首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The northern Dolly Varden, Salvelinus malma malma, is a typical representative of arctic fauna distributed in northeastern Asia and northwestern North America. Because its spawning habitats were affected by Pleistocene glacial advances over most of its natural range, S. m. malma is among the most interesting objects of phylogeographic and microevolutionary studies. We reconstructed the genealogy of mtDNA haplotypes from 27 Alaskan and Asian populations to study the influence of glacial and geological vicariance events on the contemporary population genetic structure, phylogeographic subdivision and distribution of the northern Dolly Varden. Analysis of restriction site states in three PCR‐amplified mtDNA regions (ND1/ND2, ND5/ND6, Cytb/D‐loop; 47% of the mitochondrial genome) resolved 75 haplotypes in 436 fish. Similar patterns of subspecific variation apparent from hierarchical diversity and nested clade analyses of mtDNA haplotypes identify weak spatial differentiation and low levels of divergence. Our results suggest that (1) demographic history has been influenced by historical range expansions and recent isolation by distance, (2) present populations from Asia and North America were colonized from one main Beringian Refugium, and (3) that this taxon's ancestral population probably experienced a bottleneck in the Beringian Refugium during the late Pleistocene (Wisconsin) glacial period.  相似文献   

2.
Repeated glacial events during the Pleistocene fragmented and displaced populations throughout the northern continents. Different models of the effects of these climate-driven events predict distinct phylogeographic and population genetic outcomes for high-latitude faunas. The role of glaciations in (i) promoting intraspecific genetic differentiation and (ii) influencing genetic diversity was tested within a phylogeographic framework using the rodent Microtus oeconomus. The spatial focus for the study was Beringia, which spans eastern Siberia and northwestern North America, and was a continental crossroads and potential high arctic refugium during glaciations. Variation in mitochondrial DNA (cytochrome b and control region; 214 individuals) and nuclear DNA (ALDH1 intron; 63 individuals) was investigated across the Beringian region. Close genetic relationships among populations on either side of the Bering Strait are consistent with a history of periodic land connections between North America and Asia. A genetic discontinuity observed in western Beringia between members of a Central Asian clade and a Beringian clade is geographically congruent with glacial advances and with phylogeographic discontinuities identified in other organisms. Divergent island populations in southern Alaska were probably initially isolated by glacial vicariance, but subsequent differentiation has resulted from insularity. Tests of the genetic effects of postglacial colonization were largely consistent with expansion accompanied by founder effect bottlenecking, which yields reduced diversity in populations from recently deglaciated areas. Evidence that populations in the Beringian clade share a history of expansion from a low-diversity ancestral population suggests that Beringia was colonized by a small founder population from central Asia, which subsequently expanded in isolation.  相似文献   

3.
Aim To investigate the degree of phylogeographical divergence within pygmy whitefish (Prosopium coulterii) and to test hypotheses concerning the origin of disjunct populations within North America. Location North America from western Alaska to Lake Superior. Methods Mitochondrial (ATPase subunit VI) and nuclear (ITS‐1, ITS‐2) DNA sequence variation was assessed across the species’ North American range to test for the existence of distinct phylogeographical groupings of pygmy whitefish associated with known glacial refugia. Coalescent simulations of the mitochondrial DNA (mtDNA) data were used to test hypotheses of population structure. Results This species is composed of two monophyletic mitochondrial clades across its North American range. The two mtDNA clades differed by an average 3.3% nucleotide sequence divergence. These clades were also distinguished by ITS‐2, but the relationships among lineages were not resolved by the ITS‐1 analysis. Coalescent analyses rejected the null hypothesis of the current disjunct distributions being a result of fragmentation of a single widespread ancestral lineage across a variety of effective population sizes and divergence times. Main conclusions The current range disjunctions of pygmy whitefish in North America probably resulted from isolation, genetic divergence, and selective dispersal from at least two major Pleistocene glacial refugia: Beringia and Cascadia. More recent isolation and dispersal from an upper Mississippi refugium is suggested by relationships within one of the clades and by distributional evidence from co‐distributed species. The Beringian and Cascadian refugia have played major roles in the zoogeography of Nearctic temperate aquatics, but the roles of smaller refugia appear more variable among other species.  相似文献   

4.
The glacial-interglacial cycles of the upper Pleistocene have had a major impact on the recent evolutionary history of Arctic species. To assess the effects of these large-scale climatic fluctuations to a large, migratory Arctic mammal, we assessed the phylogeography of reindeer (Rangifer tarandus) as inferred from mitochondrial DNA (mtDNA) sequence variation in the control region. Phylogenetic relationships among haplotypes seem to reflect historical patterns of fragmentation and colonization rather than clear-cut relationships among extant populations and subspecies. Three major haplogroups were detected, presumably representing three separate populations during the last glacial. The most influential one has contributed to the gene pool of all extant subspecies and seems to represent a large and continuous glacial population extending from Beringia and far into Eurasia. A smaller, more localized refugium was most likely isolated in connection with ice expansion in western Eurasia. A third glacial refugium was presumably located south of the ice sheet in North America, possibly comprising several separate refugial populations. Significant demographic population expansion was detected for the two haplogroups representing the western Eurasian and Beringian glacial populations. The former apparently expanded when the ice cap retreated by the end of the last glacial. The large continuous one, in contrast, seems to have expanded by the end of the last interglacial, indicating that the warm interglacial climate accompanied by marine transgression and forest expansion significantly confined population size on the continental mainland. Our data demonstrate that the current subspecies designation does not reflect the mtDNA phylogeography of the species, which in turn may indicate that morphological differences among subspecies have evolved as adaptive responses to postglacial environmental change.  相似文献   

5.
Aim Glacial refugia during the Pleistocene had major impacts on the levels and spatial apportionment of genetic diversity of species in northern latitude ecosystems. We characterized patterns of population subdivision, and tested hypotheses associated with locations of potential Pleistocene refugia and the relative contribution of these refugia to the post‐glacial colonization of North America and Scandinavia by common eiders (Somateria mollissima). Specifically, we evaluated localities hypothesized as ice‐free areas or glacial refugia for other Arctic vertebrates, including Beringia, the High Arctic Canadian Archipelago, Newfoundland Bank, Spitsbergen Bank and north‐west Norway. Location Alaska, Canada, Norway and Sweden. Methods Molecular data from 12 microsatellite loci, the mitochondrial DNA (mtDNA) control region, and two nuclear introns were collected and analysed for 15 populations of common eiders (n = 716) breeding throughout North America and Scandinavia. Population genetic structure, historical population fluctuations and gene flow were inferred using F‐statistics, analyses of molecular variance, and multilocus coalescent analyses. Results Significant inter‐population variation in allelic and haplotypic frequencies were observed (nuclear DNA FST = 0.004–0.290; mtDNA ΦST = 0.051–0.927). Whereas spatial differentiation in nuclear genes was concordant with subspecific designations, geographic proximity was more predictive of inter‐population variance in mitochondrial DNA haplotype frequency. Inferences of historical population demography were consistent with restriction of common eiders to four geographic areas during the Last Glacial Maximum: Belcher Islands, Newfoundland Bank, northern Alaska and Svalbard. Three of these areas coincide with previously identified glacial refugia: Newfoundland Bank, Beringia and Spitsbergen Bank. Gene‐flow and clustering analyses indicated that the Beringian refugium contributed little to common eider post‐glacial colonization of North America, whereas Canadian, Scandinavian and southern Alaskan post‐glacial colonization is likely to have occurred in a stepwise fashion from the same glacial refugium. Main conclusions Concordance of proposed glacial refugia used by common eiders and other Arctic species indicates that Arctic and subarctic refugia were important reservoirs of genetic diversity during the Pleistocene. Furthermore, suture zones identified at MacKenzie River, western Alaska/Aleutians and Scandinavia coincide with those identified for other Arctic vertebrates, suggesting that these regions were strong geographic barriers limiting dispersal from Pleistocene refugia.  相似文献   

6.
Pleistocene diversity was much higher than today, for example there were three distinct wolf morphotypes (dire, gray, Beringian) in North America versus one today (gray). Previous fossil evidence suggested that these three groups overlapped ecologically, but split the landscape geographically. The Natural Trap Cave (NTC) fossil site in Wyoming, USA is an ideally placed late Pleistocene site to study the geographical movement of species from northern to middle North America before, during, and after the last glacial maximum. Until now, it has been unclear what type of wolf was present at NTC. We analyzed morphometrics of three wolf groups (dire, extant North American gray, Alaskan Beringian) to determine which wolves were present at NTC and what this indicates about wolf diversity and migration in Pleistocene North America. Results show NTC wolves group with Alaskan Beringian wolves. This provides the first morphological evidence for Beringian wolves in mid‐continental North America. Their location at NTC and their radiocarbon ages suggest that they followed a temporary channel through the glaciers. Results suggest high levels of competition and diversity in Pleistocene North American wolves. The presence of mid‐continental Beringian morphotypes adds important data for untangling the history of immigration and evolution of Canis in North America.  相似文献   

7.
Aim This study examines the hypothesis that the biogeographic history of a species is reflected in the distribution of molecular genetic diversity and the phylogenies of extant populations. Location Populations of arctic-alpine ground beetle Amara alpina were analysed from Beringia (Alaska and northernmost British Columbia), the Hudson Bay region, the northern Appalachian Mountains, and the central Rocky Mountains of North America. Methods Mitochondrial restriction site variation of specimens from twenty-two populations were assayed by using radioactively labelled mtDNA to probe Southern membranes containing restriction enzyme digested total DNA. Restriction sites were mapped and genetic distances were calculated by pairwise comparison of presence and absence of restriction sites. Genetic distances were used in a molecular analysis of variance and to construct a minimal spanning tree. Parsimony methods were used to investigate the phylogenetic relationships between the haplotypes. These results were compared to an existing model for postglacial dispersal based on fossil and modern occurrences of arctic-alpine beetles. Results Among the twenty-two populations, fifteen haplotypes were detected. Genetic variation within each of the four regions corresponded to that expected from the palaeontologically based model. Beringian populations were the most genetically diverse. In contrast, no restriction site variation was observed in populations from the Hudson Bay region. Intermediate amounts of variation were observed in alpine populations of the Rocky and Appalachian Mountains. Maximum parsimony and cluster analysis provide evidence that at least two ancestral haplotypes existed in the Southern refugium from which the Rocky and the Appalachian Mountains populations were founded. Main conclusions The genetic results are generally consistent with the palaeontologically based model. The diversity of Beringian populations is consistent with this region having been continuously inhabited by Amara alpina throughout the Pleistocene. The Hudson Bay region was not deglaciated until about 6000 years, and its populations have no restriction site variation. The molecular genetic data support the interpretation that the Hudson Bay region was colonized from Beringia based on the occurrence of the same haplotype in both regions.  相似文献   

8.
The number and location of Arctic glacial refugia utilized by taxa during the Pleistocene are continuing uncertainties in Holarctic phylogeography. Arctic grayling (Thymallus arcticus) are widely distributed in freshwaters from the eastern side of Hudson Bay (Canada) west to central Asia. We studied mitochondrial DNA (mtDNA) and microsatellite DNA variation in North American T. arcticus to test for genetic signatures of survival in, and postglacial dispersal from, multiple glacial refugia, and to assess their evolutionary affinities with Eurasian Thymallus. In samples from 32 localities, we resolved 12 mtDNA haplotypes belonging to three assemblages that differed from each other in sequence by between 0.75 and 2.13%: a 'South Beringia' lineage found from western Alaska to northern British Columbia, Canada; a 'North Beringia' lineage found on the north slope of Alaska, the lower Mackenzie River, and to eastern Saskatchewan; and a 'Nahanni' lineage confined to the Nahanni River area of the upper Mackenzie River drainage. Sequence analysis of a portion of the control region indicated monophyly of all North American T. arcticus and their probable origin from eastern Siberian T. arcticus at least 3 Mya. Arctic grayling sampled from 25 localities displayed low allelic diversity and expected heterozygosity (H(E)) across five microsatellite loci (means of 2.1 alleles and 0.27 H(E), respectively) and there were declines in these measures of genetic diversity with distance eastward from the lower Yukon River Valley. Assemblages defined by mtDNA divergences were less apparent at microsatellite loci, but again the Nahanni lineage was the most distinctive. Analysis of molecular variance indicated that between 24% (microsatellite DNA) and 81% (mtDNA) of the variance was attributable to differences among South Beringia, North Beringia and Nahanni lineages. Our data suggest that extant North American Arctic grayling are more diverse phylogeographically than previously suspected and that they consist of at least three major lineages that originated in distinct Pleistocene glacial refugia. T. arcticus probably originated and dispersed from Eurasia to North America in the late to mid-Pliocene, but our data also suggest more recent (mid-late Pleistocene) interactions between lineages across Beringia.  相似文献   

9.
Aim The Pleistocene glaciations were the most significant historical event during the evolutionary life span of most extant species. However, little is known about the consequences of these climate changes for the distribution and demography of marine animals of the north‐eastern Atlantic. The present study focuses on the phylogeographic and demographic patterns of the sand goby, Pomatoschistus minutus (Teleostei: Gobiidae), a small marine demersal fish. Location North‐eastern Atlantic, Mediterranean, Irish, North and Baltic seas. Methods Analysis was carried out by sequencing the mtDNA cytochrome b gene of sand gobies from 12 localities throughout the species’ range, and using this information in combination with published data of allozyme markers and mtDNA control region sequences. Several phylogenetic methods and a network analysis were used to explore the phylogeographic pattern. The historical demography of P. minutus was studied through a mismatch analysis and a Bayesian skyline plot. Results Reciprocal monophyly was found between a Mediterranean Sea (MS) clade and an Atlantic Ocean (AO) clade, both with a Middle Pleistocene origin. The AO Clade contains two evolutionary significant units (ESUs): the Iberian Peninsula (IB) Group and the North Atlantic (NA) Group. These two groups diverged during Middle Pleistocene glacial cycles. For the NA Group there is evidence for geographic sorting of the ancestral haplotypes with recent radiations in the Baltic Sea, Irish Sea, North Sea and Bay of Biscay. The demographic histories of the Mediterranean Clade and the two Atlantic ESUs were influenced mainly by expansions dated as occurring during the Middle Pleistocene glaciations and post‐Eem, respectively. Main conclusions The pre‐LGM (Last Glacial Maximum) subdivision signals were not erased for P. minutus during the LGM. Middle Pleistocene glaciations yielded isolated and differently evolving sets of populations. In contrast to the case for most other taxa, only the northern Atlantic group contributed to the post‐glacial recolonization. The historical demography of Mediterranean sand gobies was influenced mainly by Middle Pleistocene glaciations, in contrast to that of the Atlantic populations, which was shaped by Late Pleistocene expansions.  相似文献   

10.
The exceptional diversity of insects is often attributed to the effects of specialized relationships between insects and their hosts. Parasite-host interactions are influenced by current natural selection and dispersal, in addition to historical effects that may include past selection, vicariance, and random genetic drift. Both current and historical events can lead to reduced fitness on some hosts. If trade-offs in fitness on alternate hosts are common, adaptation to one host can prevent adaptation to another, giving rise to genetic differentiation among host-associated lineages. Previous studies of Diaeretiella rapae (Hymenoptera: Aphidiidae), a parasitoid of aphids, have revealed additive genetic differences in performance between populations that parasitize different aphid host species. To determine whether D. rapae populations collected from different aphid hosts have diverged into genetically independent lineages, we constructed a haplotype network based on sequence variation in mitochondrial DNA (mtDNA). We used single strand conformation polymorphism (SSCP) analysis to examine 2041 base pairs of mtDNA and to identify nucleotide sequences of 42 unique SSCP haplotypes. We found no association between mtDNA haplotypes and host species in either the ancestral range (Europe, Mediterranean region, Middle East, Asia) or part of the introduced range (western North America). Haplotypes likely to be ancestral were geographically widespread and found on both hosts, suggesting that the ability to use both hosts evolved prior to the diversification of the mtDNA. Ongoing gene flow appears to prevent the formation of host races.  相似文献   

11.
Origin and evolution of Native American mtDNA variation: a reappraisal.   总被引:52,自引:21,他引:31       下载免费PDF全文
The timing and number of prehistoric migrations involved in the settlement of the American continent is subject to intense debate. Here, we reanalyze Native American control region mtDNA data and demonstrate that only an appropriate phylogenetic analysis accompanied by an appreciation of demographic factors allows us to discern different migrations and to estimate their ages. Reappraising 574 mtDNA control region sequences from aboriginal Siberians and Native Americans, we confirm in agreement with linguistic, archaeological and climatic evidence that (i) the major wave of migration brought one population, ancestral to the Amerinds, from northeastern Siberia to America 20,000-25,000 years ago and (ii) a rapid expansion of a Beringian source population took place at the end of the Younger Dryas glacial phase approximately 11,300 years ago, ancestral to present Eskimo and Na-Dene populations.  相似文献   

12.
Mirabello L  Conn JE 《Heredity》2006,96(4):311-321
To analyze the genetic relatedness and phylogeographic structure of Anopheles darlingi from 19 localities throughout Central and South America, we used a minimum spanning network, diversity measures, differentiation, neutrality tests, and mismatch distribution with mitochondrial cytochrome oxidase subunit I (COI) sequences. All the Central American haplotypes were separated by seven mutational steps from the South American haplotypes and the FST distance-based neighbor-joining tree showed a primary division between Central and South America, evidence for a putative gene pool division. More ancestral and diverse haplotypes were found in Amazonian and southern Brazil populations, suggesting that Central American populations may have originated in South America. The patterns of the mtDNA haplotype diversity and five of six tests for equilibrium implicate demographic expansion in the South American populations as the historical structure, but mismatch distribution depicts populations at mutation drift equilibrium (MDE). In South America, the departure from equilibrium was consistent with an expansion that occurred during the Pleistocene.  相似文献   

13.
The level of genetic differentiation of northern Dolly Varden char Salvelinus malma malma from Asia and North America was evaluated using the data on mtDNA variation (regions ND1/ND2, ND5/ND6, and Cytb/D-loop) obtained by means of PCR-RFLP analysis. For S. m. malma, the mean values of haplo-type and nucleotide diversity were 0.5261 ± 0.00388 and 0.001558, respectively. The mean estimate of the population nucleotide divergence constituted 0.055%. It was demonstrated that S. m. malma on the most part of the species range examined (drainages of the Beaufort Sea, Chukotka Sea, Bering Sea, and the Sea of Okhotsk) was characterized by the population genetic structure with the low level of genetic differentiation and divergence. At the same time, populations from the Pacific Ocean Gulf of Alaska demonstrated marked genetic differentiation, supported by the high pairwise G4ST values (from 0.4198 to 0.5211) and nucleotide divergence estimates (mean divergence, 0.129%), from Asian and North American populations. Analysis of molecular variance (AMOVA) showed that most of the mtDNA variation in S. m. malma fell in the intrapopulation component (72.5%). At the same time, the differences between the populations (21.1%) and between the regions (6.4%) made lower contribution to the total variation.  相似文献   

14.
This study evaluated mitochondrial DNA (mtDNA) sequence variation in a 552-bp fragment of the control region of Arctic charr (Salvelinus alpinus) by analyzing 159 individuals from 83 populations throughout the entire range of the complex. A total of 89 (16.1%) nucleotide positions were polymorphic, and these defined 63 haplotypes. Phylogenetic analyses supported the monophyly of the complex and assigned the observed haplotypes to five geographic regions that may be associated with different glacial refugia. Most notably, a formerly defined major evolutionary lineage (S. a. erythrinus) ranging from North America across the Arctic archipelago to the Eurasian continent has now been partitioned into the Arctic group and the newly identified Siberian group. The Beringian group, formed entirely by specimens assigned to S. malma (Dolly Varden), encompassed the area formerly assigned to S. a. taranetzi. The latter, due to a unique haplotype, became the basal member of the Arctic group. Overall, the S. alpinus complex reflects divergent evolutionary groups coupled with shallow intergroup differentiation, also indicated by an analysis of molecular variance that attributed 73.7% (P < 0.001) of the total genetic variance among groups. Time estimates, based on sequence divergence, suggest a separation of the major phylogeographic groups during early to mid-Pleistocene. In contrast, colonization of most of today's range started relatively recently, most likely late Pleistocene during the last retreat of ice sheets some 10,000-20,000 years ago. This time scale obviously is too shallow for detecting significant variation on a smaller scale using mtDNA markers. However, other studies using nuclear microsatellite DNA variation strongly suggested ongoing evolution within groups by revealing strong population-genetic substructuring and restricted gene flow among populations. Thus, Arctic charr could serve as a model organism to investigate the linkage between historical and contemporary components of phylogeographic structuring in fish, and, with a global perspective of the distribution of genetic variation as a framework, meaningful comparisons of charr studies at a smaller geographic scale will now be possible.  相似文献   

15.
To illustrate phylogeography of red deer (Cervus elaphus) populations of Xinjiang, we determined their mitochondrial DNA (mtDNA) control region sequences, and then investigated geographic variations and phylogenetic relationships between Xinjiang populations and other populations from Asia, Europe, and North America. The C. elaphus mtDNA control region shared different copy numbers of tandem repeats of 38 to 43-bp motifs which clearly distinguished the Western lineage from the Eastern lineage of this species in Eurasia. The western lineage comprised the Tarim populations from southern Xinjiang and the European populations, all of which had four copies of the motifs. By contrast, the Eastern lineage consisted of populations from northern Xinjiang (Tianshan and Altai Mountains), other Asian areas (Alashan, Gansu, Tibet, Mongolia, and northeastern China), and North America, all of which shared six copies of the motifs. MtDNA phylogenetic trees showed that there are two major clusters of haplotypes which referred to the Western and Eastern lineages, and that subgroupings of haplotypes in each cluster were congruent with their geographic distributions. The present study revealed that a boundary separating the Western lineage from the Eastern lineage occurs between Tarim Basin and Tianshan Mountains in Xinjiang. Meanwhile, North American populations were genetically closer to those of northern Xinjiang, northeastern China, and Mongolia, supporting that C. elaphus immigrated from northeastern Eurasia to North America through the glacier-induced land-bridge (Beringia) which had formed between the two continents after Late Pleistocene.  相似文献   

16.
Genetic differentiation of Dolly Varden char Salvelinus malma Walbaum from the Asian and North American Pacific coasts was studied. We examined restriction fragment length polymorphism of three mitochondrial DNA (mtDNA) fragments amplified in polymerase chain reaction, which encoded four NADH dehydrogenase subunits, the cytochrome b gene, and a D-loop segment. The mtDNA haplotypes were shown to form three phylogenetic groups, whose geographic distribution corresponded to three Dolly Varden subspecies: S. malma malma, S. malma krascheninnikovi, and S. malma lordi. The nucleotide sequence divergence between S. malma malma and S. malma krascheninnikovi was 3.8%; between S. malma malma and S. malma lordi, 3.1%; and between S. malma krascheninnikovi and S. malma lordi, 2.5%. The northern Dolly Varden S. malma malma from Asia was shown to be genetically identical to that from North America.__________Translated from Genetika, Vol. 41, No. 5, 2005, pp. 626–634.Original Russian Text Copyright © 2005 by Oleinik, Skurikhina, Brykov, Crane, Wenburg.  相似文献   

17.
We gathered mitochondrial DNA sequences (557 bp from the control region in 935 specimens and 668 bp of the cytochrome b gene in 139 specimens) of Pacific herring collected from 20 nearshore localities spanning the species' extensive range along the North Pacific coastlines of Asia and North America. Haplotype diversity and nucleotide diversity were high, and three major phylogeographic lineages (sequence divergences ca. 1.5%) were detected. Using a variety of phylogenetic methods, coalescent reasoning, and molecular dating interpreted in conjunction with paleoclimatic and physiographic evidence, we infer that the genetic make-up of extant populations of C. pallasii was shaped by Pleistocene environmental impacts on the historical demography of this species. A deep genealogical split that cleanly distinguishes populations in the western vs. eastern North Pacific probably originated as a vicariant separation associated with a glacial cycle that drove the species southward and isolated two ancestral populations in Asia and North America. Another deep genealogical split may have involved either a vicariant isolation of a third herring lineage (perhaps originally in the Gulf of California) or it may have resulted simply from the long coalescent times that are possible in large populations. Coalescent analyses showed that all the three evolutionary lineages of C. pallasii experienced major expansions in their most recent histories after having remained more stable in the preceding periods. Independent of the molecular calibration chosen, populations of C. pallasii appear to have remained stable or grown throughout the periods that covered at least two major glaciations, and probably more.  相似文献   

18.
Inferring how the Pleistocene climate oscillations have repopulated the extant population structure of Chondrus crispus Stackh. in the North Atlantic Ocean is important both for our understanding of the glacial episode promoting diversification and for the conservation and development of marine organisms. C. crispus is an ecologically and commercially important red seaweed with broad distributions in the North Atlantic. Here, we employed both partial mtDNA Cox1 and nrDNA internal transcribed spacer region 2 (ITS2) sequences to explore the genetic structure of 17 C. crispus populations from this area. Twenty‐eight and 30 haplotypes were inferred from these two markers, respectively. Analysis of molecular variance (AMOVA) and of the population statistic ΦST not only revealed significant genetic structure within C. crispus populations but also detected significant levels of genetic subdivision among and within populations in the North Atlantic. On the basis of high haplotype diversity and the presence of endemic haplotypes, we postulate that C. crispus had survived in Pleistocene glacial refugia in the northeast Atlantic, such as the English Channel and the northwestern Iberian Peninsula. We also hypothesize that C. crispus from the English Channel refugium repopulated most of northeastern Europe and recolonized northeastern North America in the Late Pleistocene. The observed phylogeographic pattern of C. crispus populations is in agreement with a scenario in which severe Quaternary glaciations influenced the genetic structure of North Atlantic marine organisms with contiguous population expansion and locally restricted gene flow coupled with a transatlantic dispersal in the Late Pleistocene.  相似文献   

19.
The center of diversity is not necessarily the place of origin, as has been established by many plant molecular phylogenies. Picea is a complicated but very important genus in coniferous forests of the Northern Hemisphere, with a high species diversity in Asia. Its phylogeny and biogeography were investigated here using sequence analysis of the paternally inherited chloroplast trnC-trnD and trnT-trnF regions and the maternally inherited mitochondrial nad5 intron 1. We found that the North American P. breweriana and P. sitchensis were basal to the other spruces that were further divided into three clades in the cpDNA phylogeny, and that the New World species harbored four of five mitotypes detected, including two ancestral ones and three endemics. These results, combined with biogeographic analyses using DIVA and MacClade and fossil evidence, suggest that Picea originated in North America, and that its present distribution could stem from two times of dispersal from North America to Asia by the Beringian land bridge, and then from Asia to Europe. Most of the northeastern Asian species and the European P. abies could arise from a recent radiation given the very low interspecific genetic differentiation and pure mitotype of them. Considering that the ancestral mtDNA polymorphism can be preserved in many descendant species, even distantly related ones, we suggest that more species, at least the closely related ones, should be sampled in the phylogeographical study using cytoplasmic haplotypes if possible. In addition, we also discussed the evolution and phylogenetic utility of morphological characters in Picea.  相似文献   

20.
The current spatial distribution of genetic lineages across a region should reflect the complex interplay of both historical and contemporary processes. Postglacial expansion and recolonization in the distant past, in combination with more recent events with anthropogenic effects such as habitat fragmentation and overexploitation, can help shape the pattern of genetic structure observed in contemporary populations. In this study, we characterize the spatial distribution of mtDNA lineages for fisher (Martes pennanti) in north‐eastern North America. The history of fishers in this region is well understood and thus provides an opportunity to interpret patterns of genetic structure in the light of known historical (e.g. recolonization from glacial refugia) and contemporary events (e.g. reintroductions, fragmentation and natural recolonization). Our results indicate that fishers likely recolonized north‐eastern North America from a single Pleistocene refugium. Three genetically distinct remnant populations persisted through the population declines of the 1800s and served as sources for multiple reintroductions and natural recolonizations that have restored the fisher throughout north‐eastern North America. However, the spatial genetic structure of genetic lineages across the region still reflects the three remnant populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号