首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Methods for engineering proteins that contain non-canonical amino acids have advanced rapidly in the past few years. Novel amino acids can be introduced into recombinant proteins in either a residue-specific or site-specific fashion. The methods are complementary: residue-specific incorporation allows engineering of the overall physical and chemical behavior of proteins and protein-like macromolecules, whereas site-specific methods allow mechanistic questions to be probed in atomistic detail. Challenges remain in the engineering of the translational apparatus and in the design of schemes that can be used to encode both canonical and non-canonical amino acids.  相似文献   

2.
The non-canonical amino acid (ncAA) analogue of methionine (Met), β-cyclopropylalanine (Cpa), was successfully incorporated into recombinant proteins expressed in Escherichia coli in a residue-specific manner. Proteins substituted in this way are congeners because they derive from the same gene sequence as the parent protein but contain a fraction of ncAAs. We have expressed congeners using parent and mutant gene sequences of various proteins (lipase, annexin A5, enhanced green fluorescent protein, and barstar) and found that Cpa incorporation is highly dependent on the protein sequence composition. These results indicate that the global amino acid composition of proteins might be a crucial parameter that influences the outcome of unnatural translation. In addition, we could also demonstrate that the chemical nature of the second residue could be essential for successful ncAA incorporation.  相似文献   

3.
Genetic code expansion (GCE) enables the site-specific incorporation of non-canonical amino acids as novel building blocks for the investigation and manipulation of proteins. The advancement of genetic code expansion has been benefited from the development of synthetic biology, while genetic code expansion also helps to create more synthetic biology tools. In this review, we summarize recent advances in genetic code expansion brought by synthetic biology progresses, including engineering of the translation machinery, genome-wide codon reassignment, and the biosynthesis of non-canonical amino acids. We highlight the emerging application of this technology in construction of new synthetic biology parts, circuits, chassis, and products.  相似文献   

4.
Compared with the better-studied canonical amino acids, the distribution, metabolism and functions of natural non-canonical amino acids remain relatively obscure. Natural non-canonical amino acids have been mainly discovered in plants as secondary metabolites that perform diversified physiological functions. Due to their specific characteristics, a broader range of natural and artificial non-canonical amino acids have recently been applied in the development of functional materials and pharmaceutical products. With the rapid development of advanced methods in biotechnology, non-canonical amino acids can be incorporated into peptides, proteins and enzymes to improve the function and performance relative to their natural counterparts. Therefore, biotechnological application of non-canonical amino acids in artificial bio-macromolecules follows the central goal of synthetic biology to: create novel life forms and functions. However, many of the non-canonical amino acids are synthesized via chemo- or semi-synthetic methods, and few non-canonical amino acids can be synthesized using natural in vivo pathways. Therefore, further research is needed to clarify the metabolic pathways and key enzymes of the non-canonical amino acids. This will lead to the discovery of more candidate non-canonical amino acids, especially for those that are derived from microorganisms and are naturally bio-compatible with chassis strains for in vivo biosynthesis. In this review, we summarize representative natural and artificial non-canonical amino acids, their known information regarding associated metabolic pathways, their characteristics and their practical applications. Moreover, this review summarizes current barriers in developing in vivo pathways for the synthesis of non-canonical amino acids, as well as other considerations, future trends and potential applications of non-canonical amino acids in advanced biotechnology.  相似文献   

5.
Various post-translational modifications can naturally occur on proteins, regulating the activity, subcellular localization, interaction, or stability of the proteins. However, it can be challenging to decipher the biological implication or physiological roles of site-specific modifications due to their dynamic and sub-stoichiometric nature. Genetic code expansion method, relying on an orthogonal aminoacyl-tRNA synthetase/tRNA pair, enables site-specific incorporation of non-canonical amino acids. Here we focus on the application of genetic code expansion to study site-specific protein post-translational modification in vitro and in vivo. After a brief introduction, we discuss possibilities of incorporating non-canonical amino acids containing post-translational modifications or their mimics into target proteins. This approach is applicable for Ser/Thr/Tyr phosphorylation, Tyr sulfation/nitration/hydroxylation, Lys acetylation/acylation, Lys/His mono-methylation, as well as Arg citrullination. The next section describes the use of a precursor non-canonical amino acid followed by chemical and/or enzymatic reactions to afford the desired modification, such as Cys/Lys acylation, ubiquitin and ubiquitin-like modifications, as well as Lys/Gln methylation. We also discuss means for functional regulation of enzymes involving in post-translational modifications through genetically incorporated non-canonical amino acids. Lastly, the limitations and perspectives of genetic code expansion in studying protein post-translational modification are described.  相似文献   

6.
The canonical set of amino acids leads to an exceptionally wide range of protein functionality. Nevertheless, the set of residues still imposes limitations on potential protein applications. The incorporation of noncanonical amino acids can enlarge this scope. There are two complementary approaches for the incorporation of noncanonical amino acids. For site-specific incorporation, in addition to the endogenous canonical translational machineries, an orthogonal aminoacyl-tRNA-synthetase-tRNA pair must be provided that does not interact with the canonical ones. Consequently, a codon that is not assigned to a canonical amino acid, usually a stop codon, is also required. This genetic code expansion enables the incorporation of a noncanonical amino acid at a single, given site within the protein. The here presented work describes residue-specific incorporation where the genetic code is reassigned within the endogenous translational system. The translation machinery accepts the noncanonical amino acid as a surrogate to incorporate it at canonically prescribed locations, i.e., all occurrences of a canonical amino acid in the protein are replaced by the noncanonical one. The incorporation of noncanonical amino acids can change the protein structure, causing considerably modified physical and chemical properties. Noncanonical amino acid analogs often act as cell growth inhibitors for expression hosts since they modify endogenous proteins, limiting in vivo protein production. In vivo incorporation of toxic noncanonical amino acids into proteins remains particularly challenging. Here, a cell-free approach for a complete replacement of L-arginine by the noncanonical amino acid L-canavanine is presented. It circumvents the inherent difficulties of in vivo expression. Additionally, a protocol to prepare target proteins for mass spectral analysis is included. It is shown that L-lysine can be replaced by L-hydroxy-lysine, albeit with lower efficiency. In principle, any noncanonical amino acid analog can be incorporated using the presented method as long as the endogenous in vitro translation system recognizes it.  相似文献   

7.
Recently, non-canonical amino acids (NCAA) incorporation was developed to enhance the functional properties of proteins. Incorporation of NCAA containing chlorine atom is conceptually an attractive approach to prepare pharmacologically active substances, which is a difficult task since chlorine is bulky atom. In this study, we evaluated the efficiency and extent of in vivo incorporation of tyrosine analogue 3-chlorotyrosine [(3-Cl)Tyr] into the recombinant proteins GFP and GFPHS (highly stable GFP). The incorporation of (3-Cl)Tyr into GFP leads to dramatic reduction in the expression level of protein. On the other hand, the incorporation of (3-Cl)Tyr into GFPHS was expressed well as a soluble form. In addition we used bioinformatics tools for the analysis to explore the possible constraints in micro-environment of each natural amino acid residue to be replaced with chlorine atom accommodation into GFPHS. In conclusion, our approaches are reliable and straightforward way to enhance the translation of chlorinated amino acids into proteins.  相似文献   

8.
Genetic code expansion in multicellular organisms is currently limited to the use of repurposed amber stop codons. Here, we introduce a system for the use of quadruplet codons to direct incorporation of non-canonical amino acids in vivo in an animal, the nematode worm Caenorhabditis elegans. We develop hybrid pyrrolysyl tRNA variants to incorporate non-canonical amino acids in response to the quadruplet codon UAGA. We demonstrate the efficiency of the quadruplet decoding system by incorporating photocaged amino acids into two proteins widely used as genetic tools. We use photocaged lysine to express photocaged Cre recombinase for the optical control of gene expression and photocaged cysteine to express photo-activatable caspase for light inducible cell ablation. Our approach will facilitate the routine adoption of quadruplet decoding for genetic code expansion in eukaryotic cells and multicellular organisms.  相似文献   

9.
In an attempt to generate mutant aminoacyl-tRNA synthetases capable of charging non-canonical amino acids, a series of yeast tyrosyl-tRNA synthetase (TyrRS) mutants was constructed by site-specific mutagenesis of putative active site residues, which were deduced by analogy with those of Bacillus stearothermophilus TyrRS. Among these mutants, one with the replacement of tyrosine at position 43 by glycine, "Y43G," was found to be able to utilize several 3-substituted tyrosine analogues as substrates for aminoacylation. The catalytic efficiency (k(cat)/K(m)) of mutant Y43G for aminoacylation with L-tyrosine was about 400-fold decreased as compared to that of the wild-type TyrRS. On the other hand, the ability to utilize 3-iodo-L-tyrosine was newly generated in this mutant TyrRS, since the wild-type TyrRS could not accept 3-iodo-L-tyrosine at all under physiological conditions. This mutant TyrRS should serve as a new tool for site-specific incorporation of non-canonical amino acids, such as those in 3-substituted tyrosine analogues, into proteins in an appropriate translation system in vivo or in vitro.  相似文献   

10.
Controlling the substrate specificity of enzymes is a major challenge for protein engineers. Here we explore the effects of residue-specific incorporation of ortho-, meta- and para-fluorophenylalanine (oFF, mFF, pFF) on the selectivity of human histone acetyltransferase (HAT) protein, p300/CBP associated factor (PCAF). Varying the position of the fluorine group in the phenylalanine ring confers different effects on the ability of PCAF to acetylate target histone H3 as well as non-histone p53. Surprisingly, pFF-PCAF exhibits an increase in activity for non-histone p53, while mFF-PCAF is selective for histone H3. These results suggest that global incorporation of unnatural amino acids may be used to re-engineer protein specificity.  相似文献   

11.
The genetic incorporation of the 22nd proteinogenic amino acid, pyrrolysine (Pyl) at amber codon is achieved by the action of pyrrolysyl-tRNA synthetase (PylRS) together with its cognate tRNAPyl. Unlike most aminoacyl-tRNA synthetases, PylRS displays high substrate side chain promiscuity, low selectivity toward its substrate α-amine, and low selectivity toward the anticodon of tRNAPyl. These unique but ordinary features of PylRS as an aminoacyl-tRNA synthetase allow the Pyl incorporation machinery to be easily engineered for the genetic incorporation of more than 100 non-canonical amino acids (NCAAs) or α-hydroxy acids into proteins at amber codon and the reassignment of other codons such as ochre UAA, opal UGA, and four-base AGGA codons to code NCAAs.  相似文献   

12.
Chiral bias in the unnatural translation and 'sticky' mussel proteins. The residue-specific in vivo incorporation of hydroxylated amino acids as well as other synthetic analogs, such as fluoroprolines, emerges as the method of choice for recombinant synthesis of Pro-rich mussel adhesive protein congeners. Chemical diversifications introduced in this way provide a general route towards bio-adhesive congeners endowed with properties not developed by natural evolution. Most importantly, we have found that the co-translational incorporation of (4R)-, and (4S)-hyroxylated and fluorinated analogs into mussel proteins presented a chiral bias: the expressed protein was only detectable in samples incubated with analogs with (4R)-substituents. Possible relationship of these stereochemical preferences for (4R)-stereoisomers in the translation to intracellular tRNA concentrations, ribosomal editing and proofreading or structural effects such as preorganization remains to be addressed in future studies. These studies will generally provide a mechanistic framework for the flexibility of the translational machinery and establish the boundaries of the unnatural translation.  相似文献   

13.
In this study, we demonstrate the application of multiple functional properties of proteins generated through coupling of residue-specific and site-specific incorporation method. With green fluorescent protein (GFP) as a model protein, we constructed multifunctional GFP through sitespecific incorporation of L-3,4-dihydroxyphenylalanine (DOPA) and residue-specific incorporation of (2S, 4S)-4- fluoroproline (4S-FP) or L-homopropargylglycine (hpg). Fluorescence analysis revealed a conjugation efficiency of approximately 20% for conjugation of DOPA-containing variants GFPdopa, GFPdp[4S-FP], and GFPdphpg onto chitosan. While incorporation of 4S-FP improved protein folding and stability, hpg incorporation into GFP allowed conjugation with fluorescent dye/polyethylene glycol (PEG). In addition, the modification of GFPhpg and GFPdphpg with PEG through Cu(I)-catalyzed click reaction increased protein thermal stability by about two-fold of the wild-type GFP.  相似文献   

14.
In order to modify proteins in a controlled way, new functionalities need to be introduced in a defined manner. One way to accomplish this is by the incorporation of a non-natural amino acid of which the side chain can selectively be reacted to other molecules. We have investigated whether the relatively simple method of residue-specific replacement of methionine by azidohomoalanine can be used to achieve monofunctionalization of the model enzyme Candida antarctica lipase B. A protein variant was engineered with one additional methionine residue. Due to the high hydrophobicity and low abundance of methionine, this was the only residue out of five that was exposed to the solvent. The use of the Cu (I)-catalyzed [3 + 2] cycloaddition under native conditions resulted in a monofunctionalized enzyme which retained hydrolytic activity. The strategy can be considered a convenient tool to modify proteins at a single position as long as one solvent-exposed methionine is available.  相似文献   

15.
Here we describe the biosynthesis and characterization of fluorinated protein block polymers comprised of the two self-assembling domains (SADs): elastin (E) and the coiled-coil region of cartilage oligomeric matrix proteins (C). Fluorination is achieved by residue-specific incorporation of p-fluorophenylalanine (pFF) to create pFF-EC, pFF-CE, and pFF-ECE. Global fluorination results in downstream effects on the temperature-dependent secondary structure, supramolecular assembly, and bulk mechanical properties. The impact of fluorination on material properties also differs depending on the orientation of the block configurations as well as the number of domains in the fusion. These studies suggest that integration of fluorinated amino acids within protein materials can be employed to tune the material properties, especially mechanical integrity.  相似文献   

16.
Amyloid diseases are characterized by the aggregation of various proteins to form insoluble β-sheet–rich fibrils leading to cell death. Vibrational spectroscopies have emerged as attractive methods to study this process because of the rich structural information that can be extracted without large, perturbative probes. Importantly, specific vibrations such as the amide-I band directly report on secondary structure changes, which are key features of amyloid formation. Beyond intrinsic vibrations, the incorporation of unnatural vibrational probes can improve sensitivity for secondary structure determination (e.g. isotopic labeling), can provide residue-specific information of the surrounding polarity (e.g. unnatural amino acid), and are translatable into cellular studies. Here, we review the latest studies that have leveraged tools from chemical biology for the incorporation of novel vibrational probes into amyloidogenic proteins for both mechanistic and cellular studies.  相似文献   

17.
In this study, we investigated the efficiencies by which the pET and pQE expression systems produce unnatural recombinant proteins by residue-specific incorporation of unnatural amino acids, a method through which it was found that type of gene expression system tremendously influences the production yield of unnatural proteins in Escherichia coli. Green fluorescent protein (GFP) and a single-chain Fv antibody against c-Met were utilized as model recombinant proteins while L-homopropargylglycine (Hpg), a methionine analogue that incorporates into the methionine residues of a recombinant protein, was used as model unnatural amino acid. The pET system produced an almost negligible amount of Hpg-incorporated unnatural protein compared to the amount of methionine-incorporated natural protein. However, comparable amounts of unnatural and natural protein were produced by the pQE expression system. The amount of unnatural GFP protein produced through pET expression was not increased despite the over-expression of methionyl tRNA synthetase, which can enhance the activation rate of methionyl-tRNA with a methionine analogue. Incorporation of Hpg decreased the productivity of active GFP by approximately 2.5 fold, possibly caused by the inefficient folding of Hpg-incorporated GFP. Conversely, the productivity of functional anti-c-Met sc-Fv was not influenced by incorporation of Hpg. We confirmed through LC-MS and LCMS/MS that Hpg was incorporated into the methionine residues of the recombinant proteins produced by the pQE expression system. The first two authors equally contributed to this work.  相似文献   

18.
In this study we have described the non-canonical interactions between the porphyrin ring and the protein part of porphyrin-containing proteins to better understand their stabilizing role. The analysis reported in this study shows that the predominant type of non-canonical interactions at porphyrins are CH···O and CH···N interactions, with a small percentage of CH···π and non-canonical interactions involving sulfur atoms. The majority of non-canonical interactions are formed from side-chains of charged and polar amino acids, whereas backbone groups are not frequently involved. The main-chain non-canonical interactions might be slightly more linear than the side-chain interactions, and they have somewhat shorter median distances. The analysis, performed in this study, shows that about 44% of the total interactions in the dataset are involved in the formation of multiple (furcated) non-canonical interactions. The high number of porphyrin–water interactions show importance of the inclusion of solvent in protein–ligand interaction studies. Furthermore, in the present study we have observed that stabilization centers are composed predominantly from nonpolar amino acid residues. Amino acids deployed in the environment of porphyrin rings are deposited in helices and coils. The results from this study might be used for structure-based porphyrin protein prediction and as scaffolds for future porphyrin-containing protein design.  相似文献   

19.
Oncolytic adenoviruses (Ads) are an emerging alternative therapy for cancer; however, clinical trial have not yet demonstrated sufficient efficacy. When oncolytic Ads are used in combination with taxoids a synergistic increase in both cytotoxicity and viral replication is observed. In order to generate a next generation oncolytic adenovirus, virion were physically conjugated to a highly potent taxoid, SB-T-1214, and a folate targeting motif. Conjugation was enabled via the metabolic incorporation of non-canonical monosaccharides (O-GlcNAz) and amino acids (homopropargylglycine), which served as sites for chemoselective modification.  相似文献   

20.
氨酰tRNA合成酶(aminoacyl tRNA synthetases, aaRSs)通过催化氨基酸与相应tRNA的氨酰化以保证遗传信息翻译的准确性,在生物体内具有重要作用。近年来,随着对aaRS催化机制理解的不断加深,aaRS的应用逐渐成为研究热点。在细菌中,aaRS活性被抑制后会导致其生命活动发生紊乱,根据aaRS在人体与病原菌内不同的催化特点设计针对病原体的特异性aaRS抑制剂,将有助于开发以aaRS为靶标的新型抗生素。另外,通过突变aaRS可以在蛋白质序列中定点掺入非天然氨基酸,扩展蛋白质工程。本文简述了aaRS的分类、结构与功能的特点,并在此基础上综述了aaRS在研发新型抑制剂,设计改造特殊蛋白质等方面的应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号