首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We perform the first multidisciplinary study of parasites from an extinct megafaunal clade using coprolites from the New Zealand moa (Aves: Dinornithiformes). Ancient DNA and microscopic analyses of 84 coprolites deposited by four moa species (South Island giant moa, Dinornis robustus; little bush moa, Anomalopteryx didiformis; heavy-footed moa, Pachyornis elephantopus; and upland moa, Megalapteryx didinus) reveal an array of gastrointestinal parasites including coccidians (Cryptosporidium and members of the suborder Eimeriorina), nematodes (Heterakoidea, Trichostrongylidae, Trichinellidae) and a trematode (Echinostomida). Parasite eggs were most prevalent and diverse in coprolites from lowland sites, where multiple sympatric moa species occurred and host density was therefore probably higher. Morphological and phylogenetic evidence supports a possible vicariant Gondwanan origin for some of the moa parasites. The discovery of apparently host-specific parasite taxa suggests paleoparasitological studies of megafauna coprolites may provide useful case-studies of coextinction.  相似文献   

2.
The moa (Dinornithiformes) are large to gigantic extinct terrestrial birds of New Zealand. Knowledge about niche partitioning, feeding mode and preference among moa species is limited, hampering palaeoecological reconstruction and evaluation of the impacts of their extinction on remnant native biota, or the viability of exotic species as proposed ecological ‘surrogates''. Here we apply three-dimensional finite-element analysis to compare the biomechanical performance of skulls from five of the six moa genera, and two extant ratites, to predict the range of moa feeding behaviours relative to each other and to living relatives. Mechanical performance during biting was compared using simulations of the birds clipping twigs based on muscle reconstruction of mummified moa remains. Other simulated food acquisition strategies included lateral shaking, pullback and dorsoventral movement of the skull. We found evidence for limited overlap in biomechanical performance between the extant emu (Dromaius novaehollandiae) and extinct upland moa (Megalapteryx didinus) based on similarities in mandibular stress distribution in two loading cases, but overall our findings suggest that moa species exploited their habitats in different ways, relative to both each other and extant ratites. The broad range of feeding strategies used by moa, as inferred from interspecific differences in biomechanical performance of the skull, provides insight into mechanisms that facilitated high diversities of these avian herbivores in prehistoric New Zealand.  相似文献   

3.
The extinct moa of New Zealand included three families (Megalapterygidae; Dinornithidae; Emeidae) of flightless palaeognath bird, ranging in mass from <15 kg to >200 kg. They are perceived to have evolved extremely robust leg bones, yet current estimates of body mass have very wide confidence intervals. Without reliable estimators of mass, the extent to which dinornithid and emeid hindlimbs were more robust than modern species remains unclear. Using the convex hull volumetric-based method on CT-scanned skeletons, we estimate the mass of a female Dinornis robustus (Dinornithidae) at 196 kg (range 155–245 kg) and of a female Pachyornis australis (Emeidae) as 50 kg (range 33–68 kg). Finite element analysis of CT-scanned femora and tibiotarsi of two moa and six species of modern palaeognath showed that P. australis experienced the lowest values for stress under all loading conditions, confirming it to be highly robust. In contrast, stress values in the femur of D. robustus were similar to those of modern flightless birds, whereas the tibiotarsus experienced the highest level of stress of any palaeognath. We consider that these two families of Dinornithiformes diverged in their biomechanical responses to selection for robustness and mobility, and exaggerated hindlimb strength was not the only successful evolutionary pathway.  相似文献   

4.
Flightless birds were once the largest and heaviest terrestrial fauna on many archipelagos around the world. Robust approaches for estimating their population parameters are essential for understanding prehistoric insular ecosystems and extinction processes. Body mass and population density are negatively related for extant flightless bird species, providing a method for quantifying densities and population sizes of extinct flightless species. Here we assemble an updated global data set of body mass and population densities for extant flightless birds and estimate the relationship between these variables. We use generalised least squares models that account for phylogenetic relatedness and incorporate the effects of limiting factors (e.g. habitat suitability) on population density. We demonstrate the applicability of this allometric relationship to extinct species by estimating densities for each of the nine species of moa (Dinornithiformes) and generating a combined spatially explicit map of total moa density across New Zealand. To compare our density estimates with those previously published, we summed individual species' abundances to generate a mean national density of 2.02–9.66 birds km−2 for low- and high-density scenarios, respectively. Our results reconcile the extreme bimodality of previous estimates (< 2 birds km−2 and > 10 birds km−2) and are comparable to contemporary densities of large herbivorous wild mammals introduced into New Zealand about 150 yr ago. The revised moa density has little effect on the harvest rates required to bring about extinction within 150–200 yr, indicating that rapid extinction was an inevitable response to human hunting, irrespective of the initial population of moa.  相似文献   

5.
Knowledge about the diet and ecology of extinct herbivores has important implications for understanding the evolution of plant defence structures, establishing the influences of herbivory on past plant community structure and composition, and identifying pollination and seed dispersal syndromes. The flightless ratite moa (Aves: Dinornithiformes) were New Zealand's largest herbivores prior to their extinction soon after initial human settlement. Here we contribute to the knowledge of moa diet and ecology by reporting the results of a multidisciplinary study of 35 coprolites from a subalpine cave (Euphrates Cave) on the South Island of New Zealand. Ancient DNA analysis and radiocarbon dating revealed the coprolites were deposited by the extinct upland moa (Megalapteryx didinus), and span from at least 6,368±31 until 694±30 (14)C years BP; the approximate time of their extinction. Using pollen, plant macrofossil, and ancient DNA analyses, we identified at least 67 plant taxa from the coprolites, including the first evidence that moa fed on the nectar-rich flowers of New Zealand flax (Phormium) and tree fuchsia (Fuchsia excorticata). The plant assemblage from the coprolites reflects a highly-generalist feeding ecology for upland moa, including browsing and grazing across the full range of locally available habitats (spanning southern beech (Nothofagus) forest to tussock (Chionochloa) grassland). Intact seeds in the coprolites indicate that upland moa may have been important dispersal agents for several plant taxa. Plant taxa with putative anti-browse adaptations were also identified in the coprolites. Clusters of coprolites (based on pollen assemblages, moa haplotypes, and radiocarbon dates), probably reflect specimens deposited at the same time by individual birds, and reveal the necessity of suitably large sample sizes in coprolite studies to overcome potential biases in diet interpretation.  相似文献   

6.
Recent investigations have suggested that some plants are aposematic. Our understanding of how aposematism varies through plant ontogeny, however, is incomplete. Furthermore, the potential for lower leaf surfaces to signal to vertebrate herbivores that are viewing leaves from below has not been investigated. Here, we investigate ontogenetic changes in leaf colour in Pseudopanax crassifolius (Araliaceae), a tree species that is endemic to New Zealand. We demonstrate that P. crassifolius produces lateral leaf spines that peak in size during the sapling stage of development. Spots of brightly coloured tissues on the upper leaf surfaces may be warning signals. The intensity of these signals, however, peaked at the seedling stage, providing a dishonest signal of defence. Conversely, signals on lower leaf surfaces peaked in the sapling stage, providing an honest defensive signal later in ontogeny. Lateral leaf spines and all potential warning colours were absent in adults, after they grow above the reach of the largest known native megaherbivores (moa – Aves: Dinornithiformes). Overall, these results suggest that aposematism may vary predictably through plant ontogeny in response to the changing perspective of herbivores as plants grow vertically.  相似文献   

7.
The presence of bone growth marks reflecting annual rhythms in the cortical bone of non-avian tetrapods is now established as a general phenomenon. In contrast, ornithurines (the theropod group including modern birds and their closest relatives) usually grow rapidly in less than a year, such that no annual rhythms are expressed in bone cortices, except scarce growth marks restricted to the outer cortical layer. So far, cyclical growth in modern birds has been restricted to the Eocene Diatryma, the extant parrot Amazona amazonica and the extinct New Zealand (NZ) moa (Dinornithidae). Here we show the presence of lines of arrested growth in the long bones of the living NZ kiwi (Apteryx spp., Apterygidae). Kiwis take 5–6 years to reach full adult body size, which indicates a delayed maturity and a slow reproductive cycle. Protracted growth probably evolved convergently in moa and kiwi sometime since the Middle Miocene, owing to the severe climatic cooling in the southwest Pacific and the absence of mammalian predators.  相似文献   

8.
We describe a minimally-invasive and reproducible method to measure canine pelvic limb muscle strength and muscle response to repeated eccentric contractions. The pelvic limb of an anesthetized dog is immobilized in a stereotactic frame to align the tibia at a right angle to the femur. Adhesive wrap affixes the paw to a pedal mounted on the shaft of a servomotor to measure torque. Percutaneous nerve stimulation activates pelvic limb muscles of the paw to either push (extend) or pull (flex) against the pedal to generate isometric torque. Percutaneous tibial nerve stimulation activates tibiotarsal extensor muscles. Repeated eccentric (lengthening) contractions are induced in the tibiotarsal flexor muscles by percutaneous peroneal nerve stimulation. The eccentric protocol consists of an initial isometric contraction followed by a forced stretch imposed by the servomotor. The rotation effectively lengthens the muscle while it contracts, e.g., an eccentric contraction. During stimulation flexor muscles are subjected to an 800 msec isometric and 200 msec eccentric contraction. This procedure is repeated every 5 sec. To avoid fatigue, 4 min rest follows every 10 contractions with a total of 30 contractions performed.Download video file.(57M, mov)  相似文献   

9.
The West African lungfish (Protopterus annectens) performs benthic, pelvic fin‐driven locomotion with gaits common to tetrapods, the sister group of the lungfishes. Features of P. annectens movement are similar to those of modern tetrapods and include use of the distal region of the pelvic fin as a “foot,” use of the fin to lift the body above the substrate and rotation of the fin around the joint with the pelvis. In contrast to these similarities in movement, the pelvic fins of P. annectens are long, slender structures that are superficially very different from tetrapod limbs. Here, we describe the musculoskeletal anatomy of the pelvis and pelvic fins of P. annectens with dissection, magnetic resonance imaging, histology and 3D‐reconstruction methods. We found that the pelvis is embedded in the hypaxial muscle by a median rostral and two dorsolateral skeletal projections. The protractor and retractor muscles at the base of the pelvic fin are fan‐shaped muscles that cup the femur. The skeletal elements of the fin are serially repeating cartilage cylinders. Along the length of the fin, repeating truncated cones of muscles, the musculus circumradialis pelvici, are separated by connective tissue sheets that connect the skeletal elements to the skin. The simplicity of the protractor and retractor muscles at the base of the fin is surprising, given the complex rotational movement those muscles generate. In contrast, the series of many repeating segmental muscles along the length of the fin is consistent with the dexterity of bending of the distal limb. P. annectens can provide a window into soft‐tissue anatomy and sarcopterygian fish fin function that complements the fossil data from related taxa. This work, combined with previous behavioral examination of P. annectens, illustrates that fin morphologies that do not appear to be capable of walking can accomplish that function, and may inform the interpretation of fossil anatomical evidence. J. Morphol. 275:431–441, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

10.
We present the first set of microsatellite markers developed exclusively for an extinct taxon. Microsatellite data have been analysed in thousands of genetic studies on extant species but the technology can be problematic when applied to low copy number (LCN) DNA. It is therefore rarely used on substrates more than a few decades old. Now, with the primers and protocols presented here, microsatellite markers are available to study the extinct New Zealand moa (Aves: Dinornithiformes) and, as with single nucleotide polymorphism (SNP) technology, the markers represent a means by which the field of ancient DNA can (preservation allowing) move on from its reliance on mitochondrial DNA. Candidate markers were identified using high throughput sequencing technology (GS-FLX) on DNA extracted from fossil moa bone and eggshell. From the 'shotgun' reads, >60 primer pairs were designed and tested on DNA from bones of the South Island giant moa (Dinornis robustus). Six polymorphic loci were characterised and used to assess measures of genetic diversity. Because of low template numbers, typical of ancient DNA, allelic dropout was observed in 36-70% of the PCR reactions at each microsatellite marker. However, a comprehensive survey of allelic dropout, combined with supporting quantitative PCR data, allowed us to establish a set of criteria that maximised data fidelity. Finally, we demonstrated the viability of the primers and the protocols, by compiling a full Dinornis microsatellite dataset representing fossils of c. 600-5000 years of age. A multi-locus genotype was obtained from 74 individuals (84% success rate), and the data showed no signs of being compromised by allelic dropout. The methodology presented here provides a framework by which to generate and evaluate microsatellite data from samples of much greater antiquity than attempted before, and opens new opportunities for ancient DNA research.  相似文献   

11.
Feathers are known to contain amplifiable DNA at their base (calamus) and have provided an important genetic source from museum specimens. However, feathers in subfossil deposits generally only preserve the upper shaft and feather ‘vane’ which are thought to be unsuitable for DNA analysis. We analyse subfossil moa feathers from Holocene New Zealand rockshelter sites and demonstrate that both ancient DNA and plumage information can be recovered from their upper portion, allowing species identification and a means to reconstruct the appearance of extinct taxa. These ancient DNA sequences indicate that the distal portions of feathers are an untapped resource for studies of museum, palaeontological and modern specimens. We investigate the potential to reconstruct the plumage of pre-historically extinct avian taxa using subfossil remains, rather than assuming morphological uniformity with closely related extant taxa. To test the notion of colour persistence in subfossil feathers, we perform digital comparisons of feathers of the red-crowned parakeet (Cyanoramphus novaezelandiae novaezelandiae) excavated from the same horizons as the moa feathers, with modern samples. The results suggest that the coloration of the moa feathers is authentic, and computer software is used to perform plumage reconstructions of moa based on subfossil remains.  相似文献   

12.
Women with pregnancy-related pelvic girdle pain (PPP), or athletes with groin pain, may have trouble with the active straight leg raise (ASLR), for which a pelvic belt can be beneficial. How the problems emerge, or how the belt works, remains insufficiently understood. We assessed muscle activity during ASLR, and how it changes with a pelvic belt. Healthy nulligravidae (N=17) performed the ASLR, and walked on a treadmill at increasing speeds, without and with a belt. Fine-wire electromyography (EMG) was used to record activity of the mm. psoas, iliacus and transversus abdominis, while other hip and trunk muscles were recorded with surface EMG. In ASLR, all muscles were active. In both tasks, transverse and oblique abdominal muscles were less active with the belt. In ASLR, there was more activity of the contralateral m. biceps femoris, and in treadmill walking of the m. gluteus maximus in conditions with a belt. For our interpretation, we take our starting point in the fact that hip flexors exert a forward rotating torque on the ilium. Apparently, the abdominal wall was active to prevent such forward rotation. If transverse and oblique abdominal muscles press the ilia against the sacrum (Snijders’ “force closure”), the pelvis may move as one unit in the sagittal plane, and also contralateral hip extensor activity will stabilize the ipsilateral ilium. The fact that transverse and oblique abdominal muscles were less active in conditions with a pelvic belt suggests that the belt provides such “force closure”, thus confirming Snijders’ theory.  相似文献   

13.
The pelvis ofPlateosaurus is examined from a biomechanical point of view. The shape of the acetabulum in particular is analysed in order to determine the range of possible directions of the forces exchanged between femur and pelvis. These forces must have been more or less confined to a sagittal plane. From a quasi-static analysis under consideration of the major hip muscles ofPlateosaurus, a nearly but not fully extended posture of the hindlimbs can be deduced. The hip joints ofPlateosaurus and probably of some other dinosaurs with a narrow biacetabular width were balanced rather by adducting than by abducting muscles.  相似文献   

14.

Background

Pelvic reconstruction after hemipelvectomy can greatly improve the weight-bearing stability of the supporting skeleton and improve patients’ quality of life. Although an autograft can be used to reconstruct pelvic defects, the most suitable choice of autograft, i.e., the use of either femur or tibia, has not been determined. We aimed to analyze the mechanical stresses of a pelvic ring reconstructed using femur or tibia after hemipelvectomy using finite element (FE) analysis.

Methods

FE models of normal and reconstructed pelvis were established based on computed tomography images, and the stress distributions were analyzed under physiological loading from 0 to 500 N in both intact and restored pelvic models using femur or tibia.

Results

The vertical displacement of the intact pelvis was less than that of reconstructed pelvis, but there was no significant difference between the two reconstructed models. In FE analysis, the stress distribution of the intact pelvic model was bilaterally symmetric and the maximum stresses were located at the sacroiliac joint, arcuate line, ischiatic ramus, and ischial tuberosity. The maximum stress in each part of the reconstructed pelvis greatly exceeded that of the intact model. The maximum von Mises stress of the femur was 13.9 MPa, and that of the tibia was 6.41 MPa. However, the stress distribution was different in the two types of reconstructed pelvises. The tibial reconstruction model induced concentrated stress on the tibia shaft making it more vulnerable to fracture. The maximum stress on the femur was concentrated on the connections between the femur and the screws.

Conclusions

From a biomechanical point of view, the reconstruction of hemipelvic defects with femur is a better choice.  相似文献   

15.
Previous in-vivo studies suggest that the ratio of total lumbar rotation over pelvic rotation (lumbo-pelvic rhythm) during trunk sagittal movement is essential to evaluate spinal loads and discriminate between low back pain and asymptomatic population. Similarly, there is also evidence that the lumbo-pelvic rhythm is key for evaluation of realistic muscle and joint reaction forces and moments predicted by various computational musculoskeletal models. This study investigated the effects of three lumbo-pelvic rhythms defined based on in-vivo measurements on the spinal response during moderate forward flexion (60°) using a combined approach of musculoskeletal modeling of the upper body and finite element model of the lumbosacral spine. The muscle forces and joint loads predicted by the musculoskeletal model, together with the gravitational forces, were applied to the finite element model to compute the disc force and moment, intradiscal pressure, annular fibers strain, and load-sharing. The results revealed that a rhythm with high pelvic rotation and low lumbar flexion involves more global muscles and increases the role of the disc in resisting spinal loads, while its counterpart, with low pelvic rotation, recruits more local muscles and engages the ligaments to lower the disc loads. On the other hand, a normal rhythm that has balanced pelvic and lumbar rotations yields almost equal disc and ligament load-sharing and results in more balanced synergy between global and local muscles. The lumbo-pelvic rhythm has less effect on the intradiscal pressure and annular fibers strain. This work demonstrated that the spinal response during forward flexion is highly dependent on the lumbo-pelvic rhythm. It is therefore, essential to adapt this parameter instead of using the default values in musculoskeletal models for accurate prediction of muscle forces and joint reaction forces and moments. The findings provided by this work are expected to improve knowledge of spinal response during forward flexion, and are clinically relevant towards low back pain treatment and disc injury prevention.  相似文献   

16.
It is 150 years since Sir Richard Owen announced the former existence of large flightless ostrich-like birds in New Zealand based on a fragment of femur presented to him in England. Numerous studies of this extinct group of giant birds, now known by the Polynesian (plural) name ‘moa’, have provided much information about their effects on the flora, their recent extinction, and the evolutionary history of New Zealand and its endemic biota. Significant revision of moa taxonomy and ecology continues, and recent molecular phylogenetic analyses have stimulated new hypotheses about moa evolution.  相似文献   

17.
Emus provide an excellent opportunity for studying sustained high-speed running by a bird. Their pelvic limb musculature is described in detail and morphological features characteristic of a cursorial lifestyle are identified. Several anatomical features of the pelvic limb reflect the emus' ability for sustained running at high speeds: (1) emus have a reduced number of toes and associated muscles, (2) emus are unique among birds in having a M. gastrocnemius, the most powerful muscle in the shank, that has four muscle bellies, not the usual three, and (3) contribution to total body mass of the pelvic limb muscles of emus is similar to that of the flight muscles of flying birds, whereas the pelvic limb muscles of flying birds constitute a much smaller proportion of total body mass. Generally, the pelvic limb musculature of emus resembles that of other ratites with the notable exception of M. gastrocnemius. The presence and arrangement of four muscle bellies may increase the effectiveness of M. gastrocnemius and other muscles during cursorial locomotion by moving the limb in a cranio-caudal rather than a latero-medial plane. J. Morphol. 238:23–37, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

18.
《Journal of morphology》2017,278(9):1229-1240
Most suction‐feeding, aquatic vertebrates create suction by rapidly enlarging the oral cavity and pharynx. Forceful enlargement of the pharynx is powered by longitudinal muscles that retract skeletal elements of the hyoid, more caudal branchial arches, and, in many fish, the pectoral girdle. This arrangement was thought to characterize all suction‐feeding vertebrates. However, it does not exist in the permanently aquatic, tongueless Pipa pipa , an Amazonian frog that can catch fish. Correlating high‐speed (250 and 500 fps) video records with anatomical analysis and functional tests shows that fundamental features of tetrapod body design are altered to allow P. pipa to suction‐feed. In P. pipa , the hyoid apparatus is not connected to the skull and is enclosed by the pectoral girdle. The major retractor of the hyoid apparatus arises not from the pectoral girdle but from the femur, which lies largely within the soft tissue boundaries of the trunk. Retraction of the hyoid is coupled with expansion of the anterior trunk, which occurs when the hypertrophied ventral pectoral elements are depressed and the urostyle and sacral vertebra are protracted and slide forward on the pelvic girdle, thereby elongating the entire trunk. We suggest that a single, robust pair of muscles adduct the cleithra to depress the ventral pectoral elements with force, while modified tail muscles slide the axial skeleton cranially on the pelvic girdle. Combined hyoid retraction, axial protraction, and pectoral depression expand the buccopharyngeal cavity to a volume potentially equal to that of the entire resting body of the frog. Pipa may be the only tetrapod vertebrate clade that enlarges its entire trunk during suction‐feeding.  相似文献   

19.
This study investigated the effects of pelvic suspension and slaughter age on longissimus thoracis et lumborum (LTL) from 40 heifers with at least 75% Angus breeding. A total of 20 heifers were slaughtered directly from pasture at 18 months of age, and carcass sides were hung either by the Achilles tendon or the pelvic bone. The other 20 heifers were assigned to an additional winter housing period and slaughtered at 22 months of age; carcass sides were hung only by Achilles suspension. All carcasses were electrically stimulated and assessed according to the EUROP carcass classification system. In addition, the LTL muscles were aged for 7 or 14 days before meat quality was evaluated for intramuscular fat (IMF), drip loss, colour, shear force, compression and sensory analysis. The 22-month-old heifers were heavier, fatter and had more IMF than 18-month-old heifers. Conformation scores (muscling) did not differ between the two slaughter groups. Pelvic suspension reduced both between- and within-animal variation for peak force, total energy and compression peak force. For the 18-month-old heifers, pelvic suspension also decreased peak force, total energy and compression variables for the LTL muscles from both ageing periods, whereas Achilles-suspended samples had lower shear force values only at day 14. Sensory analysis showed that pelvic-suspended sides had greater tenderness, lower bite resistance, less threadiness, higher juiciness and meat flavour and less visible marbling than meat from Achilles-suspended sides. Pelvic-suspended sides at 18 months of age were similar in peak force and total energy values to the 22-month-old heifers. The importance of ageing the Achilles-suspended sides was more obvious for samples from 18-month-old heifers than from the 22-month-old animals. The correlations between the different instrumental measurements and sensory tenderness were considerably higher for carcasses suspended by the Achilles tendon (r = −0.55 to 0.20) than for those hung by the pelvic bone (r = −0.25 to 0.19). More correlations between sensory-evaluated tenderness and shear variables were significant after 7 days (n = 6) of ageing than after 14 days (n = 4) of ageing. This study clearly shows the benefits of pelvic suspension, which reduces the need for additional feeding after pasture.  相似文献   

20.
By analysing ancient DNA (aDNA) from 74 14C-dated individuals of the extinct South Island giant moa (Dinornis robustus) of New Zealand, we identified four dyads of closely related adult females. Although our total sample included bones from four fossil deposits located within a 10 km radius, these eight individuals had all been excavated from the same locality. Indications of kinship were based on high pairwise genetic relatedness (rXY) in six microsatellite markers genotyped from aDNA, coupled with overlapping radiocarbon ages. The observed rXY values in the four dyads exceeded a conservative cutoff value for potential relatives obtained from simulated data. In three of the four dyads, the kinship was further supported by observing shared and rare mitochondrial haplotypes. Simulations demonstrated that the proportion of observed dyads above the cutoff value was at least 20 times higher than expected in a randomly mating population with temporal sampling, also when introducing population structure in the simulations. We conclude that the results must reflect social structure in the moa population and we discuss the implications for future aDNA research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号