首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Sec translocon of Escherichia coli mediates the export of numerous secretory and membrane proteins. To dissect the passage of an exported protein across the Sec translocon into consecutive steps, we generated in vitro translocation intermediates of a polypeptide chain, which by its N-terminus is anchored in the membrane and by its C-terminus tethered to the ribosome. We find that in this situation, the motor protein SecA propagates translocation of a peptide loop across SecYEG prior to the removal of ribosomes. Upon SecA-driven exit from the translocon, this loop is brought into the immediate vicinity of the membrane-anchored, periplasmic chaperone PpiD. Consistent with a coupling between translocation across the SecYEG translocon and folding by periplasmic chaperones, a lack of PpiD retards the release of a translocating outer membrane protein into the periplasm.  相似文献   

2.
Protein insertion into the bacterial inner membrane is facilitated by SecYEG or YidC. Although SecYEG most likely constitutes the major integration site, small membrane proteins have been shown to integrate via YidC. We show that YidC can also integrate multispanning membrane proteins such as mannitol permease or TatC, which had been considered to be exclusively integrated by SecYEG. Only SecA-dependent multispanning membrane proteins strictly require SecYEG for integration, which suggests that SecA can only interact with the SecYEG translocon, but not with the YidC insertase. Targeting of multispanning membrane proteins to YidC is mediated by signal recognition particle (SRP), and we show by site-directed cross-linking that the C-terminus of YidC is in contact with SRP, the SRP receptor, and ribosomal proteins. These findings indicate that SRP recognizes membrane proteins independent of the downstream integration site and that many membrane proteins can probably use either SecYEG or YidC for integration. Because protein synthesis is much slower than protein transport, the use of YidC as an additional integration site for multispanning membrane proteins may prevent a situation in which the majority of SecYEG complexes are occupied by translating ribosomes during cotranslational insertion, impeding the translocation of secretory proteins.  相似文献   

3.
The thorough understanding of photosynthetic membrane assembly requires a deeper knowledge of the coordination and regulation of the chlorophyll (Chl) and thylakoid apoprotein biosynthetic pathways. As a working hypothesis we have recently proposed three different Chl-thylakoid apoprotein biosynthesis models: a single-branched Chl biosynthetic pathway (SBP)-single location model, a SBP-multilocation model, and a multibranched Chl biosynthetic pathway (MBP)-sublocation model. The detection of resonance excitation energy transfer between tetrapyrrole precursors of Chl, and several Chl-protein complexes, has made it possible to test the validity of the proposed Chl-thylakoid apoprotein biosynthesis models by resonance excitation energy transfer determinations. In this work, resonance excitation energy transfer techniques that allow the determination of distances separating tetrapyrrole donors from Chl-protein acceptors in green plants by using readily available electronic spectroscopic instrumentation are developed. It is concluded that the calculated distances are compatible with the MBP-sublocation model and incompatible with the operation of the SBP-single location Chl-protein biosynthesis model.  相似文献   

4.
All chlorophyll (Chl)-binding proteins involved in photosynthesis of higher plants are hydrophobic membrane proteins integrated into the thylakoids. However, a different category of Chl-binding proteins, the so-called water-soluble Chl proteins (WSCPs), was found in members of the Brassicaceae, Polygonaceae, Chenopodiaceae, and Amaranthaceae families. WSCPs from different plant species bind Chl a and Chl b in different ratios. Some members of the WSCP family are induced after drought and heat stress as well as leaf detachment. It has been proposed that this group of proteins might have a physiological function in the Chl degradation pathway. We demonstrate here that a protein that shared sequence homology to WSCPs accumulated in etiolated barley (Hordeum vulgare) seedlings exposed to light for 2 h. The novel 22-kD protein was attached to the outer envelope of barley etiochloroplasts, and import of the 27-kD precursor was light dependent and induced after feeding the isolated plastids the tetrapyrrole precursor 5-aminolevulinic acid. HPLC analyses and spectroscopic pigment measurements of acetone-extracted pigments showed that the 22-kD protein is complexed with chlorophyllide. We propose a novel role of WSCPs as pigment carriers operating during light-induced chloroplast development.  相似文献   

5.
The photosynthetic unit includes the reaction centers (RC 1 and RC 2) and the light-harvesting complexes which contribute to evolution of one O2 molecule. The light-harvesting complexes, that greatly expand the absorptance capacity of the reactions, have evolved along three principal lines. First, in green plants distinct chlorophyll (Chl) a/b-binding intrinsic membrane complexes are associated with RC 1 and RC 2. The Chl a/b-binding complexes may add about 200 additional chromophores to RC 2. Second, cyanobacteria and red algae have a significant type of antenna (with RC 2) in the form of phycobilisomes. A phycobilisome, depending on the size and phycobiliprotein composition adds from 700 to 2300 light-absorbing chromophores. Red algae also have a sizable Chl a-binding complex associated with RC 1, contributing an additional 70 chromophores. Third, in chromophytes a variety of carotenoid-Chl-complexes are found. Some are found associated with RC 1 where they may greatly enhance the absorptance capacity. Association of complexes with RC 2 has been more difficult to ascertain, but is also expected in chromophytes. The apoprotein framework of the complexes provides specific chromophore attachment sites, which assures a directional energy transfer whithin complexes and between complexes and reaction centers. The major Chl-binding antenna proteins generally have a size of 16–28 kDa, whether of chlorophytes, chromophytes, or rhodophytes. High sequence homology observed in two of three transmembrane regions, and in putative chlorophyll-binding residues, suggests that the complexes are related and probably did not evolve from widely divergent polyphyletic lines.Abbreviations APC allophycocyanin - B phycoerythrin-large bangiophycean phycoerythrin - Chl chlorophyll - LCM linker polypeptide in phycobilisome to thylakoid - FCP fucoxanthin Chl a/c complex - LHC(s) Chl-binding light harvesting complex(s) - LHC I Chl-binding complex of Photosystem I - LHC II Chl-binding complex of Photosystem II - PC phycocyanin - PCP peridinin Chl-binding complex - P700 photochemically active Chl a of Photosystem I - PS I Photosystem I - PS II Photosystem II - RC 1 reaction center core of PS I - RC 2 reaction center core of PS II - R phycoerythrin-large rhodophycean phycoerythrin - sPCP soluble peridinin Chl-binding complex  相似文献   

6.
Signal peptide-driven secretion of precursor proteins directs polypeptides across the plasma membrane of bacteria. Two pathways, Sec- and SRP-dependent, converge at the SecYEG translocon to thread unfolded precursor proteins across the membrane, whereas folded preproteins are routed via the Tat secretion pathway. Gram-positive bacteria lack an outer membrane and are surrounded by a rigid layer of peptidoglycan. Interactions with their environment are mediated by proteins that are retained in the cell wall, often through covalent attachment to the peptidoglycan. In this review, we describe the mechanisms for both Sec-dependent secretion and sortase-dependent assembly of proteins in the envelope of Gram-positive bacteria. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.  相似文献   

7.
Two distinct protein targeting pathways can direct proteins to the Escherichia coli inner membrane. The Sec pathway involves the cytosolic chaperone SecB that binds to the mature region of pre-proteins. SecB targets the pre-protein to SecA that mediates pre-protein translocation through the SecYEG translocon. The SRP pathway is probably used primarily for the targeting and assembly of inner membrane proteins. It involves the signal recognition particle (SRP) that interacts with the hydrophobic targeting signal of nascent proteins. By using a protein cross-linking approach, we demonstrate here that the SRP pathway delivers nascent inner membrane proteins at the membrane. The SRP receptor FtsY, GTP and inner membranes are required for release of the nascent proteins from the SRP. Upon release of the SRP at the membrane, the targeted nascent proteins insert into a translocon that contains at least SecA, SecY and SecG. Hence, as appears to be the case for several other translocation systems, multiple targeting mechanisms deliver a variety of precursor proteins to a common membrane translocation complex of the E.coli inner membrane.  相似文献   

8.
The mechanosensitive channel MscL in the inner membrane of Escherichia coli is a homopentameric complex involved in homeostasis when cells are exposed to hypoosmotic conditions. The E. coli MscL protein is synthesized as a polypeptide of 136 amino acid residues and uses the bacterial signal recognition particle for membrane targeting. The protein is inserted into the membrane independently of the Sec translocon but requires YidC. Depletion of YidC inhibits translocation of the protein across the membrane. Insertion of MscL occurs primarily in a proton motive force-independent manner. The hydrophilic loop region of MscL has 29 residues that include 5 charged residues. Altering the charges in the periplasmic loop of MscL affects the requirements for membrane insertion. The introduction of one, two or three negatively charged amino acids makes the insertion dependent on the electrochemical membrane potential and gradually dependent on the Sec translocon, whereas the addition of five negatively charged residues as well as the addition of three positively charged residues inhibits membrane insertion of MscL. However, we find that the mutant with three uncharged residues requires both the SecYEG complex and YidC but not SecA for membrane insertion. In vivo cross-linking data showed that the newly synthesized MscL interacts with YidC and with SecY. Therefore, the MscL mutants use a membrane insertion mechanism that involves SecYEG and YidC simultaneously.  相似文献   

9.
Proteins of the YidC/Oxa1p/ALB3 family play an important role in inserting proteins into membranes of mitochondria, bacteria, and chloroplasts. In Chlamydomonas reinhardtii, one member of this family, Albino3.1 (Alb3.1), was previously shown to be mainly involved in the assembly of the light-harvesting complex. Here, we show that a second member, Alb3.2, is located in the thylakoid membrane, where it is associated with large molecular weight complexes. Coimmunoprecipitation experiments indicate that Alb3.2 interacts with Alb3.1 and the reaction center polypeptides of photosystem I and II as well as with VIPP1, which is involved in thylakoid formation. Moreover, depletion of Alb3.2 by RNA interference to 25 to 40% of wild-type levels leads to a reduction in photosystems I and II, indicating that the level of Alb3.2 is limiting for the assembly and/or maintenance of these complexes in the thylakoid membrane. Although the levels of several photosynthetic proteins are reduced under these conditions, other proteins are overproduced, such as VIPP1 and the chloroplast chaperone pair Hsp70/Cdj2. These changes are accompanied by a large increase in vacuolar size and, after a prolonged period, by cell death. We conclude that Alb3.2 is required directly or indirectly, through its impact on thylakoid protein biogenesis, for cell survival.  相似文献   

10.
Braun P  Goldberg E  Negron C  von Jan M  Xu F  Nanda V  Koder RL  Noy D 《Proteins》2011,79(2):463-476
The cyclic tetrapyrroles, viz. chlorophylls (Chl), their bacterial analogs bacteriochlorophylls, and hemes are ubiquitous cofactors of biological catalysis that are involved in a multitude of reactions. One systematic approach for understanding how Nature achieves functional diversity with only this handful of cofactors is by designing de novo simple and robust protein scaffolds with heme and/or (bacterio)chlorophyll [(B)Chls]-binding sites. This strategy is currently mostly implemented for heme-binding proteins. To gain more insight into the factors that determine heme-/(B)Chl-binding selectivity, we explored the geometric parameters of (B)Chl-binding sites in a nonredundant subset of natural (B)Chl protein structures. Comparing our analysis to the study of a nonredundant database of heme-binding helical histidines by Negron et al. (Proteins 2009;74:400-416), we found a preference for the m-rotamer in (B)Chl-binding helical histidines, in contrast to the preferred t-rotamer in heme-binding helical histidines. This may be used for the design of specific heme- or (B)Chl-binding sites in water-soluble helical bundles, because the rotamer type defines the positioning of the bound cofactor with respect to the helix interface and thus the protein-binding site. Consensus sequences for (B)Chl binding were identified by combining a computational and database-derived approach and shown to be significantly different from the consensus sequences recommended by Negron et al. (Proteins 2009;74:400-416) for heme-binding helical proteins. The insights gained in this work on helix- (B)Chls-binding pockets provide useful guidelines for the construction of reasonable (B)Chl-binding protein templates that can be optimized by computational tools.  相似文献   

11.
The Sec translocon constitutes a ubiquitous protein transport channel that consists in bacteria of the three core components: SecY, SecE, and SecG. Additional proteins interact with SecYEG during different stages of protein transport. During targeting, SecYEG interacts with SecA, the SRP receptor, or the ribosome. Protein transport into or across the membrane is then facilitated by the interaction of SecYEG with YidC and the SecDFYajC complex. During protein transport, SecYEG is likely to interact also with the protein quality control machinery, but details about this interaction are missing. By in vivo and in vitro site-directed cross-linking, we show here that the periplasmic chaperone PpiD is located in front of the lateral gate of SecY, through which transmembrane domains exit the SecY channel. The strongest contacts were found to helix 2b of SecY. Blue native PAGE analyses verify the presence of a SecYEG-PpiD complex in native Escherichia coli membranes. The PpiD-SecY interaction was not influenced by the addition of SecA and only weakly influenced by binding of nontranslating ribosomes to SecYEG. In contrast, PpiD lost contact to the lateral gate of SecY during membrane protein insertion. These data identify PpiD as an additional and transient subunit of the bacterial SecYEG translocon. The data furthermore demonstrate the highly modular and versatile composition of the Sec translocon, which is probably essential for its ability to transport a wide range of substrates across membranes in bacteria and eukaryotes.  相似文献   

12.
Protein transport via the Sec translocon represents an evolutionary conserved mechanism for delivering cytosolically-synthesized proteins to extra-cytosolic compartments. The Sec translocon has a three-subunit core, termed Sec61 in Eukaryotes and SecYEG in Bacteria. It is located in the endoplasmic reticulum of Eukaryotes and in the cytoplasmic membrane of Bacteria where it constitutes a channel that can be activated by multiple partner proteins. These partner proteins determine the mechanism of polypeptide movement across the channel. During SRP-dependent co-translational targeting, the ribosome threads the nascent protein directly into the Sec channel. This pathway is in Bacteria mainly dedicated for membrane proteins but in Eukaryotes also employed by secretory proteins. The alternative pathway, leading to post-translational translocation across the Sec translocon engages an ATP-dependent pushing mechanism by the motor protein SecA in Bacteria and a ratcheting mechanism by the lumenal chaperone BiP in Eukaryotes. Protein transport and biogenesis is also assisted by additional proteins at the lateral gate of SecY/Sec61α and in the lumen of the endoplasmic reticulum or in the periplasm of bacterial cells. The modular assembly enables the Sec complex to transport a vast array of substrates. In this review we summarize recent biochemical and structural information on the prokaryotic and eukaryotic Sec translocons and we describe the remarkably complex interaction network of the Sec complexes.  相似文献   

13.
Because membrane proteins are difficult to express, our understanding of their structure and function is lagging. In Escherichia coli, α-helical membrane protein biogenesis usually involves binding of a nascent transmembrane segment (TMS) by the signal recognition particle (SRP), delivery of the SRP-ribosome nascent chain complexes (RNC) to FtsY, a protein that serves as SRP receptor and docks to the SecYEG translocon, cotranslational insertion of the growing chain into the translocon, and lateral transfer, packing and folding of TMS in the lipid bilayer in a process that may involve chaperone YidC. Here, we explored the feasibility of reprogramming this pathway to improve the production of recombinant membrane proteins in exponentially growing E. coli with a focus on: (i) eliminating competition between SRP and chaperone trigger factor (TF) at the ribosome through gene deletion; (ii) improving RNC delivery to the inner membrane via SRP overexpression; and (iii) promoting substrate insertion and folding in the lipid bilayer by increasing YidC levels. Using a bitopic histidine kinase and two heptahelical rhodopsins as model systems, we show that the use of TF-deficient cells improves the yields of membrane-integrated material threefold to sevenfold relative to the wild type, and that whereas YidC coexpression is beneficial to the production of polytopic proteins, higher levels of SRP have the opposite effect. The implications of our results on the interplay of TF, SRP, YidC, and SecYEG in membrane protein biogenesis are discussed.  相似文献   

14.
CP43, encoded by the psbC gene, is a chlorophyll (Chl)-binding protein of Photosystem II (PSII), the water-splitting and oxygen-evolving enzyme of photosynthesis. CP47, encoded by psbB, a Chl-binding protein of PSII, is closely related to CP43. The Chl-binding six transmembrane helical unit typified by CP43, is also structurally related to the N-terminal domains of the PsaA and PsaB proteins of Photosystem I (PSI) as well as to the family of light-harvesting proteins encoded by cyanobacterial isiA genes and prochlorophyte pcb genes. Here we use recent structural information derived for PSII and PSI to review similarities and differences between the various members of the CP43-like class of light-harvesting proteins, exploring both functional and evolutionary implications.  相似文献   

15.
Chen M  Xie K  Yuan J  Yi L  Facey SJ  Pradel N  Wu LF  Kuhn A  Dalbey RE 《Biochemistry》2005,44(31):10741-10749
The M13 phage Procoat protein is one of the best characterized substrates for the novel YidC pathway. It inserts into the membrane independent of the SecYEG complex but requires the 60 kDa YidC protein. Mutant Procoat proteins with alterations in the periplasmic region had been found to require SecYEG and YidC. In this report, we show that the membrane insertion of these mutants also strongly depends on SecDF that bridges SecYEG to YidC. In a cold-sensitive mutant of YidC, the Sec-dependent function of YidC is strongly impaired. We find that specifically the SecDF-dependent mutants are inhibited in the cold-sensitive YidC strain. Finally, we find that subtle changes in the periplasmic loop such as the number and location of negatively charged residues and the length of the periplasmic loop can make the Procoat strictly Sec-dependent. In addition, we successfully converted Sec-independent Pf3 coat into a Sec-dependent protein by changing the location of a negatively charged residue in the periplasmic tail. Protease mapping of Pf3 coat shows that the insertion-arrested proteins that accumulate in the YidC- or in the SecDF-deficient strains are not translocated. Taken together, the data suggest that the Sec-dependent mutants insert at the interface of YidC and the translocon with SecDF assisting in the translocation step in vivo.  相似文献   

16.
A critical review of studies on import of Lhcb (apoproteins of LHC II) by chloroplasts uncovered a mechanism for initiation of assembly of light-harvesting complexes. Manipulation of in vivo systems and mutagenesis of specific residues in the protein showed that accumulation of physiological amounts of Lhcb by the plastid requires interaction of the protein with Chl within the inner membrane of the chloroplast envelope. Retention motifs, commonly -EXXHXR- in the first membrane-spanning region (helix-1) and -EXXNXR- in the third membrane-spanning region (helix-3), occur in the primary sequence of the protein. Mutations in these sequences prevent accumulation of Lhcb by isolated chloroplasts. We propose that the His or Asn sidechain and a transient intrahelix ion-pair with the Glu and Arg residues provide ligands for two molecules of Chl in each motif, which serve as a sensing mechanism for the availability of Chl. Interaction of two Chl molecules with both motifs is required for stable insertion of the protein into the membrane. Chl(ide) is possibly quenched by interaction with xanthophylls immediately after synthesis, and Chl-lutein pairs may initiate folding of Lhcb. Lhcb that does not immediately interact with sufficient Chl molecules is not retained by the organelle and, in vivo, is retracted into the cytosol or shunted to vacuoles for degradation rather than imported into the plastid stroma. The ubiquitous existence of retention motifs from small Lhcb-like polypeptides in cyanobacteria to all nuclear-encoded Chl-binding proteins (the Lhcb and Lhca families and related proteins) testify to the importance of these sequences in assembly of Chl-protein complexes.  相似文献   

17.
Rebeiz  C.A.  Ioannides  I.M.  Kolossov  V.  Kopetz  K.J. 《Photosynthetica》1999,36(1-2):117-128
A unified multibranched chlorophyll (Chl) biosynthetic pathway is proposed. The proposed pathway takes into account the following considerations: (a) that the earliest putative precursor of monovinyl Chl b that has been detected in higher plants is monovinyl protochlorophyllide b, (b) that in most cases, Chl b biosynthesis has its roots in the Chl a biosynthetic pathway, (c) that the Chl a biosynthetic pathway exhibits extensive biosynthetic heterogeneity, (d) that Chl biosynthesis may proceed differently at different stages of greening and in different greening groups of plants. Integration of the Chl a and b biosynthetic pathways into a unified multibranched pathway offers the functional flexibility to account for the structural and biosynthetic complexity of photosynthetic membranes. In this context, it is proposed that the unified, multibranched Chl a/b biosynthetic pathway represents the template of a Chl-protein biosynthesis center where photosystem (PS) 1, PS2, and light-harvesting Chl-protein complexes are assembled into functional photosynthetic units. The individual biosynthetic routes or groups of two to three adjacent biosynthetic routes may constitute Chl-protein biosynthesis subcenters, where specific Chl-protein complexes are assembled. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

18.
Recent studies have shown that there is a pathway that is evolutionarily conserved for the insertion of proteins into the membrane in mitochondria, chloroplasts, and bacteria. In this pathway, the Oxa1/Alb3/YidC proteins are believed to function as membrane insertases that play an important role in the membrane protein biogenesis of respiratory and energy transduction proteins. Additional roles of the Oxa1/Alb3/YidC members may be in the lateral integration of proteins into the lipid bilayer, and in the folding and assembly of proteins into membrane protein complexes.  相似文献   

19.
The periplasmic space in between the inner and outer membrane of Gram-negative bacteria contains numerous chaperones that are involved in the biogenesis and rescue of extra-cytosolic proteins. In contrast to most of those periplasmic chaperones, PpiD is anchored by an N-terminal transmembrane domain within the inner membrane of Escherichia coli. There it is located in close proximity to the SecY subunit of the SecYEG translocon, which is the primary transporter for secretory and membrane proteins. By site-specific cross-linking we now found the periplasmic domain of PpiD also in close vicinity to the SecG subunit of the Sec translocon and we provide the first direct evidence for a functional cooperation between PpiD and the Sec translocon. Thus we demonstrate that PpiD stimulates in a concentration-dependent manner the translocation of two different secretory proteins into proteoliposomes that had been reconstituted with sub-saturating amounts of SecYEG. In addition we found ribosome-associated nascent chains of a secretory protein stalled at SecY also being in close contact to PpiD. Collectively these results suggest that PpiD plays a role in clearing the Sec translocon of newly translocated secretory proteins thereby improving the overall translocation efficiency. Consistent with this conclusion we demonstrate that PpiD contributes to the efficient detachment of newly secreted OmpA from the inner membrane and in doing so, seems to cooperate in a hierarchical manner with other periplasmic chaperones such as SurA, DegP, and Skp.  相似文献   

20.
Recent studies have shown that there is a pathway that is evolutionarily conserved for the insertion of proteins into the membrane in mitochondria, chloroplasts, and bacteria. In this pathway, the Oxa1/Alb3/YidC proteins are believed to function as membrane insertases that play an important role in the membrane protein biogenesis of respiratory and energy transduction proteins. Additional roles of the Oxa1/Alb3/YidC members may be in the lateral integration of proteins into the lipid bilayer, and in the folding and assembly of proteins into membrane protein complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号