首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In chronic experiments on cats, the effects were investigated of iontophoretic application of the adrenomimetic ephedrine and the -blocker obsidan (propranolol) on neuronal response induced in the motor cortex by conditioned stimulus presentation during performances of instrumental lever-pressing response. Inhibition of background firing activity and response in most neurons induced by conditioned stimuli was produced by ephedrine, whereas obsidan application enhanced this activity. It was concluded that steady, tonic inhibitory action of the noradrenergic system on background and induced firing activity in cortical neurons takes place during free-ranging behavior. Temporary reinforcement of noradrenergic influences could be an important element in mechanisms of external inhibition during stressful situations, aversive effects, and distractive stimuli.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 22, No. 5, pp. 680–688, September–October, 1990.  相似文献   

2.
A study was made of contractile activity produced in isolated muscle strips from human umbilical vessels by adrenomimetics and adrenoblockers. Activation of -as well as -adrenoceptors was found to cause contraction in the smooth muscle of the umbilical arteries and veins — a different effect from that occurring in other vessels. Selective shut-down of - or -receptors under the action of phentolamine and obsidane would indicate that activation of - and -adrenoceptors are responsible for mainly phasic and tonic components (respectively) of smooth muscle contraction in the umbilical vein. Obsidane was also found to inhibit the tonic component of contraction induced by oxytocin. In the smooth muscle cells of the umbilical artery, - and -receptors produce nonselective inhibition of noradrenaline-induced contraction, which obviously indicates limited differentiation in the adrenoceptors of this vessel. In view of the experimental findings obtained, application of obsidane either separately or in combination with oxytocin might be recommended for obstetrical use.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 21, No. 4, pp. 547–551, July–August, 1989.  相似文献   

3.
The dynamics of evoked potentials during blocking of cholinergic cortical structures was investigated in unanesthetized cats. Application of the anticholinergic drug benactyzine inhibits the negative phases of cortical responses to stimulation of the reticular formation and non-specific thalamic nuclei and also of responses to direct cortical stimulation. Direct cortical responses (DCRs), inverted by -aminobutyric acid, are also depressed, indicating the role of cholinergic mechanisms in the genesis of these responses. During blocking of cholinergic synapses, negative phases of the primary response (PR) and response to stimulation of the specific thalamic nucleus are facilitated. A tendency is then observed toward grouping of spontaneous unit discharges and abolition of inhibition of cortical neurons produced by high-frequency stimulation of the reticular formation. One cause of the increase in amplitude of the primary response (PR) to the action of anticholinergic drugs may be widening of the zone of cortical neurons involved in the response because of abolition of the localizing effect of inhibitory neurons.Institute of Physiology, Siberian Division, Academy of Sciences of the USSR, Novosibirsk. Translated from Neirofiziologiya, Vol. 2, No. 4, pp. 406–411, July–August, 1970.  相似文献   

4.
The activity of sensorimotor cortex neurons related to the performance of conditioned reflex movements by one extremity, which were evoked by the application of distant stimuli, was recorded in chronic experiments on cats. In the course of an experiment, the reflex performance was transferred from one extremity to the another, and, thus, the neuronal responses were studied in two situations: in the ipsilateral or in the contralateral position of a neuron with respect to the operating extremity. According to the pattern of their responses to the conditioning stimulus (CS), the neurons were classified into three groups. The first group consisted of neurons with bilateral type of responses, generating similar responses in both positions. The cells responding to the CS only in the ipsilateral situation formed the second group. The third group consisted of neurons with reciprocal responses, in the two above positions. The results obtained in our study illustrate basic regularities in the functioning of ipsilateral and contralateral hemispheres within the behavioral model used, and show that both hemispheres actively participate in the course of a preparation for the unilateral conditioned movement performance.Neirofiziologiya/Neurophysiology, Vol. 26, No. 5, pp. 334–346, September–October, 1994.  相似文献   

5.
Mechanisms of generation and conduction of direct cortical responses were studied in acute experiments on unanesthetized curarized cats with an intact cortex or with a chronically isolated strip of cortex. All the properties of these responses of the intact and isolated cortex of the suprasylvian gyrus were found to be identical. Inhibition of muscarinic cholinergic receptors in the region of the cortex between the stimulating and recording electrodes prevents or considerably reduces the conduction of excitation through this area, which is explained by the polysynaptic mechanism of conduction of the direct response. Cortical neuronal networks over which direct responses spread are anisotropic in direction. Application of the anticholinergic drug benactyzine to the cortex inhibits, whereas application of the anticholinesterase agent galanthamine increases not only the original direct cortical responses, but also responses previously reversed by application of -aminobutyric acid or pentobarbital or by coagulation of the cortical surface. Both deep and surface components of the direct response are thus generated by cholinergic structures in the cortex itself.Institute of Physiology, Academy of Medical Sciences of the USSR, Siberian Branch, Novosibirsk. Translated from Neirofiziologiya, Vol. 7, No. 5, pp. 451–457, September–October, 1975.  相似文献   

6.
The distribution of evoked rhythmic responses on the surface and in the depths of the retina of the carp (Cyprinus carpio) and tench (Tinca tinca) and the dependence of the amplitude — frequency characteristics of the response on stimulus intensity and duration were investigated by recording the local electroretinogram and unit activity of the ganglion cells. Rhythmic on- and off-responses to light differed in various characteristics, including their distribution between the cellular and synaptic layers of the retina. The frequency, amplitude, and number of waves in the response were found to depend on the parameters of the stimulus. On-, off-, and on — off-ganglion cells were represented in the records. Their spike discharge usually corresponded to a phase angle of the negative half-wave of the rhythmic response of close to /2. The results of experiments in which conduction along the optic nerve was blocked by cold showed that the system of generation of the rhythmic response in the retina is under the tonic influence of the centers.M. V. Lomonosov Moscow State University. Translated from Neirofiziologiya, Vol. 9, No. 1, pp. 61–68, January–February, 1977.  相似文献   

7.
Unit responses of neurons of zone 17 in the cat striate cortex to stripes of different widths were studied. Changes in the number of spikes during different time intervals (cuts) from the beginning of the response were analyzed in relation to stimulus area. Comparison of the results with those obtained by the study of receptive fields of the lateral geniculate body showed a significant difference in the dynamics of inhibition between cortical and geniculate receptive fields. Similar results were obtained when cortical unit responses to simultaneous and consecutive appearance of two stripes in the receptive field, one in the excitatory zone and the other at the inhibitory periphery, were studied. Evidence of the longer duration of cortical inhibition also was obtained by the same technique. When both stripes were placed in the excitatory center of the field another feature of cortical inhibition was revealed: its dependence on the order of stimulus application. If the order of stimulus application coincided with the optimal direction of movement of the stripe for the given field, the unit response to the next stimulus was strongly facilitated by the action of the stimulus applied previously. Application of stimuli in the opposite order invoked inhibition. The sensitivity of inhibition to the order of stimulus application was observed in the center of the field; it diminished toward the periphery, where application of the stimuli in any order evokes inhibition of the response.Medical Academy, Sofia, Bulgaria, I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 9, No. 4, pp. 339–346, July–August, 1977.  相似文献   

8.
The perturbation induced by mono- and divalent cations on the thermophilicity and thermostability of Solfolobus solfataricus -glycosidase, a hyperthermophilic tetrameric enzyme, has been investigated by spectroscopic and computational simulation methods to ascertain the Hofmeister effects on two strategic protein regions identified previously. Specifically, (1) an extra segment (83–124), present only in the sequence of hyperthermophilic glycosidases and recognized as an important thermostability determinant for the enzyme structure; and (2) a restricted area of the subunit interface responsible for the quaternary structure maintenance. Mono- and divalent cations inhibit to a different extent the -glycosidase activity, whose kinetic constants show an apparent competitive inhibition of the catalytic process that reflects the Hofmeister order. The thermostability is also affected by the nature and charge of the cations, reaching maximal effects for the case of Mg2+. Fourier transform infrared spectroscopy has revealed very small changes in the protein secondary structure in the presence of the investigated cations at 20 °C, while large effects on the protein melting temperatures are observed. Computational analysis of the enzyme structure has identified negative patches on the accessible surface of the two identified regions. Following the Hofmeister series, cations weaken the existing electrostatic network that links the extra segment to the remaining protein matrix. In particular, the perturbing action of cations could involve the ionic pair interactions E107–R245 and E109–R185, thus leading to a local destructuring of the extra segment as a possible starting event for thermal destabilization. A detailed investigation of the electrostatic network at the A–C intermolecular interface of Sgly after energy minimization suggests that cations could cause a strong attenuation of the ion pair interactions E474–K72 and D473–R402, with consequent partial dissociation of the tetrameric structure.Abbreviations Amide I amide I band in a 2H2O medium - EM energy minimization - ONPG o-nitrophenyl--d-galactopyranoside - Sgly Escherichia coli expressed Sulfolobus solfataricus -glycosidase  相似文献   

9.
Postural responses to vibrostimulation (50–100 Hz, 0.5 mm, 4–8 sec) of muscles of the back surface of the neck were studied in healthy subjects. In the sitting position, vibrostimulation evoked local displacements (backward head deflection), but global postural responses (forward inclination of the whole body) developed in the standing position. The amplitude of the evoked body inclination was dependent upon the site of the vibrostimuli application along the vertebral column. Asymmetrical application of vibrostimuli to the muscles of the right or left neck side was accompanied by development of a lateral component in the postural response. Changes in the spatial orientation of the head led to the changes in postural response direction: head turning to the right resulted in right-side body deviation during vibration, and vice versa. Illusions of head bend caused by habituation to its static turning were accompanied by precisely the same changes in the direction of body deviation. It is assumed that neck-evoked motor events are mediated via central mechanisms that are involved in perception of the head and body position in space.Translated from Neirofiziologiya, Vol. 25, No. 2, pp. 101–108, March–April, 1993.  相似文献   

10.
Unit activity of the frontal cortex during changes in stimulus intensity in the near-threshold range (15–16 dB above the threshold for the combined evoked potential) was investigated by an extracellular recording method in acute experiments on cats anesthetized with chloralose (70 mg/kg). Comparative analysis of unit responses in specific (SI) and nonspecific projection areas revealed basically similar changes in pattern during an increase in stimulus intensity: A decrease in the latent period, an increase in the total frequency and the phasic character of the discharge, and an increase in the probability of response. However, a relatively stable latent period and probability of response were observed in specific projection neurons for a stimulus intensity of 3–5 threshold units, whereas for the nonspecific projection neurons it was observed for a stimulus intensity of 10–15 threshold units. All sensory projections in the frontal cortex are formed by two inputs: short-latency low-threshold and long-latency high-threshold. Analysis of modality-dependent differences in the threshold of sensitivity and the latent period of response of the polysensory neurons suggests that stimuli of different modalities converge directly on cortical neurons.A. A. Zhdanov Leningrad State University. Translated from Neirofiziologiya, Vol. 8, No. 6, pp. 606–612, November–December, 1976.  相似文献   

11.
Summary This investigation 1) demonstrates the effect of amiloride on various taste responses in the hamster, and 2) tests the hypothesis that its action on iontophoretic application of taste stimuli parallels its action on bulk flow delivery. Amiloride has not previously been tested in the hamster nor has its effect on iontophoretic stimuli (socalled electric taste), which is thought to behave similarly to bulk flow stimuli, been examined. Amiloride treatment (4 min of 0.0001M) of the hamster's tongue effectively inhibited chorda tympani responses to NaCl and LiCl solutions. Bulk flow (0.1M) and iontophoretic (+7 A through 0.001M) presentations of NaCl and LiCl, which had unequal response magnitudes pre-treatment, were inhibited to the same residual response magnitude post-treatment. Recovery then proceeded along two distinct curves asymptotically returning to pre-treatment response levels. These curves could be adequately described by a simple exponential relationship. KCl responses were unaffected when presented via bulk flow techniques but significantly reduced when presented iontophoretically. HCl responses via either method were only slightly diminished. No decrement in response level was observed for the sweet stimuli sucrose (0.5M) or saccharin (–9 A through 0.001M Na-saccharin) nor for potassium picrate, a bitter stimulus, (0.01M or –10 A through 0.001M). Amiloride treatment of the hamster tongue was as specific in its action for sodium and lithium as reported in other species, and with the exception of KCl the action of amiloride on iontophoretic stimulation paralleled its action on bulk flow stimulation.  相似文献   

12.
We investigated the effect of monoamines and their agonists and antagonists upon responses of motoneurons medicated by NMDA-glutamate receptors. It was found that adrenalin strengthens the responses studied through activation of -and -adrenoreceptors. This effect of adrenalin is suppressed by an -adrenoblocker (phentolamine) and a -adrenoblocker (propranolol); it is restored by an -adrenomimetic (phenylephrine hydrochloride) and a -adrenomimetic (neoepinephrine). In 66% of the cases, dopamine inhibited motoneurons responses; in 34% of the cases, it strengthened such responses. In the presence of a selective blocker of D2-dopamine receptors (sulpiride), it only strengthened motoneuron responses. Serotonin strengthens responses of motoneurons; its action is suppressed by a blocker of type-II serotonin receptors (dezeril). A selective agonist of subtype-1A serotonin receptors, campirone, suppresses motoneuron responses. The effect of campirone is weakened by propranolol. The strengthening of NMDA-responses of motoneurons evoked by neoepinephrine and dopamine in the presence of sulpiride is weakened by a blocker of cAMP-dependent protein kinase, tolbutamide, and the strengthening of responses by phenylephrine hydrochloride and serotonin is weakened by an inhibitor of calmodulin, trifluoroperazine.M. Gorky Medical Institute, Ukrainian Ministry of Public Health, Donetsk. Translated from Neurofiziologiya, Vol. 23, No. 6, pp. 683–690, November–December, 1991.  相似文献   

13.
Unit responses in the lateral geniculate body of cats to photic stimuli of different contrast were investigated. The number of spikes in the initial phase of the responses (the first 30–45 msec) was found not to change at first, but then to decrease with an increase in the intensity of background illumination. The background intensity starting from which the response diminishes was shown to increase with an increase in the intensity of the test stimulus. The unit response is a linear function of the logarithm of stimulus contrast if the contrast is changed through variation of the intensity of the test stimulus. If contrast increases on account of a decrease in the intensity of background illumination the responses first increase and then remain unchanged. The range of contrasts within which the response is a linear function is narrowed if the intensity of the test stimulus is reduced. Counting the number of spikes in different time intervals of the response (t) showed that the greater the value of t (within the first 70–90 msec of the response) the steeper the curve of the number of spikes as a function of contrast. The Weber-Fechner law applies in the receptive field of the lateral geniculate body. The results are compared with those of some psychophysiological experiments.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 9, No. 3, pp. 267–274, May–June, 1977.  相似文献   

14.
Summary The study focussed on the representation of the electrosensory and lateral line units in the midbrain of the axolotl Ambystoma mexicanum. In addition, the responses to photic and acoustic/vibrational stimuli were determined. Unit properties were characterized with respect to baseline activity, sensitivity, latency, directional specificity and number of input modalities. The anatomical arrangement of the units was determined using stereotactic and histological measurements of the electrode positions.Of 106 units recorded, 29 units were unimodal, 77 units responded to more than one modality. Most units discharged only in response to stimuli. Thresholds of electrosensory units were about 100 V/cm field strength; lateral line units had thresholds below 5 m pp amplitude. The shortest latencies (8–17 ms) were found for responses to visual stimuli. Lateral line and vestibular units responded after 35–58 ms, electroreceptive units after 79–150 ms. All electrosensory and about 50% of the lateral line units were sharply tuned to definite stimulus directions.Electrosensory and lateral line units formed topographical maps in the tectum. The map in each tectal hemisphere contained information about the contralateral surroundings. The electrosensory, lateral line and visual representations were only partly in register; especially in the caudal areas of the midbrain the alignment was poor.  相似文献   

15.
Unit responses in the acoustic-lateral region of the medulla to electrical and mechanical stimulation of the lateral line organs were investigated in acute experiments on curarized catfish. Of the total number of neurons 70% possessed spontaneous activity. An electrical stimulus evoked a tonic response both in spontaneously active and in "silent" cells. Three main types of firing pattern of the neurons were distinguished: fast-adapting, slow-adapting, and grouped. As regards the relation of the neurons to polarity of the stimulus they were subdivided into two groups. The thresholds of unit responses to electrical stimulation varied considerably: from 2.5·10–9 to 5·10–12 A/mm2. The effect of intensity of the electrical stimulation on unit responses in the medulla is analyzed. The precise dependence of on- and off-responses of each neuron on stimulus intensity of any polarity was determined. The neurons were shown to be sensitive to both electrical and mechanical stimuli. It is postulated that this phenomenon is due to convergence of impulses from electrical and mechanical receptors of the lateral line on the neurons. The properties of the central neurons are compared with those of the peripheral electroreceptor system in catfish.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 5, No. 2, pp. 156–163, March–April, 1973.  相似文献   

16.
Activity of sensorimotor cortex neurons was recorded in chronic experements on cats trained to perform instrumental conditional reflex; records were made before, during, and after isolated iontophoretic applications of haloperidol or glutamate, or their combined application. Haloperidol was shown either to facilitate or to inhibit the background and evoked (related to acoustic stimulation and motor response) spike activity of cortical neurons. Aftereffects of haloperidol were observed too; they were still expressed 10–15 min after the cessation of the iontophoresis. Combined haloperidol and glutamate application was followed by a sharp suppression of the evoked responses potentiated earlier by glutamate. An adenylatecyclase system is supposed to mediate the facilitation evoked by glutamate application. Some modulators, including dopamine, probably activate adenylatecyclase and in this way ensure facilitation of the glutamate-induced responses.Neirofiziologiya/Neurophysiology, Vol. 26, No. 5, pp. 347–355, September–October, 1994.  相似文献   

17.
Unit activity was studied in areas 3 and 4 during the conditioned placing reflex in cats. Responses of somatic cortical neurons in this case were shown to develop comparatively late — 80–100 or, more often, 200–450 msec after the conditioned stimulus. In the motor cortex responses preceded movement by 50–550 msec, whereas in the somatosensory cortex they usually began simultaneously with or after the beginning of the movement. Judging from responses of somatic cortical neurons, the placing reflex is realized by the same neuronal mechanism as the corresponding voluntary movement. The differential stimulus and positive conditioned stimulus, after extinction of the conditioned placing reflex, evoked short-latency spike responses lasting 250–350 msec in the same neurons as took part in the reflex itself. In these types of internal inhibition, responses of the neurons were thus initially excitatory in character. Participation of the neurons in the conditioned placing reflex and its extinction, disinhibition, and differentiation, is the result of a change in the time course of excitatory processes and is evidently connected with differential changes in the efficiency of the various synaptic inputs of the neuron.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 14, No. 4, pp. 392–401, July–August, 1982.  相似文献   

18.
Research was performed on the intracellular activity of 150 neurons belonging to area 17 of the binocular region of the chipmunk visual cortex, showing that 65% were directionally selective and tuned (to varying degrees) to the angle of boundaries between contrasting areas and a light bar; 18% were not tuned to the direction and angle of stimulus movement, while 17% were only activated by general illumination of the receptive field. Of 39 directionally tuned neurons tested in relation to moving and stationary stimuli, 16 responded to stimulus movement only, 13 reacted to presentation of stationary bars with prolonged tonic activation, seven with a brief phasic response, and three with a phasic-tonic response. All phasic neurons were more intensively activated at higher rates of movement than tonic cells. The article considers whether an analogy may be drawn between fast (phasic) and slow (or tonic) neurons with Y- and X-systems respectively.A. N. Severtsov Institute of Evolutionary Morphology and Ecology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 20, No. 3, pp. 365–374, May–June 1988.  相似文献   

19.
Unit responses of the first (SI) somatosensory area of the cortex to stimulation of the second somatosensory area (SII), the ventral posterior thalamic nucleus, and the contralateral forelimb, and also unit responses in SII evoked by stimulation of SI, the ventral posterior thalamic nucleus, and the contralateral forelimb were investigated in experiments on cats immobilized with D-tubocurarine or Myo-Relaxin (succinylcholine). The results showed a substantially higher percentage of neurons in SII than in SI which responded to an afferent stimulus by excitation brought about through two or more synaptic relays in the cortex. In response to cortical stimulation antidromic and orthodromic responses appeared in SI and SII neurons, confirming the presence of two-way cortico-cortical connections. In both SI and SII intracellular recording revealed in most cases PSPs of similar character and intensity, evoked by stimulation of the cortex and nucleus in the same neuron. Latent periods of orthodromic spike responses to stimulation of nucleus and cortex in 50.5% of SI neurons and 37.1% of SII neurons differed by less than 1.0 msec. In 19.6% of SI and 41.4% of SII neurons the latent period of response to cortical stimulation was 1.6–4.7 msec shorter than the latent period of the response evoked in the same neuron by stimulation of the nucleus. It is concluded from these results that impulses from SI play an important role in the afferent activation of SII neurons.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 8, No. 4, pp. 351–357, July–August, 1976.  相似文献   

20.
Summary Antennal hygroreceptors of the honey bee, Apis mellifera L., have been investigated electrophysiologically and the sensillum containing these receptors with SEM. Moist and dry hygroreceptors have been identified along with a thermal receptor in a specialized coeloconic sensillum. This sensillum comprises a cuticular, shallow depression (diameter; 4 ) having a central opening (1.4–1.5 m) and a mushroom-shaped protrusion (1.4–1.5 m) from the opening. The head of the protrusion is irregular in shape and is not perforated. This sensillum has been thus far referred to as a sensillum campaniformium (Dietz and Humphreys 1971), henceforth, it is referred to as a coelocapitular sensillum.The responses of both moist and dry hygroreceptors are of a phasic-tonic manner. Both receptors are antagonistic with respect to their responses to humidity; one responds with an increase in impulse frequency to rising humidity, the other to falling humidity. The humidity-response relationship is independent of stimulus flux.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号