首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Membranes made of Chol/ESM (cholesterol/egg sphingomyelin) mixtures were investigated using saturation-recovery electron paramagnetic resonance spin-labeling methods, in which bimolecular collisions of relaxation agents (oxygen or nickel ethylenediamine diacetic acid) with spin labels are measured. Liquid-disordered (ld) and liquid-ordered (lo) phases, and cholesterol bilayer domains (CBDs) were discriminated and characterized by profiles of the oxygen transport parameter (OTP). In the ld phase, coexisting with the lo phase, the OTP profile is bell-shaped and lies above that in the pure ESM membrane. Changes in the OTP profile across the lo phase are complex. When the lo phase coexists with the ld phase, the OTP profile is similar to that across the pure ESM membrane but with a steeper bell shape. With an increase in cholesterol concentration (up to the cholesterol-solubility threshold), the profile becomes rectangular, with low OTP values from the membrane surface to the depth of C9, and high values in the membrane center. This approximately threefold increase in the OTP occurs at the depth at which the rigid ring structure of cholesterol is immersed. Further addition of cholesterol and the formation of the CBD does not affect the OTP profile across the lo phase. OTP values in the CBD are significantly lower than in the lo phase.  相似文献   

2.
Lateral organization of membranes made from binary mixtures of dimyristoylphosphatidylcholine (DMPC) or dipalmitoylphosphatidylcholine (DPPC) and macular xanthophylls (lutein or zeaxanthin) was investigated using the saturation-recovery (SR) EPR spin-labeling discrimination by oxygen transport (DOT) method in which the bimolecular collision rate of molecular oxygen with the nitroxide spin label is measured. This work was undertaken to examine whether or not lutein and zeaxanthin, macular xanthophylls that parallel cholesterol in its function as a regulator of both membrane fluidity and hydrophobicity, can parallel other structural functions of cholesterol, including formation of the liquid-ordered phase in membranes. The DOT method permits discrimination of different membrane phases when the collision rates (oxygen transport parameter) differ in these phases. Additionally, membrane phases can be characterized by the oxygen transport parameter in situ without the need for separation, which provides information about the dynamics of each phase. In gel-phase membranes, two coexisting phases were discriminated in the presence of macular xanthophylls - namely, the liquid-ordered-like and solid-ordered-like phases. However, in fluid-phase membranes, xanthophylls only induce the solitary liquid-ordered-like phase, while at similar concentrations, cholesterol induces coexisting liquid-ordered and liquid-disordered phases. No significant differences between the effects of lutein and zeaxanthin were found.  相似文献   

3.
EPR spin-labeling methods were used to investigate the order and fluidity of alkyl chains, the hydrophobicity of the membrane interior, and the order and motion of cholesterol molecules in coexisting phases and domains, or in a single phase of fluid-phase cholesterol/egg-sphingomyelin (Chol/ESM) membranes with a Chol/ESM mixing ratio from 0 to 3. A complete set of profiles for these properties was obtained for the liquid-disordered (l d) phase without cholesterol, for the liquid-ordered (l o) phase for the entire region of cholesterol solubility in this phase (from 33 to 66 mol%), and for the l o-phase domain that coexists with the cholesterol bilayer domain (CBD). Alkyl chains in the l o phase are more ordered than in the l d pure ESM membrane. However, fluidity in the membrane center is greater. Also, the profile of hydrophobicity changed from a bell to a rectangular shape. These differences are enhanced when the cholesterol content of the l o phase is increased from 33 to 66 mol%, with clear brake-points between the C9 and C10 positions (approximately where the steroid-ring structure of cholesterol reaches into the membrane). The organization and motion of cholesterol molecules in the CBD are similar to those in the l o-phase domain that coexists with the CBD.  相似文献   

4.
Bimolecular collision rate of 8-anilinonaphthalene-1-sulfonic acid (ANS) and the nitroxide doxyl group attached to various carbons on stearic acid spin labels (n-SASL) in phosphatidylcholine-cholesterol membranes in the fluid phase was studied by observing dynamic quenching of ANS fluorescence by n-SASL's. The excited-state lifetime of ANS and its reduction by the n-SASL doxyl group were directly measured by the time-correlated single photon counting technique to observe only dynamic quenching separately from static quenching and were analyzed by using Stern-Volmer relations. The collision rate of ANS with the n-SASL doxyl group ranges between 1 X 10(7) and 6 X 10(7), and the extent of dynamic quenching by n-SASL is in the order of 5-much much greater than 6- greater than 7- less than 9- less than 10- less than 12- less than 16-SASL (less than 5-SASL) in dimyristoylphosphatidylcholine (DMPC) membranes. Collision rate of 16-SASL is only 10% less than that of 5-SASL. Since the naphthalene ring of ANS is located in the near-surface region of the membrane, these results indicate that the methyl terminal of SASL appears in the near surface area frequently, probably due to extensive gauche-trans isomerism of the methylene chain. The presence of 30 mol% cholesterol decreases the collision rate of ANS with 12- and 16-SASL doxyl groups but not with the 5-SASL doxyl group in DMPC membranes. On the other hand, in egg-yolk phosphatidylcholine membranes, inclusion of 30 mol% cholesterol does not affect the collision of ANS with either 5-SASL or 16-SASL doxyl groups, in agreement with our previous observation that alkyl chain unsaturation moderates cholesterol effects on lipid motion in the membrane (Kusumi et al., Biochim. Biophys. Acta 854, 307-317). It is suggested that dynamic quenching of ANS fluorescence by lipid-type spin labels is a useful new monitor of membrane fluidity that reports on various lipid mobilities in the membrane; a class of motion can be preferentially observed over others by selecting a proper spin label, i.e., rotational diffusion of lipid about its long axis and translational diffusion by using 5-SASL, wobbling motion of the lipid long axis by using 7-SASL or androstane spin label, and gauche-trans isomerism by using 16-SASL.  相似文献   

5.
The physical properties of membranes derived from the total lipid extract of porcine lenses before and after the addition of cholesterol were investigated using EPR spin-labeling methods. Conventional EPR spectra and saturation-recovery curves indicate that the spin labels detect a single homogenous environment in membranes before the addition of cholesterol. After the addition of cholesterol (when cholesterol-to-phospholipid mole to mole ratio of 1.55-1.80 was achieved), two domains were detected by the discrimination by oxygen transport method using a cholesterol analogue spin label. The domains were assigned to a bulk phospholipid-cholesterol bilayer made of the total lipid mixture and to a cholesterol crystalline domain. Because the phospholipid analogue spin labels cannot partition into the pure cholesterol crystalline domain, they monitor properties of the phospholipid-cholesterol domain outside the pure cholesterol crystalline domain. Profiles of the order parameter, hydrophobicity, and oxygen transport parameter are identical within experimental error in this domain when measured in the absence and presence of a cholesterol crystalline domain. This indicates that both domains, the phospholipid-cholesterol bilayer and the pure cholesterol crystalline domain, can be treated as independent, weakly interacting membrane regions. The upper limit of the oxygen permeability coefficient across the cholesterol crystalline domain at 35 °C had a calculated value of 42.5 cm/s, indicating that the cholesterol crystalline domain can significantly reduce oxygen transport to the lens center. This work was undertaken to better elucidate the major factors that determine membrane resistance to oxygen transport across the lens lipid membrane, with special attention paid to the cholesterol crystalline domain.  相似文献   

6.
The physical properties of membranes derived from the total lipid extract of porcine lenses before and after the addition of cholesterol were investigated using EPR spin-labeling methods. Conventional EPR spectra and saturation-recovery curves indicate that the spin labels detect a single homogenous environment in membranes before the addition of cholesterol. After the addition of cholesterol (when cholesterol-to-phospholipid mole to mole ratio of 1.55-1.80 was achieved), two domains were detected by the discrimination by oxygen transport method using a cholesterol analogue spin label. The domains were assigned to a bulk phospholipid-cholesterol bilayer made of the total lipid mixture and to a cholesterol crystalline domain. Because the phospholipid analogue spin labels cannot partition into the pure cholesterol crystalline domain, they monitor properties of the phospholipid-cholesterol domain outside the pure cholesterol crystalline domain. Profiles of the order parameter, hydrophobicity, and oxygen transport parameter are identical within experimental error in this domain when measured in the absence and presence of a cholesterol crystalline domain. This indicates that both domains, the phospholipid-cholesterol bilayer and the pure cholesterol crystalline domain, can be treated as independent, weakly interacting membrane regions. The upper limit of the oxygen permeability coefficient across the cholesterol crystalline domain at 35 degrees C had a calculated value of 42.5 cm/s, indicating that the cholesterol crystalline domain can significantly reduce oxygen transport to the lens center. This work was undertaken to better elucidate the major factors that determine membrane resistance to oxygen transport across the lens lipid membrane, with special attention paid to the cholesterol crystalline domain.  相似文献   

7.
Physical properties of thylakoid membranes isolated from barley were investigated by the electron paramagnetic resonance (EPR) spin labeling technique. EPR spectra of stearic acid spin labels 5-SASL and 16-SASL were measured as a function of temperature in secondary barley leaves during natural and dark-induced senescence. Oxygen transport parameter was determined from the power saturation curves of the spin labels obtained in the presence and absence of molecular oxygen at 25 °C. Parameters of EPR spectra of both spin labels showed an increase in the thylakoid membrane fluidity during senescence, in the headgroup area of the membrane, as well as in its interior. The oxygen transport parameter also increased with age of barley, indicating easier diffusion of oxygen within the membrane and its higher fluidity. The data are consistent with age-related changes of the spin label parameters obtained directly by EPR spectroscopy. Similar outcome was also observed when senescence was induced in mature secondary barley leaves by dark incubation. Such leaves showed higher membrane fluidity in comparison with leaves of the same age, grown under light conditions. Changes in the membrane fluidity of barley secondary leaves were compared with changes in the levels of carotenoids (car) and proteins, which are known to modify membrane fluidity. Determination of total car and proteins showed linear decrease in their level with senescence. The results indicate that thylakoid membrane fluidity of barley leaves increases with senescence; the changes are accompanied with a decrease in the content of car and proteins, which could be a contributing factor.  相似文献   

8.
A pulse saturation-recovery electron paramagnetic resonance (EPR) method has been developed that allows estimation of the exchange rates of a spin-labeled lipid between the bulk domain and the protein-rich membrane domain, in which the rate of collision between the spin label and molecular oxygen is reduced (slow-oxygen transport domain, or SLOT domain). It is based on the measurements of saturation-recovery signals of a lipid spin label as a function of concentrations of both molecular oxygen and the spin label. Influenza viral membrane, one of the simplest paradigms for the study of biomembranes, showed the presence of two membrane domains with slow and fast collision rates with oxygen (a 16-fold difference) at 30 degrees C. The outbound rate from and the inbound rate into the SLOT domain (or possibly the rate of the domain disintegration and formation) were estimated to be 7.7 x 10(4) and 4.6 x 10(4) s(-1), (15 micros residency time), respectively, indicating that the SLOT domain is highly dynamic and that the entire SLOT domain represents about one-third of the membrane area. Because the oxygen transport rate in the SLOT domain is a factor of two smaller than that in purple membrane, where bacteriorhodopsin is aggregated, we propose that the SLOT domain in the viral membrane is the cholesterol-rich raft domain stabilized by the trimers of hemagglutinin and/or the tetramers of neuraminidase.  相似文献   

9.
Membranes made of dimyristoylphosphatidylcholine and cholesterol, one of the simplest paradigms for the study of liquid ordered-disordered phase separation, were investigated using a pulse-EPR spin-labeling method in which bimolecular collision of molecular oxygen with the nitroxide spin label is measured. This method allowed discrimination of liquid-ordered, liquid-disordered, and solid-ordered domains because the collision rates (OTP) differ in these domains. Furthermore, the oxygen transport parameter (OTP) profile across the bilayer provides unique information about the three-dimensional dynamic organization of the membrane domains. First, the OTP in the bilayer center in the liquid-ordered domain was comparable to that in the liquid-disordered domain without cholesterol, but the OTP near the membrane surface (up to carbon 9) was substantially smaller in the ordered domain, i.e., the cholesterol-based liquid-ordered domain is ordered only near the membrane surface, still retaining high levels of disorder in the bilayer center. This property may facilitate lateral mobility in ordered domains. Second, in the liquid-disordered domain, the domains with ~5 mol % cholesterol exhibited higher OTP than those without cholesterol, everywhere across the membrane. Third, the transmembrane OTP profile in the liquid-ordered domain that contained 50 mol % cholesterol dramatically differed from that which contained 27 mol % cholesterol.  相似文献   

10.
The physical properties of membranes derived from the total lipids extracted from the lens cortex and nucleus of a 2-year-old cow were investigated using EPR spin-labeling methods. Conventional EPR spectra and saturation-recovery curves show that spin labels detect a single homogenous environment in membranes made from cortical lipids. Properties of these membranes are very similar to those reported by us for membranes made of the total lipid extract of 6-month-old calf lenses (J. Widomska, M. Raguz, J. Dillon, E. R. Gaillard, W. K. Subczynski, Biochim. Biophys. Acta 1768 (2007) 1454-1465). However, in membranes made from nuclear lipids, two domains were detected by the EPR discrimination by oxygen transport method using the cholesterol analogue spin label and were assigned to the bulk phospholipid-cholesterol domain (PCD) and the immiscible cholesterol crystalline domain (CCD), respectively. Profiles of the order parameter, hydrophobicity, and the oxygen transport parameter are practically identical in the bulk PCD when measured for either the cortical or nuclear lipid membranes. In both membranes, lipids in the bulk PCD are strongly immobilized at all depths. Hydrophobicity and oxygen transport parameter profiles have a rectangular shape with an abrupt change between the C9 and C10 positions, which is approximately where the steroid ring structure of cholesterol reaches into the membrane. The permeability coefficient for oxygen, estimated at 35 °C, across the bulk PCD in both membranes is slightly lower than across the water layer of the same thickness. However, the evaluated upper limit of the permeability coefficient for oxygen across the CCD (34.4 cm/s) is significantly lower than across the water layer of the same thickness (85.9 cm/s), indicating that the CCD can significantly reduce oxygen transport in the lens nucleus.  相似文献   

11.
The oxygen permeability coefficient across the membrane made of the total lipid extract from the plasma membrane of calf lens was estimated from the profile of the oxygen transport parameter (local oxygen diffusion-concentration product) and compared with those estimated for membranes made of an equimolar 1-palmitoyl-2-oleoylphosphatidylcholine/cholesterol (POPC/Chol) mixture and of pure POPC. Profiles of the oxygen transport parameter were obtained by observing the collision of molecular oxygen with nitroxide radical spin labels placed at different depths in the membrane using the saturation-recovery EPR technique and were published by us earlier (J. Widomska, M. Raguz, J. Dillon, E. R. Gaillard, W. K. Subczynski, Biochim. Biophys. Acta. 1768 (2007) 1454-1465). At 35 °C, the estimated oxygen permeability coefficients were 51.3, 49.7, and 157.4 cm/s for lens lipid, POPC/Chol, and POPC membranes, respectively (compared with 53.3 cm/s for a water layer with the same thickness as a membrane). Membrane permeability significantly decreases at lower temperatures. In the lens lipid membrane, resistance to the oxygen transport is located in and near the polar headgroup region of the membrane to the depth of the ninth carbon, which is approximately where the steroid-ring structure of cholesterol reaches into the membrane. In the central region of the membrane, oxygen transport is enhanced, significantly exceeding that in bulk water. It is concluded that the high level of cholesterol in lens lipids is responsible for these unique membrane properties.  相似文献   

12.
The physical properties of a membrane derived from the total lipids of a calf lens were investigated using EPR spin labeling and were compared with the properties of membranes made of an equimolar 1-palmitoyl-2-oleoylphosphatidylcholine/cholesterol (POPC/Chol) mixture and of pure POPC. Conventional EPR spectra and saturation-recovery curves show that spin labels detect a single homogenous environment in all three membranes. Profiles of the order parameter, hydrophobicity, and oxygen transport parameter are practically identical in lens lipid and POPC/Chol membranes, but differ drastically from profiles in pure POPC membranes. In both lens lipid and POPC/Chol membranes, the lipids are strongly immobilized at all depths, which is in contrast to the high fluidity of the POPC membrane. Hydrophobicity and oxygen transport parameter profiles in lens lipid and POPC/Chol membranes have a rectangular shape with an abrupt change between the C9 and C10 positions, which is approximately where the steroid ring structure of cholesterol reaches into the membrane. At this position, hydrophobicity increases from the level of methanol to the level of hexane, and the oxygen transport parameter increases by a factor of 2-3. These profiles in POPC membranes are bell-shaped. It is concluded that the high level of cholesterol in lens lipids makes the membrane stable, immobile, and impermeable to both polar and nonpolar molecules.  相似文献   

13.
Oxygen permeability of the lipid bilayer membrane made of calf lens lipids   总被引:1,自引:0,他引:1  
The oxygen permeability coefficient across the membrane made of the total lipid extract from the plasma membrane of calf lens was estimated from the profile of the oxygen transport parameter (local oxygen diffusion-concentration product) and compared with those estimated for membranes made of an equimolar 1-palmitoyl-2-oleoylphosphatidylcholine/cholesterol (POPC/Chol) mixture and of pure POPC. Profiles of the oxygen transport parameter were obtained by observing the collision of molecular oxygen with nitroxide radical spin labels placed at different depths in the membrane using the saturation-recovery EPR technique and were published by us earlier (J. Widomska, M. Raguz, J. Dillon, E. R. Gaillard, W. K. Subczynski, Biochim. Biophys. Acta. 1768 (2007) 1454-1465). At 35 degrees C, the estimated oxygen permeability coefficients were 51.3, 49.7, and 157.4 cm/s for lens lipid, POPC/Chol, and POPC membranes, respectively (compared with 53.3 cm/s for a water layer with the same thickness as a membrane). Membrane permeability significantly decreases at lower temperatures. In the lens lipid membrane, resistance to the oxygen transport is located in and near the polar headgroup region of the membrane to the depth of the ninth carbon, which is approximately where the steroid-ring structure of cholesterol reaches into the membrane. In the central region of the membrane, oxygen transport is enhanced, significantly exceeding that in bulk water. It is concluded that the high level of cholesterol in lens lipids is responsible for these unique membrane properties.  相似文献   

14.
The physical properties of a membrane derived from the total lipids of a calf lens were investigated using EPR spin labeling and were compared with the properties of membranes made of an equimolar 1-palmitoyl-2-oleoylphosphatidylcholine/cholesterol (POPC/Chol) mixture and of pure POPC. Conventional EPR spectra and saturation-recovery curves show that spin labels detect a single homogenous environment in all three membranes. Profiles of the order parameter, hydrophobicity, and oxygen transport parameter are practically identical in lens lipid and POPC/Chol membranes, but differ drastically from profiles in pure POPC membranes. In both lens lipid and POPC/Chol membranes, the lipids are strongly immobilized at all depths, which is in contrast to the high fluidity of the POPC membrane. Hydrophobicity and oxygen transport parameter profiles in lens lipid and POPC/Chol membranes have a rectangular shape with an abrupt change between the C9 and C10 positions, which is approximately where the steroid ring structure of cholesterol reaches into the membrane. At this position, hydrophobicity increases from the level of methanol to the level of hexane, and the oxygen transport parameter increases by a factor of 2-3. These profiles in POPC membranes are bell-shaped. It is concluded that the high level of cholesterol in lens lipids makes the membrane stable, immobile, and impermeable to both polar and nonpolar molecules.  相似文献   

15.
Dynamic properties of phosphatidylcholine-cholesterol membranes in the fluid phase and water accessibility to the membranes have been studied as a function of phospholipid alkyl chain length, saturation, mole fraction of cholesterol, and temperature by using spin and fluorescence labelling methods. The results are the following: (1) The effect of cholesterol on motional freedom of 5-doxyl stearic acid spin label (5-SASL) and 16-doxyl stearic acid spin label (16-SASL) in saturated phosphatidylcholine membrane is significantly larger than the effects of alkyl chain length and introduction of unsaturation in the alkyl chain. (2) Variation of alkyl chain length of saturated phospholipids does not alter the effects of cholesterol except in the case of dilauroylphosphatidylcholine, which possesses the shortest alkyl chains (12 carbons) used in this work. (3) Unsaturation of the alkyl chains greatly reduces the ordering effect of cholesterol at C-5 and C-16 positions although unsaturation alone gives only minor fluidizing effects. (4) Introduction of 30 mol% cholesterol to dimyristoylphosphatidylcholine membranes decreases the lateral diffusion constants of lipids by a factor of four, while it causes only a slight decrease of lateral diffusion in dioleoylphosphatidylcholine membranes. (5) If compared at the same temperature, 5-SASL mobilities plotted as a function of mole fraction of cholesterol in the fluid phases of dimyristoylphosphatidylcholine-, dipalmitoylphosphatidylcholine- and distearoylphosphatidylcholine-cholesterol membranes are similar in wide ranges of temperature (45-82 degrees C) and cholesterol mole fraction (0-50%). (6) In isothermal experiments with saturated phosphatidylcholine membranes, 5-SASL is maximally immobilized at the phase boundary between Regions I and III reported by other workers (Recktenwald, D.J. and McConnell, H.M. (1981) Biochemistry 20, 4505-4510) and becomes more mobile away from the boundary in Regions I and III. (7) 5-SASL in unsaturated phosphatidylcholine membranes showed a gradual monotonic immobilization with increase of cholesterol mole fraction without showing any maximum in the range of cholesterol fractions studied. (8) By rigorously determining rigid-limit magnetic parameters of cholestane spin labels in membranes from Q-band second-derivative ESR spectra to monitor the dielectric environment around the nitroxide radical, it is concluded that cholesterol incorporation increases water accessibility in the hydrophilic loci of the membrane. In contrast, 12-(9-anthroyloxy)stearic acid fluorescence showed that water accessibility is decreased in the hydrophobic loci of the membrane.  相似文献   

16.
A novel form of non-linear EPR spectroscopy, viz. the first harmonic absorption spectrum recorded in phase quadrature with respect to the Zeeman field modulation, is used here to investigate spin-lattice relaxation enhancements of nitroxide spin labels bound to serum albumin that are induced by spin-spin interactions with aqueous paramagnetic ions. The advantage of this EPR method is that it is directly sensitive to spin-lattice relaxation and affected relatively little by other spectral parameters (Livshits et al., J. Magn. Reson. 133 (1998) 79-91). Relaxation enhancements by ferricyanide of bound fatty acids (n-SASL) spin-labelled at different positions, n, in the chain are compared with those of different maleimide spin label derivatives attached at the single free -SH group, as well as with those of the spin labels free in solution. It was found that: (1) the encounter frequency of ferricyanide with 5-SASL and 12-SASL bound to serum albumin is more than two times less than that with 16-SASL; (2) the accessibility of ferricyanide to 16-SASL is comparable to that of the more immobilised covalently bound spin labels; and (3) the absolute values of the encounter frequencies for the bound spin-labelled fatty acids are approximately a factor of ten smaller than for the corresponding free spin labels, but the latter show a dependence on position of labelling that is similar to the bound labels. A kinetic scheme that is consistent with these relative differences involves rapid reversible transitions between an 'open' and 'closed' state, in which interaction with aqueous paramagnetic agents is possible only in the 'open' state. The equilibrium strongly favours the 'closed' state, which is further enhanced at low temperatures.  相似文献   

17.
The effects of the 9-cis and 13-cis isomers of zeaxanthin on the molecular organization and dynamics of dimyristoylphosphatidylcholine (DMPC) membranes were investigated using conventional and saturation recovery EPR observations of the 1-palmitoyl-2-(14-doxylstearoyl)phosphatidylcholine (14-PC) spin label. The results were compared with the effects caused by the all-trans isomer of zeaxanthin. Effects on membrane fluidity, order, hydrophobicity, and the oxygen transport parameter were monitored at the center of the fluid phase DMPC membrane. The local diffusion-solubility product of oxygen molecules (oxygen transport parameter) in the membrane center, studied by saturation-recovery EPR, decreased by 47% and 27% by including 10 mol% 13-cis and 9-cis zeaxanthin, respectively; whereas, incorporation of all-trans zeaxanthin decreased this parameter by only 11%. At a zeaxanthin-to-DMPC mole ratio of 1:9, all investigated isomers decreased the membrane fluidity and increased the alkyl chain order in the membrane center. They also increased the hydrophobicity of the membrane interior. The effects of these isomers of zeaxanthin on the membrane properties mentioned above increase as: all-trans<9-cis相似文献   

18.
Electron paramagnetic resonance (EPR) spin-labeling methods make it possible not only to discriminate the cholesterol bilayer domain (CBD) but also to obtain information about the organization and dynamics of cholesterol molecules in the CBD. The abilities of spin-label EPR were demonstrated for Chol/POPC (cholesterol/1-palmitoyl-2-oleoylphosphatidylcholine) membranes, with a Chol/POPC mixing ratio that changed from 0 to 3. Using the saturation-recovery (SR) EPR approach with cholesterol analogue spin labels, ASL and CSL, and oxygen or NiEDDA relaxation agents, it was confirmed that the CBD was present in all membrane suspensions when the mixing ratio exceeded the cholesterol solubility threshold (CST). Conventional EPR spectra of ASL and CSL in the CBD were similar to those in the surrounding POPC bilayer (which is saturated with cholesterol), indicating that in both domains, cholesterol exists in the lipid-bilayer-like structures. The behavior of ASL and CSL (and, thus, the behavior of cholesterol molecules) in the CBD was compared with that in the surrounding POPC-cholesterol domain (PCD). In the CBD, ASL and CSL molecules are better ordered than in the surrounding PCD. This difference is small and can be compared to that induced in the surrounding domain by an ∼10 °C decrease in temperature. Thus, cholesterol molecules are unexpectedly dynamic in the CBD, which should enhance their interaction with the surrounding domain. The polarity of the water/membrane interface of the CBD is significantly greater than that of the surrounding PCD, which significantly enhances penetration of the water-soluble relaxation agent, NiEDDA, into that region. Hydrophobicity measured in the centers of both domains is similar. The oxygen transport parameter (oxygen diffusion-concentration product) measured in the center of the CBD is about ten times smaller than that measured in the center of the surrounding domain. Thus, the CBD can form a significant barrier to oxygen transport. The results presented here point out similarities between the organization and dynamics of cholesterol molecules in the CBD and in the surrounding PCD, as well as significant differences between CBDs and cholesterol crystals.  相似文献   

19.
The effects of the 9-cis and 13-cis isomers of zeaxanthin on the molecular organization and dynamics of dimyristoylphosphatidylcholine (DMPC) membranes were investigated using conventional and saturation recovery EPR observations of the 1-palmitoyl-2-(14-doxylstearoyl)phosphatidylcholine (14-PC) spin label. The results were compared with the effects caused by the all-trans isomer of zeaxanthin. Effects on membrane fluidity, order, hydrophobicity, and the oxygen transport parameter were monitored at the center of the fluid phase DMPC membrane. The local diffusion-solubility product of oxygen molecules (oxygen transport parameter) in the membrane center, studied by saturation-recovery EPR, decreased by 47% and 27% by including 10 mol% 13-cis and 9-cis zeaxanthin, respectively; whereas, incorporation of all-trans zeaxanthin decreased this parameter by only 11%. At a zeaxanthin-to-DMPC mole ratio of 1:9, all investigated isomers decreased the membrane fluidity and increased the alkyl chain order in the membrane center. They also increased the hydrophobicity of the membrane interior. The effects of these isomers of zeaxanthin on the membrane properties mentioned above increase as: all-trans < 9-cis ≤ 13-cis. Obtained results suggest that the investigated cis-isomers of zeaxanthin, similar to the all-trans isomer, are located in the membrane interior, adopting transmembrane orientation with the polar terminal hydroxyl groups located in the opposite leaflets of the bilayer. However, the existence of the second pool of cis-zeaxanthin molecules located in the one leaflet and anchored by the terminal hydroxyl groups in the same polar headgroup region cannot be completely ruled out.  相似文献   

20.
Permeation of molecular oxygen in rhodopsin, an integral membrane protein, has been investigated by monitoring the bimolecular collision rate between molecular oxygen and the nitroxide spin label using a pulse electron spin resonance (ESR) T1 method. Rhodopsin was labeled by regeneration with the spin-labeled 9-cis retinal analogue in which the beta-ionone ring of retinal is replaced by the nitroxide tetramethyl-oxypyrrolidine ring. The bimolecular collision rate was evaluated in terms of an experimental parameter W(x), defined as T1(-1)(air,x)--T1(-1)(N2,x) where T1's are the spin-lattice relaxation times of the nitroxide in samples equilibrated with atmospheric air and nitrogen respectively, which is proportional to the product of local oxygen concentration and local diffusion coefficient (transport). W-values at the beta-ionone binding site in spin-labeled rhodopsin are in the range of 0.02-0.13 microseconds-1, which are 10-60 times smaller than W's in water and 1.1-20 times smaller than in model membranes in the gel phase, indicating that membrane proteins create significant permeation resistance to transport of molecular oxygen inside and across the membrane. W(thereby the oxygen diffusion-concentration product) is larger in the meta II-enriched sample than in rhodopsin, indicating light-induced conformational changes of opsin around the beta-ionone binding site. W decreases with increase of temperature for both rhodopsin and meta II-enriched samples, suggesting that temperature-induced conformational changes take place in both samples. These changes were not observable using conventional ESR spectroscopy. It is concluded that W is a sensitive monitor of conformational changes of proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号