首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The importance of aortic chemoreceptors in the circulatory and metabolic responses during acute anemia was studied in anesthetized dogs. Data were obtained from nine dogs in which the aortic chemoreceptors were surgically denervated prior to induction of anemia, and from seven sham-operated dogs. Cardiac output (QT), limb blood flow (QL), limb and whole body oxygen uptake (VO2) were determined at normal hematocrit (Hct) and at 30 min of anemia (Hct = 13%) produced by isovolemic dextran-for-blood exchange. At 30 min of anemia, QT was increased from 91 to 186 mL . kg-1 . min-1 (p less than 0.01) and from 99 to 153 mL . kg-1 . min-1 (p less than 0.01) in the sham and denervated groups, respectively. The increase in QT during anemia was less (p less than 0.05) in the aortic-denervated series. Limb flow was also increased during anemia in both groups (p less than 0.01); the mean value of 89 mL . kg-1 . min-1 in the denervated group was less than that of 130 mL . kg-1 . min-1 observed in the sham animals (p less than 0.05). Whole body VO2 decreased (p less than 0.05) in the denervated group at 30 min of anemia; limb VO2 was maintained at the preanemic control value in both groups. The data indicate that during acute anemia the aortic chemoreceptors contribute to the increase in QT.  相似文献   

2.
Studies were carried out in seven anesthetized paralyzed dogs to examine the importance of alpha -adrenergic tone in the cardiovascular responses during acute anemia. Data were obtained 1) at normal hematocrit (Hct), 2) during anemia produced by isovolemic hemodilution with dextran (Hct, 13-15%), 3) during anemia after alpha -blockade (alpha -bl) with phenoxybenzamine (3 mg/kg), and 4) following volume expansion during anemia with a red blood cell dextran solution. Cardiac output (QT), limb and total body oxygen uptake (VO2), and limb blood flow (QL) were determined. Both QT and QL increased during anemia (P less than 0.01), whereas limb resistance (RL) and total peripheral resistance (TPR) were decreased (P less than 0.01). No further change in either RL or TPR occurred with alpha -blockade anemia, but both QT and QL decreased (P less than 0.01). Whole-body VO2 increased during anemia and then declined with alpha -bl and anemia. Following volume expansion during anemia with alpha -bl, QT, QL, and whole-body VO2 increased. We conclude that alpha -adrenergic sympathetic tone to capacitance vessels is essential for the cardiac output increased during anemia, but has little or no effect on resistance vessels and hence distribution of peripheral blood flow.  相似文献   

3.
Redistribution of blood flow away from resting skeletal muscles does not occur during anemic hypoxia even when whole body oxygen uptake is not maintained. In the present study, the effects of sympathetic nerve stimulation on both skeletal muscle and hindlimb blood flow were studied prior to and during anemia in anesthetized, paralyzed, and ventilated dogs. In one series (skeletal muscle group, n = 8) paw blood flow was excluded by placing a tourniquet around the ankle; in a second series (hindlimb group, n = 8) no tourniquet was placed at the ankle. The distal end of the transected left sciatic nerve was stimulated to produce a maximal vasoconstrictor response for 4-min intervals at normal hematocrit (Hct.) and at 30 min of anemia (Hct. = 14%). Arterial blood pressure and hindlimb or muscle blood flow were measured; resistance and vascular hindrance were calculated. Nerve stimulation decreased blood flow (p less than 0.05) in the hindlimb and muscle groups at normal Hct. Blood flow rose (p less than 0.05) during anemia and was decreased (p less than 0.05) in both groups during nerve stimulation. However, the blood flow values in both groups during nerve stimulation in anemic animals were greater (p less than 0.05) than those at normal Hct. Hindlimb and muscle vascular resistance fell significantly during anemia and nerve stimulation produced a greater increase in vascular resistance at normal Hct. Vascular hindrance in muscle, but not hindlimb, was less during nerve stimulation in anemia than at normal Hct.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
We questioned whether carbon monoxide hypoxia (COH) would affect peripheral blood flow by neural activation of adrenoceptors to the extent we had found in other forms of hypoxia. We studied this problem in hindlimb muscles of four groups of anesthetized dogs (untreated, alpha 1-blocked, alpha 1 + alpha 2-blocked, and beta 2-blocked). Cardiac output increased, but hindlimb blood flow (QL) and resistance (RL) remained at prehypoxic levels during COH (O2 content reduced 50%) in untreated animals. When activity in the sciatic nerve was reversibly cold blocked, QL doubled and RL decreased 50%. These changes with nerve block were the same during COH, suggesting that neural activity to hindlimb vasculature was not increased by COH. In animals treated with phenoxybenzamine (primarily alpha 1-blocked), RL dropped (approximately 50%) during COH, an indication that catecholamines played a significant role in maintaining tone to skeletal muscle. Animals with both alpha 1 + alpha 2-adrenergic blockade (phenoxybenzamine and yohimbine added) did not survive COH. RL was higher in beta 2-block than in the untreated group during COH, but nerve cooling indicated that beta 2-adrenoceptor vasodilation was accomplished primarily by humoral means. The above findings demonstrated that adrenergic receptors were important in the regulation of QL and RL during COH, but they were not activated by sympathetic nerve stimulation to the limb muscles.  相似文献   

5.
The metabolic and cardiovascular adjustments of the whole body and skeletal muscle were studied during moderate and severe acute anemia. In 15 anesthetized dogs, venous outflow from the gastrocnemius-plantaris muscle group was isolated. Cardiac output (QT) muscle blood flow (QM), total body and muscle oxygen uptake (VO2) were determined during a control period, and at 30 and 60 min of either (i) moderate anemia (n = 8) in which the mean hematocrit (Hct) was 25% or (ii) progressive anemia (n = 7) in which the mean Hct values were 25% at 30 min and 16% at 60 min of anemia. Muscle VO2, QT, and QM were increased in both groups at 30 min of anemia. By 60 min, QT and QM declined to preanemic control values in the moderate anemia group; whole body VO2 was maintained at the control level. Arterial oxygen transport was the same in the two groups at both 30 and 60 min of anemia despite the difference in Hct at 60 min. Muscle VO2 showed a further and similar rise in both groups between 30 and 60 min of anemia. These data show that the rise in muscle VO2 during acute anemia was not directly proportional to the degree of the hematocrit reduction. Further, the findings suggest that the muscle VO2 response was related to the decrease in arterial oxygen transport.  相似文献   

6.
The effect of increased sympathetic activity on skeletal muscle blood flow during acute anemic hypoxia was studied in 16 anesthetized dogs. Sympathetic activity was altered by clamping the carotid arteries bilaterally below the carotid sinus. One group (n = 8) was beta blocked by administration of propranolol (1 mg/kg); a second group (n = 8) was untreated. Venous outflow from the left hindlimb was isolated for measurement of blood flow and O2 uptake (VO2). After a 20-min control period, both carotid arteries were clamped (CC) for 20 min followed by a 20-min recovery period. The sequence was repeated after hematocrit was lowered to about 15% by dextran exchange for blood. Prior to anemia, CC did not alter cardiac output or limb blood flow in either group. After induction of anemia, hindlimb resistance was higher with CC in the beta block than in the no block group. Both limb blood flow and VO2 fell in the beta-block group with CC during anemia. Beta block also prevented the additive increases in whole body VO2 seen with CC and induction of anemia. The data showed that the increased vasoconstrictor tone that was obtained with beta block during anemia was successful in redistributing the lower viscosity blood away from resting skeletal muscle, even to the point that muscle VO2 was decreased.  相似文献   

7.
The purpose of this study was to determine whether a test developed to predict maximal oxygen consumption (VO2max) during over-ground walking, was similarly valid as a predictor of peak oxygen consumption (VO2) when administered during a 1-mile (1.61 km) treadmill walk. Treadmill walk time, mean heart rate over the last 2 full min of the walk test, age, and body mass were entered into both generalized (GEN Eq.) and gender-specific (GSP Eq.) prediction equations. Overall results indicated a highly significant linear relationship between observed peak VO2 and GEN Eq. predicted values (r = 0.91), a total error (TE) of 5.26 ml.kg-1.min-1 and no significant difference between observed and predicted peak VO2 mean values. The peak VO2 for women (n = 75) was predicted accurately by GSP Eq. (r = 0.85; TE = 4.5 ml.kg-1.min-1), but was slightly overpredicted by GEN Eq. (overall mean difference = 1.4 ml.kg-1.min-1; r = 0.86; TE = 4.56 ml.kg-1.min-1). No significant differences between observed peak VO2 and either GEN Eq. (r = 0.85; TE = 4.3 ml.kg-1.min-1) or GSP Eq. (r = 0.85; TE = 4.8 ml.kg-1.min-1) predicted values were noted for men (n = 48) with peak VO2 values less than or equal to 55 ml.kg-1.min-1. However, both equations significantly underpredicted peak VO2 for the remaining high peak VO2 men (n = 22). In conclusion, the over-ground walking test, when administered on a treadmill, is a valid method of predicting peak VO2 but underpredicts peak VO2 of subjects with observed high peak VO2 values.  相似文献   

8.
To investigate the effect of endurance training on physiological characteristics during circumpubertal growth, eight young runners (mean starting age 12 years) were studied every 6 months for 8 years. Four other boys served as untrained controls. Oxygen uptake (VO2) and blood lactate concentrations were measured during submaximal and maximal treadmill running. The data were aligned with each individual's age of peak height velocity. The maximal oxygen uptake (VO2max; ml.kg-1.min-1) decreased with growth in the untrained group but remained almost constant in the training group. The oxygen cost of running at 15 km.h-1 (VO2 15, ml.kg-1.min-1) was persistently lower in the trained group but decreased similarly with age in both groups. The development of VO2max and VO2 15 (l.min-1) was related to each individual's increase in body mass so that power functions were obtained. The mean body mass scaling factor was 0.78 (SEM 0.07) and 1.01 (SEM 0.04) for VO2max and 0.75 (SEM 0.09) and 0.75 (SEM 0.02) for VO2 15 in the untrained and trained groups, respectively. Therefore, expressed as ml.kg-0.75.min-1, VO2 15 was unchanged in both groups and VO2max increased only in the trained group. The running velocity corresponding to 4 mmol.l-1 of blood lactate (nu la4) increased only in the trained group. Blood lactate concentration at exhaustion remained constant in both groups over the years studied. In conclusion, recent and the present findings would suggest that changes in the oxygen cost of running and VO2max (ml.kg-1.min-1) during growth may mainly be due to an overestimation of the body mass dependency of VO2 during running.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
To determine whether the reduced blood lactate concentrations [La] during submaximal exercise in humans after endurance training result from a decreased rate of lactate appearance (Ra) or an increased rate of lactate metabolic clearance (MCR), interrelationships among blood [La], lactate Ra, and lactate MCR were investigated in eight untrained men during progressive exercise before and after a 9-wk endurance training program. Radioisotope dilution measurements of L-[U-14C]lactate revealed that the slower rise in blood [La] with increasing O2 uptake (VO2) after training was due to a reduced lactate Ra at the lower work rates [VO2 less than 2.27 l/min, less than 60% maximum VO2 (VO2max); P less than 0.01]. At power outputs closer to maximum, peak lactate Ra values before (215 +/- 28 mumol.min-1.kg-1) and after training (244 +/- 12 mumol.min-1.kg-1) became similar. In contrast, submaximal (less than 75% VO2max) and peak lactate MCR values were higher after than before training (40 +/- 3 vs. 31 +/- 4 ml.min-1.kg-1, P less than 0.05). Thus the lower blood [La] values during exercise after training in this study were caused by a diminished lactate Ra at low absolute and relative work rates and an elevated MCR at higher absolute and all relative work rates during exercise.  相似文献   

10.
11.
We evaluated whether acute anemia results in altered blood glucose utilization during sustained exercise at 26.8 m/min on 0% grade, which elicited approximately 60-70% maximal O2 consumption. Acute anemia was induced in female Sprague-Dawley rats by isovolumic plasma exchange transfusion. Hemoglobin and hematocrit were reduced 33% by exchange transfusion to 8.6 +/- 0.4 g/dl and 26.5 +/- 1%, respectively. Glucose kinetics were determined by primed continuous infusion of [6-3H]glucose. Rates of O2 consumption were similar during rest (pooled means 25.1 +/- 1.8 ml.kg-1.min-1) and exercise (pooled means 46.8 +/- 3.0 ml.kg-1.min-1). Resting blood glucose and lactate concentrations were not different in anemic animals (pooled means 5.1 +/- 0.2 and 0.9 +/- 0.02 mM, respectively). Exercise resulted in significantly decreased blood glucose (4.0 +/- 0.2 vs. 4.6 +/- 0.1 mM) and elevated lactate (6.1 +/- 0.4 vs. 2.3 +/- 0.5 mM) concentrations in anemic animals. Glucose turnover rates (Rt) were not different between anemic and control animals at rest and averaged 58.8 +/- 3.6 mumol.kg-1.min-1. Exercise resulted in a 30% greater increase in Rt in anemic (141.7 +/- 3.2 mumol.kg-1.min-1) than in control animals (111.2 +/- 5.2 mumol.kg-1.min-1). Metabolic clearance rates (MCR = Rt/[glucose]) were not different at rest (11.6 +/- 7.4) but were significantly greater in anemic (55.2 +/- 5.7 ml.kg-1.min-1) than in control animals (24.3 +/- 1.4 ml.kg-1.min-1) during exercise.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Hepatic blood volume responses were studied in cats using in vivo plethysmography. The maximal response (Rmax) to sympathetic nerve stimulation and to infusions of norepinephrine into the hepatic artery or portal vein was similar (12-14 mL expelled per liver in 2.9-kg cats; average liver weight, 76.8 +/- 6.8 g). The ED50 for norepinephrine intraportal (0.44 +/- 0.13) and intrahepatic arterial infusions (0.33 +/- 0.08 micrograms.kg-1.min-1) were similar indicating equal access of both blood supplies to the capacitance vessels. Adenosine (2.0 mg.kg-1.min-1) did not cause significant volume changes but produced a mild (27%) suppression of Rmax due to nerve stimulation with no change in the frequency (3.4 Hz) needed to produce 50% of Rmax. Rmax tended (not statistically significant) to decrease during glucagon (1.0 micrograms.kg-1.min-1) infusion but the nerve frequency needed to produce 50% of Rmax rose to 5.6 Hz. Thus both adenosine and glucagon produced modulation of sympathetic nerve-induced capacitance responses without having significant effects on basal blood volume. Adenosine, by virtue of its marked effects on arterial resistance vessels (at substantially lower doses than those used here) and the relative lack of effect on venous capacitance vessels, may be useful for producing clinical afterload reduction without venous pooling.  相似文献   

13.
Multipoint pulmonary vascular pressure-cardiac index (P/Q) plots were constructed in conscious dogs during normoxia by graded constriction of the thoracic inferior vena cava to reduce Q. P/Q plots were generated with the autonomic nervous system (ANS) intact and following total autonomic ganglionic block, cholinergic block, and sympathetic alpha- and beta-adrenergic block alone and in combination. With the ANS intact, the relationship between the pulmonary vascular pressure gradient [pulmonary arterial pressure (PAP)--pulmonary capillary wedge pressure (PCWP)] and Q was linear with an extrapolated pressure intercept of 0 mmHg. Total autonomic ganglionic block increased PAP-PCWP over the entire range of Q studied (60-140 ml . min-1 . kg-1). Cholinergic block resulted in a small increase in PAP-PCWP at a Q of 60 ml . min-1 . kg-1, a small decrease in PAP-PCWP at a Q of 140 ml . min-1 . kg-1, but no change in PAP-PCWP over the midrange of Q. Sympathetic beta-adrenergic block increased, and sympathetic alpha-adrenergic block decreased PAP-PCWP over the entire range of Q studied. Combined sympathetic alpha- and beta-adrenergic block also increased PAP-PCWP at each level of Q. Thus the ANS, either directly or via circulating catecholamines, exerts an active regulatory influence on the pulmonary vascular P/Q relationship of intact conscious dogs during normoxia over a wide range of Q. Activation of sympathetic beta-adrenergic receptors results in pulmonary vasodilatation, whereas, alpha-receptor activation results in vasoconstriction. Surprisingly, based on the effects of total autonomic ganglionic block and combined sympathetic alpha- and beta-adrenergic block, the net effect of the ANS on PAP-PCWP/Q during normoxia appears to be pulmonary vasodilatation.  相似文献   

14.
Intrapulmonary oxygen consumption in experimental pneumococcal pneumonia   总被引:5,自引:0,他引:5  
To test the hypothesis that lung affected by acute bacterial pneumonia consumes significant amounts of O2, whole-body O2 consumption (VO2) was measured simultaneously by collection of expired gas (VO2exp) and by the Fick principle (VO2Fick) in five dogs with acute experimental pneumococcal pneumonia and in five uninfected controls. This approach is based on the premise that VO2Fick will not detect lung VO2, whereas the expired gas measurement represents the true whole-body VO2, including the lung. In controls VO2 exp averaged 110 +/- 20 ml/min (4.78 +/- 0.78 ml.min-1.kg-1), and VO2Fick was nearly identical at 114 +/- 21 ml/min (4.96 +/- 0.79 ml.min-1.kg-1). The VO2Fick in the pneumonia group was 127 ml/min, similar to both control group values when indexed for body weight (4.91 +/- 1.17 ml.min-1.kg-1). VO2exp, however, was 146 +/- 46 ml/min (5.74 +/- 1.57 ml.min-1.kg-1), exceeding VO2Fick by an average of 20 +/- 9 ml/min (P less than 0.01). This between-method difference of 20 +/- 9 ml/min (or 24 ml/min if the difference in the control group is assumed to apply to the pneumonia group) amounted to 13-15% of whole-body VO2 and can be attributed to VO2 in the lung, presumably by cells involved in the acute inflammatory response. Implications include the potential for significant underestimate of whole-body VO2 by the Fick method when used in the presence of lung inflammation and overestimate of blood flow to shunting or low ventilation-perfusion ratio lung units by the O2 method of measuring venous admixture-like perfusion. This observation may also explain the disproportionate hypoxemia sometimes seen in patients with severe pneumonia.  相似文献   

15.
Oxygen consumption (VO2) was measured during hypoventilation induced by moderate-sized flow-resistive loading in 12 preterm infants, and the results were compared with those obtained under basal conditions immediately before and after the loaded run, each of which lasted for 7-10 min. Loading was performed with a continuous flow-resistive load (inspiratory and expiratory), which was approximately threefold greater in magnitude than the intrinsic resistance of preterm infants. VO2, minute ventilation (VE), transcutaneous oxygen tension (PtCO2), and transcutaneous carbon dioxide tension (PtcCO2) were continuously monitored. Results revealed that VE decreased significantly with loading, from 336 +/- 103 to 231 +/- 58 (SD) ml.min-1.kg-1 (P less than 0.001), while returning to basal levels of 342 +/- 59 ml.min-1.kg-1 after discontinuation of the load. VO2 decreased from 7.2 +/- 1.2 to 5.9 +/- 0.9 ml.min-1.kg-1 with loading (P less than 0.001) and returned to 7.2 +/- 1.2 ml.min-1.kg-1 at the second basal measurement. PtcCO2 remained unchanged with loading, and PtcCO2 only increased from 39 +/- 8 to 41 +/- 9 Torr (P less than 0.05) with loading, while returning to 40 +/- 9 Torr at the second basal measurement. Results indicate a decrease in the metabolic rate and ventilation with loading, with relatively little increase in PtcCO2. These data can explain prior observations that minimal disturbances in oxygen and carbon dioxide tensions occur with hypoventilation during flow-resistive loading in neonates, although the precise mechanism for this reduction remains to be determined.  相似文献   

16.
Ventilation with O2 was previously shown to decrease whole-body and hindlimb muscle O2 uptake (VO2) in anesthetized dogs, particularly during anemia. To determine whether this was a purely local effect of hyperoxia (HiOx), we pump perfused isolated dog hindlimb muscles with autologous blood made hyperoxic (PO2 greater than 500 Torr) in a membrane oxygenator while the animals were ventilated with room air. Both constant-flow and constant-pressure protocols were used, and half the dogs were made anemic by exchange transfusion of dextran to hematocrit (Hct) approximately 15%. Thus there were four groups of n = 6 dogs each. A 30-min period of HiOx was preceded and followed by similar periods of perfusion with normoxic blood. In HiOx all four groups showed increased leg hindrance, increased leg venous PO2, and no significant changes in leg O2 inflow. Limb blood flow and VO2 decreased approximately 20% in HiOx with constant-pressure perfusion, regardless of Hct. In the constant-flow protocol, leg VO2 in HiOx was maintained by the anemic animals and actually increased in the normocythemic group. We conclude that HiOx directly affected vascular smooth muscle to cause flow restriction and maldistribution. Constant flow offset these effects, but the increased limb VO2 may have been a toxic effect. Anemia appeared to exaggerate the microcirculatory maldistribution caused by HiOx.  相似文献   

17.
The effects of a filtering device, an air-line breathing apparatus and a self-contained breathing apparatus ( SCBA ) on pulmonary ventilation, oxygen consumption and heart rate were studied in 12 well-trained firemen aged 21-35 years. Their average maximal oxygen consumption (VO2 max) was 64.9 ml X min-1 X kg-1. Sequential tests without and with the respirator were performed on a treadmill. The continuous test contained five components, each of which lasted 5 min: sitting at rest, walking at 20%, 40%, and 60% of the individual VO2 max, and recovery sitting. During the higher submaximal work levels and recovery, ventilation, heart rate, and oxygen consumption in particular increased more with respirators than without them. At the highest work level the increments in oxygen consumption caused by the respirators were 13%, (8.7 ml X min-1 X kg-1), 7% (4.4 ml X min-1 X kg-1), and 20% (12.7 ml X min-1 X kg-1) of VO2 max. All three respirators hampered respiration, resulting in hypoventilation. The additional effort of breathing and the weight of the apparatus (15 kg with the SCBA ) increased the subjects' cardiorespiratory strain so clearly that the need for rest periods and the individual's work capacity when the respirators are worn must be carefully considered, particularly with the SCBA .  相似文献   

18.
This study investigated the rectal (Tre), esophageal (Tes), and skin (Tsk) temperature changes in a group of trained traumatic paraplegic men pushing their own wheelchairs on a motor-driven treadmill for a prolonged period in a neutral environment. There were two experiments. The first experiment (Tre and Tsk) involved a homogeneous group (T10-T12/L3) of highly trained paraplegic men [maximum O2 uptake (VO2max) 47.5 +/- 1.8 ml.kg-1.min-1] exercising for 80 min at 60-65% VO2max.Tre and Tsk (head, arm, thigh, and calf) and heart rate (HR) were recorded throughout. O2 uptake (VO2), minute ventilation (VE), CO2 production (VCO2), and heart rate (HR) were recorded at four intervals. During experiment 1 significant changes in HR and insignificant changes in VCO2, VE, and VO2 occurred throughout prolonged exercise. Tre increased significantly from 37.1 +/- 0.1 degrees C (rest) to 37.8 +/- 0.1 degrees C after 80 min of exercise. There were only significant changes in arm Tsk. Experiment 2 involved a nonhomogeneous group (T5-T10/T11) of active paraplegics (VO2max 39.9 +/- 4.3 ml.kg-1.min-1) exercising at 60-65% VO2max for up to 45 min on the treadmill while Tre and Tes were simultaneously recorded. Tes rose significantly faster than Tre during exercise (dT/dt 20 min: Tes 0.050 +/- 0.003 degrees C/min and Tre 0.019 +/- 0.005 degrees C/min), and Tes declined significantly faster than Tre at the end of exercise. Tes was significantly higher than Tre at the end of exercise. Our results suggest that during wheelchair propulsion by paraplegics, Tes may be a better estimate of core temperature than Tre.  相似文献   

19.
Lung volumes, oxygen uptake (VO2), end-tidal PO2, and PCO2, diffusing capacity of the lungs for CO (DLCO), pulmonary blood flow (QL) and respiratory frequency were measured in the green sea turtle (Chelonia mydas) (49-127 kg body wt). Mean lung volume (VL) determined from helium dilution was 57 ml/kg and physiological dead space volume (VD) was about 3.6 ml/kg. QL, determined from acetylene uptake during rebreathing, increased in proportion to VO2 with temperature. Therefore, constant O2 content difference was maintained between pulmonary arterial and venous blood. DLCO, measured using a rebreathing technique, was 0.04 ml X kg-1 X min-1 X Torr-1 at 25 degrees C. Several cardiopulmonary characteristics in C. mydas are advantageous to diving: large tidal volume relative to functional residual capacity promotes fast exchange of the alveolar gas when the turtle surfaces for breathing: and the concomitant rise of pulmonary blood flow and O2 uptake with temperature assures efficient O2 transport regardless of wide temperature variations encountered during migrations.  相似文献   

20.
Minimum acceptable O2 delivery (DO2) during extracorporeal membrane oxygenation (ECMO) remains to be defined in a newborn primate model. The right atrium, carotid artery, and femoral artery were cannulated, and the ductus arteriosus, aorta, and pulmonary artery ligated in neonatal baboons (Papio cynocephalus) under a combination of ketamine, diazepam, and pancuronium. The internal jugular vein was also cannulated retrograde to the level of the occipital ridge. We measured hemoglobin, pH, arterial and venous PO2 (both from the pump circuit and from the cerebral venous site), serum lactate and bicarbonate concentrations, and pump flow, and we calculated hemoglobin saturations, (DO2), O2 consumption (VO2), systemic O2 extraction, and cerebral O2 extraction. Six baboons were studied during each of two phases of the experiment. In the first, flow rates were varied sequentially from 200 to 50 ml.kg-1.min-1 with saturation maximized. In the second, flow was maintained at 200 ml.kg-1.min-1 and saturation was reduced sequentially from 100 to 38%. VO2 fell significantly below baseline at a flow rate of 50 ml.kg-1.min-1 and a DO2 of 8 +/- 2 (SE) ml.kg-1.min-1 in phase 1 and at DO2 of 12 +/- 5 in phase 2. Both systemic and cerebral O2 extraction rose significantly at a flow of 100 ml.kg-1.min-1 and DO2 of 17 +/- 4 ml.kg-1.min-1 in phase 1, whereas neither rose with decreasing DO2 in phase 2. In fact, cerebral extraction fell significantly DO2 of 16 +/- 6 ml.kg-1.min-1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号