首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
C. K. Pallaghy 《Planta》1971,101(4):287-295
Summary The correlation between stomatal action and potassium movement in the epidermis of Zea mays was examined in isolated epidermal strips floated on distilled water. Stomatal opening in the isolated epidermis is reversible in response to alternate periods of light or darkness, and is always correlated with a shift in the potassium content of the guard cells. K accumulates in guard cells during stomatal opening, and moves from the guard cells into the subsidiary cells during rapid stomatal closure. When epidermal strips are illuminated in normal air, as against CO2-free air, the stomata do not open and there is a virtually complete depletion of K from the stomatal apparatus. In darkness CO2-containing air inhibits stomatal opening and K accumulation in guard cells, but does not lead to a depletion of K from the stomata as observed in the light.  相似文献   

2.
Fischer RA 《Plant physiology》1968,43(12):1947-1952
This paper reports a consistent and large opening response to light + CO2-free air in living stomata of isolated epidermal strips of Vicia faba. The response was compared to that of non-isolated stomata in leaf discs floating on water; stomatal apertures, guard cell solute potentials and starch contents were similar in the 2 situations. To obtain such stomatal behavior, it was necessary to float epidermal strips on dilute KCl solutions. This suggests that solute uptake is necessary for stomatal opening.

The demonstration of normal stomatal behavior in isolated epidermal strips provides a very useful system in which to investigate the mechanism of stomatal opening. It was possible to show independent responses in stomatal aperture to light and to CO2-free air.

  相似文献   

3.
The response of stomata in isolated epidermis to the concentration of CO2 in the gaseous phase was examined in a C3 species, the Argenteum mutant of Pisum sativum, and a crassulacean-acid-metabolism (CAM) species, Kalanchoë daigremontiana. Epidermis from leaves of both species was incubated on buffer solutions in the presence of air containing various volume fractions of CO2 (0 to 10000·10–6). In both species and in the light and in darkness, the effect of CO2 was to inhibit stomatal opening, the maximum inhibition of opening occurring in the range 0 to 360·10–6. The inhibition of opening per unit change in concentration was greatest between volume fractions of 0 and 240·10–6. There was little further closure above the volume fraction of 360·10–6, i.e. approximately ambient concentration of CO2. Thus, although leaves of CAM species may experience much higher internal concentrations of CO2 in the light than those of C3 plants, this does not affect the sensitivity of their stomata to CO2 concentration or the range over which they respond. Stomatal responses to CO2 were similar in both the light and the dark, indicating that effects of CO2 on stomata occur via mechanisms which are independent of light. The responses of stomata to CO2 in the gaseous phase took place without the treatments changing the pH of the buffered solutions. Thus it is unlikely that CO2 elicited stomatal movement by changing either the pH or the HCO 3 /CO 3 2- equilibria. It is suggested that the concentration of dissolved unhydrated CO2 may be the effector of stomatal movement and that its activity is related to its reactivity with amines.  相似文献   

4.
Mott KA 《Plant physiology》1988,86(1):200-203
Most studies on stomatal responses to CO2 assume that guard cells respond only to intercellular CO2 concentration and are insensitive to the CO2 concentrations in the pore and outside the leaf. If stomata are sensitive to the CO2 concentration at the surface of the leaf or in the stomatal pore, the stomatal response to intercellular CO2 concentration will be incorrect for a `normally' operating leaf (where ambient CO2 concentration is a constant). In this study asymmetric CO2 concentrations for the two surfaces of amphistomatous leaves were used to vary intercellular and leaf surface CO2 concentrations independently in Xanthium strumarium L. and Helianthus annuus L. The response of stomata to intercellular CO2 concentration when the concentration at the leaf surface was held constant was found to be the same as the response when the surface concentration was varied. In addition, stomata did not respond to changes in leaf surface CO2 concentration when the intercellular concentration for that surface was held constant. It is concluded that stomata respond to intercellular CO2 concentration and are insensitive to the CO2 concentration at the surface of the leaf and in the stomatal pore.  相似文献   

5.
To characterise the stomata of six temperate deciduous tree species, sets of stomatal sensitivities to all the most important environmental factors were measured. To compare the importance of abscisic acid (ABA) in the different stomatal responses, the effect of exogenous ABA on all the stomatal sensitivities was determined.Almost all the stomatal sensitivities: the sensitivity to a decrease in leaf water potential, air humidity, CO2 concentration ([CO2]) and light intensity, and to an increase in [CO2] and light intensity were the highest in the slow-growing species, and the lowest in the fast-growing species. Drought increased the sensitivity to the environmental changes that induce a decrease in the stomatal conductance, and decreased the sensitivity to the changes that induce an increase in this conductance. The sensitivities of the slow-growers were most strongly affected by drought and ABA. Therefore the success of the slow-growers in their ecological niches can be based on the highly sensitive and strictly regulated responses of their stomata. The fast-growers had the highest sensitivity to an increase in leaf water potential and this sensitivity was sharply reduced by drought and ABA. Thus, the dominance of the trees in riparian areas can be based on the ability of their stomata to quickly reach high conductance in well-watered conditions and to efficiently decrease this rate during drought.Stomatal sensitivities to the hydraulic environmental factors (water potentials in plant and air) had higher values in well-watered trees and a more pronounced response to drought than the sensitivities to the photosynthetic environmental factors ([CO2] and light intensity). Thus, the hydraulic factors most likely prevail over the photosynthetic factors in determining stomatal conductance in these species.In response to exogenous ABA, the rates of stomatal closure, following a decrease in air humidity and light intensity, and an increase in [CO2], were accelerated. Stomatal opening following an increase in air humidity and light intensity and a decrease in [CO2] was replaced by slow closing. The rate of stomatal opening following an increase in leaf water potential was reduced. As the sensitivities to changes in light were modified less by the ABA than the other stomatal sensitivities, the prediction of stomatal responses on the basis of the sensitivity to light alone should be excluded in stomatal models.  相似文献   

6.
Stomata mediate gas exchange between the inter‐cellular spaces of leaves and the atmosphere. CO2 levels in leaves (Ci) are determined by respiration, photosynthesis, stomatal conductance and atmospheric [CO2]. [CO2] in leaves mediates stomatal movements. The role of guard cell photosynthesis in stomatal conductance responses is a matter of debate, and genetic approaches are needed. We have generated transgenic Arabidopsis plants that are chlorophyll‐deficient in guard cells only, expressing a constitutively active chlorophyllase in a guard cell specific enhancer trap line. Our data show that more than 90% of guard cells were chlorophyll‐deficient. Interestingly, approximately 45% of stomata had an unusual, previously not‐described, morphology of thin‐shaped chlorophyll‐less stomata. Nevertheless, stomatal size, stomatal index, plant morphology, and whole‐leaf photosynthetic parameters (PSII, qP, qN, FV′/FM′) were comparable with wild‐type plants. Time‐resolved intact leaf gas‐exchange analyses showed a reduction in stomatal conductance and CO2‐assimilation rates of the transgenic plants. Normalization of CO2 responses showed that stomata of transgenic plants respond to [CO2] shifts. Detailed stomatal aperture measurements of normal kidney‐shaped stomata, which lack chlorophyll, showed stomatal closing responses to [CO2] elevation and abscisic acid (ABA), while thin‐shaped stomata were continuously closed. Our present findings show that stomatal movement responses to [CO2] and ABA are functional in guard cells that lack chlorophyll. These data suggest that guard cell CO2 and ABA signal transduction are not directly modulated by guard cell photosynthesis/electron transport. Moreover, the finding that chlorophyll‐less stomata cause a ‘deflated’ thin‐shaped phenotype, suggests that photosynthesis in guard cells is critical for energization and guard cell turgor production.  相似文献   

7.
Abstract Responses of stomata to light and CO2 were smaller when detached epidermis of Commelina communis L. was incubated on a medium containing 50 mol m?3 NaCl than when an equimolar KCl solution was used. Although opening in the light in the absence of CO2 seemed to be the same whichever salt was present, apertures on KCl solutions were smaller in the dark or with CO2-containing air. The response to 10?7 mol dm?3 ABA was similarly reduced in the presence of NaCl. If there is an optimal NaCl concentration for stomatal CO2 and light responses it is at or below 25 mol m?3. These findings point towards control of stomatal movements by light, CO2 and ABA at the level of cation uptake or extrusion.  相似文献   

8.
Stomatal movements depend on both ion influx and efflux; attainment of steady state apertures reflects modulation of either or both processes. The role of Ca2+ in those two processes was investigated in isolated epidermal strips of Commelina communis, using the Ca2+ chelator EGTA to reduce apoplastic [Ca2+]. The results suggest that a certain concentration of Ca2+ is an absolute requirement for salt efflux and stomatal closure. EGTA (2 millimolar) increased KCl-dependent stomatal opening in darkness and completely inhibited the dark-induced closure of initially open stomata. Closure was inhibited even in a KCl-free medium. Thus, maintenance of stomata in the open state does not necessarily depend on continued K+ influx but on the inhibition of salt efflux. Opening in the dark was stimulated by IAA in a concentration-dependent manner, up to 15.4 micrometer without reaching saturation, while the response to EGTA leveled off at 9.2 micrometer. IAA did not inhibit stomatal closure to the extent it stimulated opening. The response to IAA is thus consistent with a primary stimulation of opening, while EGTA can be considered a specific inhibitor of stomatal closing since it inhibits closure to a much larger degree than it stimulates opening. CO2 causes concentration-dependent reduction in the steady state stomatal aperture. EGTA completely reversed CO2-induced closing of open stomata but only partially prevented the inhibition of opening.  相似文献   

9.
Sensitivity of stomata and water use efficiency to high CO2   总被引:17,自引:9,他引:8  
Abstract The observed responses of stomata to carbon dioxide are reviewed, and the interaction of other known factors on the sensitivity to CO2 are summarized. The role of stomatal response to CO2 is discussed, and it is argued that while the effect of the CO2 response in normal daily stomatal behaviour is presently poorly understood the stomatal response to CO2 will have major impact in improving water use efficiency in future CO2 atmospheres. However, the attenuation of this increase is emphasized so that increases at the crop level will probably be much smaller than those observed at the single leaf assimilation level.  相似文献   

10.
Monda K  Negi J  Iio A  Kusumi K  Kojima M  Hashimoto M  Sakakibara H  Iba K 《Planta》2011,234(3):555-563
The Arabidopsis Cape Verde Islands (Cvi-0) ecotype is known to differ from other ecotypes with respect to environmental stress responses. We analyzed the stomatal behavior of Cvi-0 plants, in response to environmental signals. We investigated the responses of stomatal conductance and aperture to high [CO2] in the Cvi-0 and Col-0 ecotypes. Cvi-0 showed constitutively higher stomatal conductance and more stomatal opening than Col-0. Cvi-0 stomata opened in response to light, but the response was slow. Under low humidity, stomatal opening was increased in Cvi-0 compared to Col-0. We then assessed whether low humidity affects endogenous ABA levels in Cvi-0. In response to low humidity, Cvi-0 had much higher ABA levels than Col-0. However, epidermal peels experiments showed that Cvi-0 stomata were insensitive to ABA. Measurements of organic and inorganic ions in Cvi-0 guard cell protoplasts indicated an over-accumulation of osmoregulatory anions (malate and Cl). This irregular anion homeostasis in the guard cells may explain the constitutive stomatal opening phenotypes of the Cvi-0 ecotype, which lacks high [CO2]-induced and low humidity-induced stomatal closure.  相似文献   

11.
The inverse relationship between numbers of stomata (stomatal frequency) on tree leaves and ambient CO2 concentration is increasingly applied for reconstructing past atmospheric CO2 levels. The abundance of leaf remains of Quercus robur in Holocene peat and lake deposits in Europe makes this species potentially suitable for high-resolution stomatal frequency analysis. In order to quantify the CO2 responsiveness of the species, the behavior of the stomatal index for Q. robur during the current anthropogenic CO2 increase is determined on the basis of buried, herbarium and modern leaf material from the Netherlands. The stomatal index (SI), expressing the ratio of the number of stomata in a given area divided by the total number of stomata and other epidermal cells in that same area, is used in order to minimize influences on stomatal frequency of environmental conditions other than CO2. The sigmoid SI response pattern recorded for Q. robur resembles that of the closely related species Q. petraea, although there is a difference in the timing of the response limitation of the two species to increasing atmospheric CO2. For calibration purposes only the linear phase of the sigmoidal response curve is taken into consideration in the presented CO2 response model, which allows confident combination of Q. robur and Q. petraea over the interval from 290 to 325 ppmv CO2. The model is conservative in reconstructing past CO2 mixing ratios outside the range of monitored response. As a result of the observed SI response limit, the model predicts CO2 levels below 325 ppmv with a mean error of 10.2 ppmv, whereas higher CO2 levels are underestimated.  相似文献   

12.
Plant stomata display a wide range of short-term behavioural and long-term morphological responses to atmospheric carbon dioxide concentration ([CO2]). The diversity of responses suggests that plants may have different strategies for controlling gas exchange, yet it is not known whether these strategies are co-ordinated in some way. Here, we test the hypothesis that there is co-ordination of physiological (via aperture change) and morphological (via stomatal density change) control of gas exchange by plants. We examined the response of stomatal conductance (G s) to instantaneous changes in external [CO2] (C a) in an evolutionary cross-section of vascular plants grown in atmospheres of elevated [CO2] (1,500 ppm) and sub-ambient [O2] (13.0 %) compared to control conditions (380 ppm CO2, 20.9 % O2). We found that active control of stomatal aperture to [CO2] above current ambient levels was not restricted to angiosperms, occurring in the gymnosperms Lepidozamia peroffskyana and Nageia nagi. The angiosperm species analysed appeared to possess a greater respiratory demand for stomatal movement than gymnosperm species displaying active stomatal control. Those species with little or no control of stomatal aperture (termed passive) to C a were more likely to exhibit a reduction in stomatal density than species with active stomatal control when grown in atmospheres of elevated [CO2]. The relationship between the degree of stomatal aperture control to C a above ambient and the extent of any reduction in stomatal density may suggest the co-ordination of physiological and morphological responses of stomata to [CO2] in the optimisation of water use efficiency. This trade-off between stomatal control strategies may have developed due to selective pressures exerted by the costs associated with passive and active stomatal control.  相似文献   

13.
Uptake of CO2 by the leaf is associated with loss of water. Control of stomatal aperture by volume changes of guard cell pairs optimizes the efficiency of water use. Under water stress, the protein kinase OPEN STOMATA 1 (OST1) activates the guard‐cell anion release channel SLOW ANION CHANNEL‐ASSOCIATED 1 (SLAC1), and thereby triggers stomatal closure. Plants with mutated OST1 and SLAC1 are defective in guard‐cell turgor regulation. To study the effect of stomatal movement on leaf turgor using intact leaves of Arabidopsis, we used a new pressure probe to monitor transpiration and turgor pressure simultaneously and non‐invasively. This probe permits routine easy access to parameters related to water status and stomatal conductance under physiological conditions using the model plant Arabidopsis thaliana. Long‐term leaf turgor pressure recordings over several weeks showed a drop in turgor during the day and recovery at night. Thus pressure changes directly correlated with the degree of plant transpiration. Leaf turgor of wild‐type plants responded to CO2, light, humidity, ozone and abscisic acid (ABA) in a guard cell‐specific manner. Pressure probe measurements of mutants lacking OST1 and SLAC1 function indicated impairment in stomatal responses to light and humidity. In contrast to wild‐type plants, leaves from well‐watered ost1 plants exposed to a dry atmosphere wilted after light‐induced stomatal opening. Experiments with open stomata mutants indicated that the hydraulic conductance of leaf stomata is higher than that of the root–shoot continuum. Thus leaf turgor appears to rely to a large extent on the anion channel activity of autonomously regulated stomatal guard cells.  相似文献   

14.
Flooding the intercellular air spaces of leaves with water was shown to cause rapid closure of stomata in Tradescantia pallida, Lactuca serriola, Helianthus annuus, and Oenothera caespitosa. The response occurred when water was injected into the intercellular spaces, vacuum infiltrated into the intercellular spaces, or forced into the intercellular spaces by pressurizing the xylem. Injecting 50 mm KCl or silicone oil into the intercellular spaces also caused stomata to close, but the response was slower than with distilled water. Epidermis-mesophyll grafts for T. pallida were created by placing the epidermis of one leaf onto the exposed mesophyll of another leaf. Stomata in these grafts opened under light but closed rapidly when water was allowed to wick between epidermis and the mesophyll. When epidermis-mesophyll grafts were constructed with a thin hydrophobic filter between the mesophyll and epidermis stomata responded normally to light and CO2. These data, when taken together, suggest that the effect of water on stomata is caused partly by dilution of K+ in the guard cell and partly by the existence of a vapor-phase signal that originates in the mesophyll and causes stomata to open in the light.Stomatal responses to the environment have been studied in leaves for well over 100 years. More recently, the mechanisms for these responses have been investigated using isolated epidermes or isolated guard cell protoplasts. Despite the combination of these two approaches, the mechanisms by which stomata respond to environmental signals are not well understood. Since stomata control CO2 uptake and water loss from leaves, the responses of stomata to environmental factors are important determinants of terrestrial productivity and water use. It is therefore critical that we understand the mechanisms by which stomata respond to the environment if we are to accurately predict the effects of future climates on productivity and water cycles (Randall et al., 1996).There are two assumptions about stomata that are implicit in much of the recent literature: (1) that stomatal responses result from sensory mechanisms that reside within the guard cells, and (2) that stomata in isolated epidermes respond similarly to those in a leaf. The exception to this generalization is the stomatal response to humidity, which has been suggested to be the result of changes in guard cell water potential (Dewar, 1995, 2002) or of signaling from other cells in the leaf to the guard cells (Buckley et al., 2003). The assumption that guard cells directly sense CO2 and light is largely based on data from isolated epidermes that show effects of light and CO2 on stomatal apertures. As pointed out by Mott (2009), however, stomatal responses to light and CO2 in isolated epidermes are generally much different from those observed in leaves; e.g. responses in isolated epidermes are generally smaller than those in leaves, opening in response to light is slower, and closing in darkness is rarely observed. These observations were used to suggest that the mesophyll is somehow involved in stomatal responses to red light and CO2. This idea is supported by several recent studies that suggest that guard cells do not respond directly to red light. In the first of these studies it was shown that guard cells in an intact leaf do not show hyperpolarization of the plasma membrane in response to red light if the red light is applied to only the guard cell (Roelfsema et al., 2002). In contrast, blue light applied only to the guard cell does cause hyperpolarization, and red light does cause hyperpolarization if applied to the guard cell and the underlying mesophyll. The second study showed that stomata in albino areas of a leaf do not respond to red light, although they contain chloroplasts and do respond to blue light (Roelfsema et al., 2006). Finally, a third study has shown that isolated epidermes are much more sensitive to light and CO2 when placed in close contact with an exposed mesophyll from a leaf from the same or a different species (Mott et al., 2008). These epidermis-mesophyll grafts showed stomatal responses to light and CO2 that were indistinguishable from those in an intact leaf—a sharp contrast to the behavior of stomata in isolated epidermes that are floating on buffer solutions. In that study, illumination of a single stoma in a leaf using a small-diameter fiber optic did not produce stomatal opening, but opening did occur if several stomata and the underlying mesophyll were illuminated. Furthermore, this treatment actually caused opening of adjacent, but unilluminated, stomata (Mott et al., 2008).In constructing the epidermis-mesophyll grafts in the study described above (Mott et al., 2008), it was noticed that functional grafts could be produced only if both the mesophyll and the epidermis were blotted completely dry of any free water before placing them together. Although the tissues were apparently still fully hydrated, there was very little free water present (i.e. water not contained within the walls of the leaf cells), and both the mesophyll and epidermis felt and looked dry prior to assembly. In addition, even when free water was blotted away initially, stomata did not open in grafts that ended up with visible water on the epidermis or mesophyll that was caused by condensation during the experiment. These observations suggest that the presence of free water somehow prevented the stomata in the grafts from opening. Assuming that the mechanisms operating in the grafts were similar to those in an intact leaf, this result also suggests that free water may have an effect on stomata in leaves as well. In addition, it seems possible that the effect of free water on stomata could be related to the disruption of the signal from the mesophyll that was proposed in an earlier study (Mott et al., 2008). We hypothesize that disruption of this signal could be caused by (1) dilution of some solute that is necessary for opening (such as K+) in the guard cell walls, (2) dilution of an apoplastic, liquid-phase opening signal from the mesophyll to the guard cells, and (3) blockage of a vapor-phase opening signal from the mesophyll to the guard cells. This study was initiated to test these three hypotheses by examining the effect of free water and other liquids on stomatal functioning.  相似文献   

15.
Previous work has shown that stomata respond directly to light,but it was not clear whether the only additional response isthrough CO2, or whether some other metabolite is involved inthis response. Gas exchange experiments were done with normallypositioned and inverted leaves of Hedera helix to investigatethis problem. The macroscopic optical properties of the leavesand their anatomical structure were also studied. These experimentssnowed that there is no need to postulate the existence of amessenger other than CO2 to explain the indirect response ofstomata to light. The experiments also showed that leaf inversionaffects both stomatal conductance and photosynthesis, and highlightthe difficulties involved in the interpretation of the effectof leaf inversion on stomata when stomatal conductance measurementsare not done concurrently with measurements of CO2 flux densityand intercellular CO2 molar fraction Key words: Hedera helix, ivy, gas exchange, leaf inversion, stomatal conductance, light, CO2 flux density, photosynthesis  相似文献   

16.
Conductance for water vapor, assimilation of CO2, and intercellular CO2 concentration of leaves of five species were determined at various irradiances and ambient CO2 concentrations. Conductance and assimilation were then plotted as functions of irradiance and intercellular CO2 concentration. The slopes of these curves allowed us to estimate infinitesimal changes in conductance (and assimilation) that occurred when irradiance changed and intercellular CO2 concentration was constant, and when CO2 concentration changed and irradiance was constant. On leaves of Xanthium strumarium L., Gossypium hirsutum L., Phaseolus vulgaris L., and Perilla frutescens (L.), Britt., the stomatal response to light was determined to be mainly a direct response to light and to a small extent only a response to changes in intercellular CO2 concentration. This was also true for stomata of Zea mays L., except at irradiances < 150 watts per square meter, when stomata responded primarily to the depletion of the intercellular spaces of CO2 which in turn was caused by changes in the assimilation of CO2.  相似文献   

17.
The physiological and physical components of the feedback loop involving intercellular CO2 concentration (ci) and stomata are identified. The loop gain (G) is a measure of the degree of homeostasis in a negative feedback loop [the expression 1/(1-G) represents the fraction to which feedback reduces a perturbance]. Estimates are given for the effects of G on responses of stomata and ci to changes in ambient CO2 concentration, light intensity, and perturbations in the water relations of a leaf. At normal ambient CO2 concentration, the gain of the loop involving stomatal conductance and ci was found to be −2.2 in field-grown Zea mays, −3.6 if plants of this species were grown in a growth chamber, and zero in well watered Xanthium strumarium in the vegetative state.  相似文献   

18.
A role of the guard cell chloroplasts in the CO2 response of stomata was investigated through a comparison of the leaf gas exchange characteristics of two closely related orchids: Paphiopedilum harrisianum, which lacks guard cell chloroplasts and Phragmipedium longifolium, which has chlorophyllous guard cells. Leaves of both species had an apparent quantum yield for assimilation of about 0.05, with photosynthesis saturating at 0.300 to 0.400 millimoles per square meter per second. CO2 curves were obtained by measuring steady-state assimilation and stomatal conductance under 0.180 or 0.053 millimoles per square meter per second white light, or darkness, at 0 to 400 microliters per liter ambient CO2. The response of assimilation to changes in CO2 was similar in the two species, but the response of conductance was consistently weaker in Paphiopedilum than in Phragmipedium. The data suggest involvement of guard cell chloroplasts in the stomatal response to CO2 and in the coupling of assimilation and conductance in the intact leaf.  相似文献   

19.
Summary The time-response of the CO2-exchange of both leaf surfaces was measured separately. Leaves of Primula palinuri and Zea mays were used for the study. After short dark-periods (3 min) the stomata are not closed. Consequently CO2-uptake starts quickly after re-illumination and reaches the steady-state value very rapidly. The time-response of stripped leaves of Primula and of normal leaves after short dark-periods is identical. Accordingly, the conclusion seems to be evident that in both cases we are measuring the time-response of photosynthesis, which is not influenced by stomatal reactions. After long dark-periods (60 min) the stomata are closed. After re-illumination the CO2 released by respiration is immediately reassimilated. There is a distinct lag-phase in time-response which is more or less located in the CO2-compensation point. This lag-phase is of different length for both leaf surfaces, and is interpreted as being the lag-phase of stomatal opening reactions. The consequence of the observed different time response of photosynthesis and stomatal reactions is discussed: under non-steady-state conditions photosynthesis is limited by slow stomatal opening reactions.  相似文献   

20.
Attached leaves of Zea mays were illuminated with monochromatic light, with either the upper or the lower epidermis facing the light source. The mesophyll absorbed between 99.5 and 99.6% of the red or blue light used. An inversion of the light direction therefore caused a 200- to 250-fold change in the quantum flux into each epidermis. This variation in quantum flux did not affect stomatal conductance. Stomatal conductance was however correlated with intercellular CO2 concentration, ci, and the relationship between stomatal conductance and ci appeared also to remain the same if changes in ci were brought about by changes in atmospheric CO2 concentration instead of light. A close inspection of the data showed that stomata of the upper (adaxial) epidermis exhibited a small increase in conductance (<0.1 cm s-1) in response to blue light that was superimposed on the dominating response to ci.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号