首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Long‐term trends in ecosystem resource use efficiencies (RUEs) and their controlling factors are key pieces of information for understanding how an ecosystem responds to climate change. We used continuous eddy covariance and microclimate data over the period 1999–2017 from a 120‐year‐old black spruce stand in central Saskatchewan, Canada, to assess interannual variability, long‐term trends, and key controlling factors of gross ecosystem production (GEP) and the RUEs of carbon (CUE = net primary production [NPP]/GEP), light (LUE = GEP/absorbed photosynthetic radiation [APAR]), and water (WUE = GEP/evapotranspiration [E]). At this site, annual GEP has shown an increasing trend over the 19 years (p < 0.01), which may be attributed to rising atmospheric CO2 concentration. Interannual variability in GEP, aside from its increasing trend, was most strongly related to spring temperatures. Associated with the significant increase in annual GEP were relatively small changes in NPP, APAR, and E, so that annual CUE showed a decreasing trend and annual LUE and WUE showed increasing trends over the 19 years. The long‐term trends in the RUEs were related to the increasing CO2 concentration. Further analysis of detrended RUEs showed that their interannual variation was impacted most strongly by air temperature. Two‐factor linear models combining CO2 concentration and air temperature performed well (R2~0.60) in simulating annual RUEs. LUE and WUE were positively correlated both annually and seasonally, while LUE and CUE were mostly negatively correlated. Our results showed divergent long‐term trends among CUE, LUE, and WUE and highlighted the need to account for the combined effects of climatic controls and the ‘CO2 fertilization effect’ on long‐term variations in RUEs. Since most RUE‐based models rely primarily on one resource limitation, the observed patterns of relative change among the three RUEs may have important implications for RUE‐based modeling of C fluxes.  相似文献   

2.
Gross ecosystem productivity (GEP) in tropical forests varies both with the environment and with biotic changes in photosynthetic infrastructure, but our understanding of the relative effects of these factors across timescales is limited. Here, we used a statistical model to partition the variability of seven years of eddy covariance‐derived GEP in a central Amazon evergreen forest into two main causes: variation in environmental drivers (solar radiation, diffuse light fraction, and vapor pressure deficit) that interact with model parameters that govern photosynthesis and biotic variation in canopy photosynthetic light‐use efficiency associated with changes in the parameters themselves. Our fitted model was able to explain most of the variability in GEP at hourly (R= 0.77) to interannual (R= 0.80) timescales. At hourly timescales, we found that 75% of observed GEP variability could be attributed to environmental variability. When aggregating GEP to the longer timescales (daily, monthly, and yearly), however, environmental variation explained progressively less GEP variability: At monthly timescales, it explained only 3%, much less than biotic variation in canopy photosynthetic light‐use efficiency, which accounted for 63%. These results challenge modeling approaches that assume GEP is primarily controlled by the environment at both short and long timescales. Our approach distinguishing biotic from environmental variability can help to resolve debates about environmental limitations to tropical forest photosynthesis. For example, we found that biotically regulated canopy photosynthetic light‐use efficiency (associated with leaf phenology) increased with sunlight during dry seasons (consistent with light but not water limitation of canopy development) but that realized GEP was nonetheless lower relative to its potential efficiency during dry than wet seasons (consistent with water limitation of photosynthesis in given assemblages of leaves). This work highlights the importance of accounting for differential regulation of GEP at different timescales and of identifying the underlying feedbacks and adaptive mechanisms.  相似文献   

3.
The impact of land management actions such as prescribed fire remains a key uncertainty in understanding the spatiotemporal patterns of carbon cycling in the Western USA. We therefore quantified carbon exchange and aboveground carbon stocks following a prescribed fire in a mountain big sagebrush ecosystem located in the northern Great Basin, USA. Specifically, we examined the changes in plant functional type, leaf area index, standing aboveground carbon stocks, net ecosystem production (NEP), gross ecosystem production (GEP), and ecosystem-level respiration (Reco) for 2 years before and 7 of 9 years after a prescribed fire. Post-burn GEP and Reco exceeded pre-burn GEP and Reco within 2 years and remained elevated. The variation in GEP and Reco provided no evidence of a large and prolonged net efflux of carbon in the 9 years after the fire. Rather, NEP indicated the site was a sink before and after the fire, with little change in sink strength associated with the burn. Re-sprouting and recruitment of grasses and forbs drove the post-burn increase in GEP. Woody shrub growth was the dominant control on aboveground biomass accumulation after fire, with shrub aboveground biomass reaching ~ 11% of pre-burn biomass after 5 years. The rapid recovery of GEP and the growth of mid-successional shrubs suggest ecosystem-level carbon fluxes and stocks can recover rapidly after fire in mesic mountain big sagebrush ecosystems.  相似文献   

4.
We performed field measurements on the spatial and temporal variability in CH4 emissions from stem surfaces of mature Fraxinus mandshurica Rupr. trees in a floodplain forest of northern Japan. Stem CH4 fluxes were measured by a static closed-chamber method at ca. 15 cm above ground on ten selected trees to test among-individual variability, and the diurnal and seasonal changes in three representative trees. Daytime stem CH4 emission rates varied between 81 and 1,305 µg CHm?2 h?1 among individual trees, and showed a spatial gradient apparently corresponding to the difference in water table depth at the experimental site. Stem CH4 fluxes were quite stable throughout a 24 h period for foliated trees in August and were similar for defoliated trees in November. Large differences were observed in the magnitude of seasonal changes in stem CH4 flux among individual trees; one sampled tree showed no clear seasonal changes in stem CH4 flux, while another tree exhibited drastic seasonal changes ranging larger than one order of magnitude. Results demonstrated the high variability in stem CH4 emissions in space and time, and suggested the importance of soil temperature, water table depth and porewater CH4 concentration as possible environmental factors controlling stem CH4 emissions from temperate forested wetlands.  相似文献   

5.
Net ecosystem productivity (NEP), net primary productivity (NPP), and water vapour exchange of a mature Pinus ponderosa forest (44°30′ N, 121°37′ W) growing in a region subject to summer drought were investigated along with canopy assimilation and respiratory fluxes. This paper describes seasonal and annual variation in these factors, and the evaluation of two generalized models of carbon and water balance (PnET‐II and 3‐PG) with a combination of traditional measurements of NPP, respiration and water stress, and eddy covariance measurements of above‐and below‐canopy CO2 and water vapour exchange. The objective was to evaluate the models using two years of traditional and eddy covariance measurements, and to use the models to help interpret the relative importance of processes controlling carbon and water vapour exchange in a water‐limited pine ecosystem throughout the year. PnET‐II is a monthly time‐step model that is driven by nitrogen availability through foliar N concentration, and 3‐PG is a monthly time‐step quantum‐efficiency model constrained by extreme temperatures, drought, and vapour pressure deficits. Both models require few parameters and have the potential to be applied at the watershed to regional scale. There was 2/3 less rainfall in 1997 than in 1996, providing a challenge to modelling the water balance, and consequently the carbon balance, when driving the models with the two years of climate data, sequentially. Soil fertility was not a key factor in modelling processes at this site because other environmental factors limited photosynthesis and restricted projected leaf area index to ~1.6. Seasonally, GEP and LE were overestimated in early summer and underestimated through the rest of the year. The model predictions of annual GEP, NEP and water vapour exchange were within 1–39% of flux measurements, with greater disparity in 1997 because soil water never fully recharged. The results suggest that generalized models can provide insights to constraints on productivity on an annual basis, using a minimum of site data.  相似文献   

6.
Experimental studies have shown that coral calcification rates are dependent on light, nutrients, food availability, temperature, and seawater aragonite saturation (Ω arag), but the relative importance of each parameter in natural settings remains uncertain. In this study, we applied Calcein fluorescent dyes as time indicators within the skeleton of coral colonies (n = 3) of Porites astreoides and Diploria strigosa at three study sites distributed across the northern Bermuda coral reef platform. We evaluated the correlation between seasonal average growth rates based on coral density and extension rates with average temperature, light, and seawater Ω arag in an effort to decipher the relative importance of each parameter. The results show significant seasonal differences among coral calcification rates ranging from summer maximums of 243 ± 58 and 274 ± 57 mmol CaCO3 m?2 d?1 to winter minimums of 135 ± 39 and 101 ± 34 mmol CaCO3 m?2 d?1 for P. astreoides and D. strigosa, respectively. We also placed small coral colonies (n = 10) in transparent chambers and measured the instantaneous rate of calcification under light and dark treatments at the same study sites. The results showed that the skeletal growth of D. strigosa and P. astreoides, whether hourly or seasonal, was highly sensitive to Ω arag. We believe this high sensitivity, however, is misleading, due to covariance between light and Ω arag, with the former being the strongest driver of calcification variability. For the seasonal data, we assessed the impact that the observed seasonal differences in temperature (4.0 °C), light (5.1 mol photons m?2 d?1), and Ω arag (0.16 units) would have on coral growth rates based on established relationships derived from laboratory studies and found that they could account for approximately 44, 52, and 5 %, respectively, of the observed seasonal change of 81 ± 14 mmol CaCO3 m?2 d?1. Using short-term light and dark incubations, we show how the covariance of light and Ω arag can lead to the false conclusion that calcification is more sensitive to Ω arag than it really is.  相似文献   

7.
Global‐scale studies suggest that dryland ecosystems dominate an increasing trend in the magnitude and interannual variability of the land CO2 sink. However, such analyses are poorly constrained by measured CO2 exchange in drylands. Here we address this observation gap with eddy covariance data from 25 sites in the water‐limited Southwest region of North America with observed ranges in annual precipitation of 100–1000 mm, annual temperatures of 2–25°C, and records of 3–10 years (150 site‐years in total). Annual fluxes were integrated using site‐specific ecohydrologic years to group precipitation with resulting ecosystem exchanges. We found a wide range of carbon sink/source function, with mean annual net ecosystem production (NEP) varying from ‐350 to +330 gCm?2 across sites with diverse vegetation types, contrasting with the more constant sink typically measured in mesic ecosystems. In this region, only forest‐dominated sites were consistent carbon sinks. Interannual variability of NEP, gross ecosystem production (GEP), and ecosystem respiration (Reco) was larger than for mesic regions, and half the sites switched between functioning as C sinks/C sources in wet/dry years. The sites demonstrated coherent responses of GEP and NEP to anomalies in annual evapotranspiration (ET), used here as a proxy for annually available water after hydrologic losses. Notably, GEP and Reco were negatively related to temperature, both interannually within site and spatially across sites, in contrast to positive temperature effects commonly reported for mesic ecosystems. Models based on MODIS satellite observations matched the cross‐site spatial pattern in mean annual GEP but consistently underestimated mean annual ET by ~50%. Importantly, the MODIS‐based models captured only 20–30% of interannual variation magnitude. These results suggest the contribution of this dryland region to variability of regional to global CO2 exchange may be up to 3–5 times larger than current estimates.  相似文献   

8.
Carbon sequestration in boreal jack pine stands following harvesting   总被引:2,自引:0,他引:2  
A large area of boreal jack pine (Pinus banksiana Lamb.) forest in Canada is recovering from clear‐cut harvesting, and the carbon (C) balance of these regenerating forests remains uncertain. Net ecosystem CO2 exchange was measured using the eddy‐covariance technique at four jack pine sites representing different stages of stand development: three postharvest sites (HJP02, HJP94, and HJP75) and one preharvest site (OJP). The four sites, located in the southern Canadian boreal forest, Saskatchewan, Canada, are typical of low productivity jack pine stands and were 2, 10, 29, and 90 years old in 2004, respectively. Mean annual net ecosystem production (NEP) for 2004 and 2005 was ?137±11, 19±16, 73±28, and 22±30 g C m?2 yr?1 at HJP02, HJP94, HJP75 and OJP, respectively, showing the postharvest jack pine stands to be moderate C sources immediately after harvesting, weak sinks at 10 years, moderate C sinks at 30 years, then weak C sinks at 90 years. Mean annual gross ecosystem photosynthesis (GEP) for the 2 years was 96±10, 347±20, 576±34, and 583±35 g C m?2 yr?1 at HJP02, HJP94, HJP75, and OJP, respectively. The ratio of annual ecosystem respiration (R) to annual GEP was 2.51±0.15, 0.95±0.04, 0.87±0.03, and 0.96±0.03. Seasonally, NEP peaked in May or June at all four sites but GEP and R were highest in July. R at a reference soil temperature of 10 °C, ecosystem quantum yield and photosynthetic capacity were lowest for the 2‐year‐old stand. R was most sensitive to soil temperature for the 90‐year‐old stand. The primary source of variability in NEP over the course of succession of the jack pine ecosystem following harvesting was stand age due to the changes in leaf area index. Intersite variability in GEP and R was an order of magnitude greater than interannual variability at OJP. For both young and old stands, GEP had greater interannual variability than R and played a more important role than R in interannual variation in NEP. Based on year‐round flux measurements from 2000 to 2005, the 10‐year stand had larger interannual variability in GEP and R than the 90‐year stand. Interannual variability in NEP was driven primarily by early‐growing‐season temperature and growing‐season length. Photosynthesis played a dominant role in the rapid rise in NEP early in stand development. Late in stand development, however, the subtle decrease in NEP resulted primarily from increasing respiration.  相似文献   

9.
It is not clear if tree canopies in savanna ecosystems exert positive or negative effects on soil moisture, and how these might affect understory plant carbon balance. To address this, we quantified rooting-zone volumetric soil moisture (??25?cm), plant size, leaf-level and whole-plant gas exchange of the bunchgrass, bush muhly (Muhlenbergia porteri), growing under and between mesquite (Prosopis velutina) in a southwestern US savanna. Across two contrasting monsoon seasons, bare soil ??25?cm was 1.0?C2.5% lower in understory than in the intercanopy, and was consistently higher than in soils under grasses, where ??25?cm was similar between locations. Understory plants had smaller canopy areas and volumes with larger basal diameters than intercanopy plants. During an above-average monsoon, intercanopy and understory plants had similar seasonal light-saturated leaf-level photosynthesis (A net-sat), stomatal conductance (g s-sat), and whole-plant aboveground respiration (R auto), but with higher whole-plant photosynthesis (GEPplant) and transpiration (T plant) in intercanopy plants. During a below-average monsoon, intercanopy plants had higher diurnally integrated GEPplant, R auto, and T plant. These findings showed little evidence of strong, direct positive canopy effects to soil moisture and attendant plant performance. Rather, it seems understory conditions foster competitive dominance by drought-tolerant species, and that positive and negative canopy effects on soil moisture and community and ecosystem processes depends on a suite of interacting biotic and abiotic factors.  相似文献   

10.
Tidal wetlands are productive ecosystems with the capacity to sequester large amounts of carbon (C), but we know relatively little about the impact of climate change on wetland C cycling in lower salinity (oligohaline and tidal freshwater) coastal marshes. In this study we assessed plant production, C cycling and sequestration, and microbial organic matter mineralization at tidal freshwater, oligohaline, and salt marsh sites along the salinity gradient in the Delaware River Estuary over four years. We measured aboveground plant biomass, carbon dioxide (CO2) and methane (CH4) exchange between the marsh and atmosphere, microbial sulfate reduction and methanogenesis in marsh soils, soil biogeochemistry, and C sequestration with radiodating of soils. A simple model was constructed to estimate monthly and annually integrated rates of gross ecosystem production (GEP), ecosystem respiration (ER) to carbon dioxide ( \( {\text{ER}}_{{{\text{CO}}_{2} }} \) ) or methane ( \( {\text{ER}}_{{{\text{CH}}_{4} }} \) ), net ecosystem production (NEP), the contribution of sulfate reduction and methanogenesis to ER, and the greenhouse gas (GHG) source or sink status of the wetland for 2 years (2007 and 2008). All three marsh types were highly productive but evidenced different patterns of C sequestration and GHG source/sink status. The contribution of sulfate reduction to total ER increased along the salinity gradient from tidal freshwater to salt marsh. The Spartina alterniflora dominated salt marsh was a C sink as indicated by both NEP (~140 g C m?2 year?1) and 210Pb radiodating (336 g C m?2 year?1), a minor sink for atmospheric CH4, and a GHG sink (~620 g CO2-eq m?2 year?1). The tidal freshwater marsh was a source of CH4 to the atmosphere (~22 g C–CH4 m?2 year?1). There were large interannual differences in plant production and therefore C and GHG source/sink status at the tidal freshwater marsh, though 210Pb radiodating indicated modest C accretion (110 g C m?2 year?1). The oligohaline marsh site experienced seasonal saltwater intrusion in the late summer and fall (up to 10 mS cm?1) and the Zizania aquatica monoculture at this site responded with sharp declines in biomass and GEP in late summer. Salinity intrusion was also linked to large effluxes of CH4 at the oligohaline site (>80 g C–CH4 m?2 year?1), making this site a significant GHG source (>2,000 g CO2-eq m?2 year?1). The oligohaline site did not accumulate C over the 2 year study period, though 210Pb dating indicated long term C accumulation (250 g C m?2 year?1), suggesting seasonal salt-water intrusion can significantly alter C cycling and GHG exchange dynamics in tidal marsh ecosystems.  相似文献   

11.
We examined a 6‐year record of automated chamber‐based soil CO2 efflux (Fs) and the underlying processes in relation to climate and canopy gas exchange at an AmeriFlux site in a seasonally drought‐stressed pine forest. Interannual variability of Fs was large (CV=17%) with a range of 427 g C m?2 yr?1 around a mean annual Fs of 811 g C m?2 yr?1. On average, 76% of the variation of daily mean Fs could be quantified using an empirical model with year‐specific basal respiration rate that was a linear function of tree basal area increment (BAI) and modulated by a common response to soil temperature and moisture. Interannual variability in Fs could be attributed almost equally to interannual variability in BAI (a proxy for above‐ground productivity) and interannual variability in soil climate. Seasonal total Fs was twice as sensitive to soil moisture variability during the summer months compared with temperature variability during the same period and almost insensitive to the natural range of interannual variability in spring temperatures. A strong seasonality in both root respiration (Rr) and heterotrophic respiration (Rh) was observed with the fraction attributed to Rr steadily increasing from 18% in mid‐March to 50% in early June through early July before dropping rapidly to 10% of Fs by mid‐August. The seasonal pattern in Rr (10‐day averages) was strongly linearly correlated with tree transpiration (r2=0.90, P<0.01) as measured using sap flux techniques and gross ecosystem productivity (GEP, r2=0.83, P<0.01) measured by the eddy‐covariance approach. Rr increased by 0.43 g C m?2 day?1 for every 1 g C m?2 day?1 increase in GEP. The strong linear correlation of Rr to seasonal changes in GEP and transpiration combined with longer‐term interannual variability in the base rate of Fs, as a linear function of BAI (r2=0.64, P=0.06), provides compelling justification for including canopy processes in future models of Fs.  相似文献   

12.
The photosynthetic performance of mangrove Rhizophora mucronata seedlings grown under seasonally full light (HL), 50 % shade (ML), and 80 % shade (LL) conditions was characterized by gas exchange, and chlorophyll fluorescence. The carboxylation efficiency significantly affected the seasonal change of the photosynthetic capacity. Temperature and light might have synergic effect on the carboxylation efficiency. The photosynthetic rate (PN) of R. mucronata seedlings under shade regimes, however, could not be attributed to variability in chlorophyll, C i , ΦPSII, ETR or qP values but more to differences in carboxylation efficiency, g max, and E max. HL and ML plants had higher PN, g s and E than the LL ones. Nevertheless, LL leaves exhibited low photoinhibition susceptibility. The high non-photochemical quenching in HL leaves may show that applied light intensity probably exceeded the photosynthetic capability. The findings indicate that ML treatments provided the best condition to obtain such carbon fixation capacity.  相似文献   

13.
Eddy covariance was used to measure above-canopy exchanges of CO2 and water vapor at an operational plantation of hybrid poplar (variety ??Walker??) established on marginal agricultural land in east central Alberta, Canada. Winter ecosystem respiration (R e) rates were inferred from seasonal changes in the normalized respiration rate at 10°C (R 10) for the growing season and observations of soil CO2 concentration measured with solid-state probes. Over five consecutive growing seasons following planting, gross ecosystem production (GEP) increased each year, ranging from 21?g?C?m?2?y?1 in year 1 to 469?g?C?m?2?y?1 in year 5. During this period, the annual carbon balance shifted from a net source of greater than 330?g?C?m?2 in year 1 to approximately C-neutral in year 5. Total carbon (C) release over 5?years likely exceeded 630?g?C?m?2. Intra- and interannual variations in temperature and soil water availability greatly affected annual C balance each year. GEP and R e were particularly sensitive to temperature during spring and to soil water availability in summer: year 5 was notable because a cold spring and accumulating drought caused growth and carbon uptake to fall well below their potential. Annual evapotranspiration (ET) increased slightly with leaf area, from 281?mm in year 1 to 323?mm in year 4, but in year 5 it declined, while exceeding total precipitation (P). This trend of increasing annual ET/P suggests that annual GEP could become increasingly water-limited in years with below normal precipitation, as the plantation achieves maximum leaf area. Measured canopy albedos did not change appreciably over three winters, suggesting that estimates of increased radiative forcing resulting from afforestation in high latitudes could be exaggerated in regions where fast-growing deciduous plantations are managed on short (~20-year) rotations.  相似文献   

14.
Needle nitrogen partitioning and photosynthesis of Norway spruce were studied in a forest chronosequence in Järvselja Experimental Forest, Estonia. Current- and previous-year shoots were sampled from upper and lower canopy positions in four stands, ranging in age from 13 to 82 years. A/c i curves were determined to obtain maximum carboxylation rate (V cmax) and maximum rate of electron transport (J max), whereas needle nitrogen partitioning into carboxylation (P R), bioenergetics associated with electron transport (P B) and thylakoid light harvesting components (P L) was calculated from the values of V cmax, J max and leaf chlorophyll concentration. The greatest changes in studied needle characteristics took place between tree ages of 13 and 26 years, and this pattern was independent of needle age and canopy position. Needle mass per projected area (LMA) was lowest in the 13-year-old stand and mass-based nitrogen concentration (NM) was generally highest in that stand. The values of LMA were significantly higher and those of NM lower in the 26-year-old stand. Mass-based V cmax and J max were highest in the 13-year-old stand. Area-based photosynthetic capacity was independent of tree age. The proportion of photosynthetic nitrogen (P R, P B and P L) was highest and that of non-photosynthetic nitrogen lowest in the 13-year-old stand. Current-year needles had lower LMA and P L, but higher photosynthetic capacity compared to 1-year-old foliage. Needles from lower canopy positions exhibited lower LMA, area-based nitrogen concentration and photosynthetic capacity than needles from upper canopy. The period of substantial reductions in needle photosynthetic capacity and changes in nitrogen partitioning coincides with the onset of reproductive phase during tree ontogeny.  相似文献   

15.
We examined the effects of short (<1–4 years) and long-term (22 years) nitrogen (N) and/or phosphorus (P) addition on the foliar CO2 exchange parameters of the Arctic species Betula nana and Eriophorum vaginatum in northern Alaska. Measured variables included: the carboxylation efficiency of Rubisco (Vcmax), electron transport capacity (Jmax), dark respiration (Rd), chlorophyll a and b content (Chl), and total foliar N (N). For both B. nana and E. vaginatum, foliar N increased by 20–50 % as a consequence of 1–22 years of fertilisation, respectively, and for B. nana foliar N increase was consistent throughout the whole canopy. However, despite this large increase in foliar N, no significant changes in Vcmax and Jmax were observed. In contrast, Rd was significantly higher (>25 %) in both species after 22 years of N addition, but not in the shorter-term treatments. Surprisingly, Chl only increased in both species the first year of fertilisation (i.e. the first season of nutrients applied), but not in the longer-term treatments. These results imply that: (1) under current (low) N availability, these Arctic species either already optimize their photosynthetic capacity per leaf area, or are limited by other nutrients; (2) observed increases in Arctic NEE and GPP with increased nutrient availability are caused by structural changes like increased leaf area index, rather than increased foliar photosynthetic capacity and (3) short-term effects (1–4 years) of nutrient addition cannot always be extrapolated to a larger time scale, which emphasizes the importance of long-term ecological experiments.  相似文献   

16.
The response of the photosynthetic capacity (Pmax) of microphytobenthos to short-term variations of temperature (in the range 5–35° C) was assessed on a seasonal basis. The relationship is described mathematically, and relevant physiological parameters are identified: PMAX, the maximum value of Pmax achieved at Topl, the optimum temperature. Estimated values of Topt do not change significantly throughout the year and remain close to 25° C. It is thus concluded that Topt is not influenced by seasonal variations in the daily range of mud surface temperature. Identical conclusions hold for Tmax (ca. 38° C), the thermal threshold beyond which no photosynthesis occurs. Conversely, PMA estimates exhibit substantial variability: PMAX (mean ± root mean square error) is highest in April (11.18 ± 0.42 [μg C · [μg Chl a]?1· h?1) during the beginning of the annual increase in temperature, photoperiod, and maximum irradiance and is lowest in December (3.04 ± 0.16 μg C · [μg Chl a]?1· h?l). From an ecological point of view, the short-term and seasonal variations of PMAX suggest that the microphytobenthic community takes advantage of the abiotic spring environmental conditions, allowing the onset of the bloom. Nevertheless, no “acclimation strategy” (i.e. shifts in Topt and Tmax that prevent temperature inhibition in summer or improve photosynthetic rates in winter) is apparent from our results.  相似文献   

17.
Expansion of deciduous shrubs is a common observation throughout the Arctic, with implications for carbon (C) cycling. Shrubs may increase net ecosystem C uptake through greater leaf area and gross ecosystem photosynthesis (GEP), and/or through cooler summer soils and reduced ecosystem respiration (ER). We used a space-for-time substitution combined with experimental warming at a Low Arctic site in West Greenland to examine the biophysical effects of increased temperature and Betula nana abundance on ecosystem CO2 exchange. Communities dominated by Betula were much stronger C sinks than graminoid communities due to greater GEP and lower ER. The warming treatment had little effect on GEP, ER, or net ecosystem CO2 exchange (NEE). The start of the growing season has been advancing at our study site, as indicated by long-term observations of plant phenology. In a retrospective analysis, we estimate that earlier onset of the growing season has increased the strength of the ecosystem C sink at rates of 1.3 and 2.1 g C m?2 y?1 in Betula and graminoid tundra, respectively, since 2002. However, earlier, and presumably longer, growing seasons may be associated with greater potential for drought stress. Our data suggest that mid-summer drought-induced GEP declines may partially offset C gains associated with an earlier start to the growing season. Our results suggest greater deciduous shrub abundance and longer growing seasons will likely lead to greater net C uptake in our study area, while highlighting important complexities associated with drought and plant community composition.  相似文献   

18.
We estimated respiratory fluxes in a treeline-associated Pinus canariensis forest in Tenerife, Canary Islands, an ecotone with strong seasonal changes in soil water availability. CO2 efflux rates from the foliage, above ground woody tissue and the soil were measured by chamber techniques. Site-specific models obtained from these chamber measurements were then combined with half-hourly measurements of canopy, stem and soil temperature as well as with soil water potential, leaf area and stem sapwood volume data for scaling up component-specific CO2 efflux to ecosystem respiration (R ECO). Integrated over an entire year R ECO was 550 g C m?2 ground surface area (average of 2008 and 2009) and comprised the following component fluxes: 57 % from the soil, 10 % from above ground woody tissue and 33 % from the foliage. Between year differences in R ECO and its components were <3 %. R ECO varied markedly throughout an entire year generally following the seasonal trends in temperature during most of the year. During the dry summer, however, R ECO was significantly reduced due to limited soil water availability in the rooting horizon. Thus, in treeline-associated forests under predicted scenarios of increasing aridity in Mediterranean regions, it is likely that there will be a shift in the contribution of CO2 efflux from the soil (R S), the foliage (R F) and above ground woody tissue (R W) to R ECO from predominately below ground to increasingly above ground. Such changes should be taken into account for predicting the response of treeline forests to a changing climate at their upper distribution limit.  相似文献   

19.
The warm temperate deciduous forests in Asia have a relatively dense understory, hence, it is imperative that we understand the dynamics of transpiration in both the overstory (E O) and understory (E U) of forest stands under the influence of the Asian monsoon in order to improve the accuracy of forest water use budgeting and to identify key factors controlling forest water use under climate change. In this study, E O and E U of a temperate deciduous forest stand located in South Korea were measured during the growing season of 2008 using sap flow methods. The objectives of this study were (1) to quantify the total transpiration of the forest stand, i.e., overstory and understory, (2) to determine their relative contribution to ecosystem evapotranspiration (E eco), and (3) to identify factors controlling the transpiration of each layer. E O and E U were 174 and 22 mm, respectively. Total transpiration accounted for 55 % of the total E eco, revealing the importance of unaccounted contributions to E eco (i.e., soil evaporation and wet canopy evaporation). During the monsoon period, there was a strong reduction in the total transpiration, likely because of reductions in photosynthetic active radiation, vapor pressure deficit and plant area index. The ratio of E U to E O declined during the same period, indicating an effect of monsoon on the partitioning of E eco in its two components. The seasonal pattern of E O was synchronized with the overstory canopy development, which equally had a strong regulatory influence on E U.  相似文献   

20.
The lack of information on the ways seasonal drought modifies the CO2 exchange between Neotropical rainforest ecosystems and the atmosphere and the resulting carbon balance hinders our ability to precisely predict how these ecosystems will respond as global environmental changes force them to face increasingly contrasting conditions in the future. To address this issue, seasonal variations in daily net ecosystem productivity (NEPd) and two main components of this productivity, daily total ecosystem respiration (REd) and daily gross ecosystem productivity (GEPd), were estimated over 2 years at a flux tower site in French Guiana, South America (5 °16′54″N, 52 °54′44″W). We compared seasonal variations between wet and dry periods and between dry periods of contrasting levels of intensity (i.e. mild vs. severe) during equivalent 93‐day periods. During the wet periods, the ecosystem was almost in balance with the atmosphere (storage of 9.0 g C m?2). Seasonal dry periods, regardless of their severity, are associated with higher incident radiation and lower REd combined with reduced soil respiration associated with low soil water availability. During the mild dry period, as is normally the case in this region, the amount of carbon stored in the ecosystem was 32.7 g C m?2. Severe drought conditions resulted in even lower REd, whereas the photosynthetic activity was only moderately reduced and no change in canopy structure was observed. Thus, the severe dry period was characterized by greater carbon storage (64.6 g C m?2), emphasizing that environmental conditions, such as during a severe drought, modify the CO2 exchange between Neotropical rainforest ecosystems and the atmosphere and potentially the resulting carbon balance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号