internals and three LTR elements, a pattern which could be explained by LTR-LTR ectopic recombination or template switching. In addition, we conducted a polymorphic test and observed that twelve out of the 29 elements are polymorphic in the human population. In conclusion, human-specific HERV-K elements have inserted into human genome since the divergence of human and chimpanzee, causing human genomic changes. Thus, we believe that human-specific HERV-K activity has contributed to the genomic divergence between humans and chimpanzees, as well as within the human population.  相似文献   

12.
The human genome harbors numerous distinct families of so-called human endogenous retroviruses (HERV) which are remnants of exogenous retroviruses that entered the germ line millions of years ago. We describe here the hitherto little-characterized betaretrovirus HERV-K(HML-5) family (named HERVK22 in Repbase) in greater detail. Out of 139 proviruses, only a few loci represent full-length proviruses, and many lack gag protease and/or env gene regions. We generated a consensus sequence from multiple alignment of 62 HML-5 loci that displays open reading frames for the four major retroviral proteins. Four HML-5 long terminal repeat (LTR) subfamilies were identified that are associated with monophyletic proviral bodies, implying different evolution of HML-5 LTRs and genes. Sequence analysis indicated that the proviruses formed approximately 55 million years ago. Accordingly, HML-5 proviral sequences were detected in Old World and New World primates but not in prosimians. No recent activity is associated with this HERV family. We also conclude that the HML-5 consensus sequence primer binding site is identical to methionine tRNA. Therefore, the family should be designated HERV-M. Our study provides important insights into the structure and evolution of the oldest betaretrovirus in the primate genome known to date.  相似文献   

13.
We established the detailed polymorphism of the 5'-flanking region and the first exon of the human leukocyte antigen (HLA)-DQB1 alleles. One hundred and forty-five Spanish rheumatoid arthritis (RA) patients and 200 healthy voluntary blood donors from southern Spain along with 42 B-cell lines were analyzed for the presence of the retrovirus-derived long terminal repeats (LTRs) LTR3, LTR5, and LTR13. LTR3 positivity was always associated with certain DQB1 alleles, i.e., *0302, *0402, *0601, *0202, and *0305. Sequencing analysis of the 5'-flanking region of DQB1*0301, *0303 and *0502 alleles in homozygous B-cell lines showed the absence of LTR3 and a massive deletion of 5635 base pairs. The undetected deletion in the flanking region of some DQB1 alleles and a lack of stratification for HLA typing explain previously reported associations of the LTR3 element with RA and type I diabetes (IDDM). LTR5 showed identical distribution to LTR3, consistent with a previously suggested LTR3-LTR5 tandem arrangement. LTR13 positivity was associated with DQB1*0302, *0303, and *0402 alleles. Distributions of the LTR elements in all B-cell lines, RA patients, and controls could be explained entirely by linkage disequilibrium with DQB1 alleles, independently of the haplotypes carrying them. LTR elements are known to regulate gene expression. Therefore, a possible involvement of LTR13 in the association of DQB1*0302, *0303, and *0402 with IDDM requires further investigation. The sequencing results of the DQB1 first exon demonstrated that DQB1*0601 was generated by a recombination event between a DR53 and a non-DR53 haplotype. Our results shed new light on the phylogeny of the HLA region and the possible contribution of DQB1 to susceptibility to autoimmunity.  相似文献   

14.
15.
16.
17.

Background

Transposable elements form a significant proportion of eukaryotic genomes. Recently, Lexa et al. (Nucleic Acids Res 42:968-978, 2014) reported that plant long terminal repeat (LTR) retrotransposons often contain potential quadruplex sequences (PQSs) in their LTRs and experimentally confirmed their ability to adopt four-stranded DNA conformations.

Results

Here, we searched for PQSs in human retrotransposons and found that PQSs are specifically localized in the 3’-UTR of LINE-1 elements, in LTRs of HERV elements and are strongly accumulated in specific regions of SVA elements. Circular dichroism spectroscopy confirmed that most PQSs had adopted monomolecular or bimolecular guanine quadruplex structures. Evolutionarily young SVA elements contained more PQSs than older elements and their propensity to form quadruplex DNA was higher. Full-length L1 elements contained more PQSs than truncated elements; the highest proportion of PQSs was found inside transpositionally active L1 elements (PA2 and HS families).

Conclusions

Conservation of quadruplexes at specific positions of transposable elements implies their importance in their life cycle. The increasing quadruplex presence in evolutionarily young LINE-1 and SVA families makes these elements important contributors toward present genome-wide quadruplex distribution.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1032) contains supplementary material, which is available to authorized users.  相似文献   

18.
近年来研究证实,人内源性逆转录病毒(HERV)中长末端重复序列(LTR)和囊膜蛋白基因(env)与基因异常表达关系密切。本文阐述了HERV国内外研究现状与发展动态。从生物信息学角度对LTR中启动子、多聚腺苷化(PolyA)信号和增强子等顺式作用元件以及env中的免疫抑制区(ISD)进行了重点分析。指出上述元件和潜在功能区在基因的异常表达和囊膜蛋白的免疫抑制中起关键作用,必将成为HERV与基因异常表达关系研究的热点与趋势。通过此类研究,以期为癌症疾病的早期诊断和治疗靶位点的选择奠定理论基础。  相似文献   

19.
The integration of the human immunodeficiency virus type 1 DNA into the host cell genome is catalysed by the viral integrase (IN). The reaction consists of a 3'-processing [dinucleotide released from each 3' end of the viral long terminal repeat (LTR)] followed by a strand transfer (insertion of the viral genome into the human chromosome). A 17 base pair oligonucleotide d(GGAAAATCTCTAGCAGT), d(ACTGCTAGAGATTTTCC) reproducing the U5-LTR extremity of viral DNA that contains the IN attachment site was analysed by NMR using the classical NOEs and scalar coupling constants in conjunction with a small set of residual dipolar coupling constants (RDCs) measured at the 13C/15N natural abundance. The combination of these two types of parameters in calculations significantly improved the DNA structure determination. The well-known features of A-tracts were clearly identified by RDCs in the first part of the molecule. The binding/cleavage site at the viral DNA end is distinguishable by a loss of regular base stacking and a distorted minor groove that can aid its specific recognition by IN.  相似文献   

20.
将系列缺失的HIV1长末端重复序列(LTR)和全长的gagORF置于痘苗病毒载体中,经同源重组和血球吸附试验,成功地构建了6株重组痘苗病毒。免疫印迹和免疫酶试验检测均表明,6株重组病毒的Gag蛋白表达量因LTR不同而有明显差异,表明HIV1的LTR及其下游基因置于痘病毒启动子控制下,在痘苗病毒中表达时有下述特点:(1)不同的痘苗病毒启动子与全长LTR相互作用,对gag基因表达有显著不同的调控效果;(2)NR序列对Gag蛋白表达没有明显影响;(3)EN序列不能被重组痘苗病毒表达系统识别;(4)TAR序列可提高Gag蛋白的表达量;(5)U5区及下游非翻译序列不影响Gag蛋白的表达。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号