首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
The expression of proteins in transgenic plants offers an elegant means to examine targeting signals used for transport to intracellular sites of accumulation. We have used electron microscopic immunogold procedures to localize several different storage proteins and lectins expressed in transgenic tobacco seeds. The objective of these studies is to characterize targeting signals which permit translocation and accumulation in protein storage vacuoles (protein bodies). Vacuolar proteins such as phaseolin and phytohemagglutinin (PHA) are correctly transported to the protein storage vacuoles of transgenic tobacco seeds. Site-directed mutagenesis was used to change Asn-linked glycosylation sites of PHA. Minus glycan PHA was accumulated in the protein storage vacuoles indicating that glycans do not confer targeting information. Zein the non-vacuolar storage protein of maize accumulates in the protein storage vacuoles indicating that deposition occurs in some proteins which may lack vacuolar targeting signals.  相似文献   

2.
Zeins are seed storage proteins that form accretions called protein bodies in the rough endoplasmic reticulum of maize endosperm cells. Four types of zeins, alpha, beta, gamma, and delta, aggregate in a distinctive spatial pattern within the protein body. We created transgenic tobacco plants expressing alpha-zein, gamma-zein, or both to examine the interactions between these proteins leading to the formation of protein bodies in the endosperm. Whereas gamma-zein accumulated in seeds of these plants, stable accumulation of alpha-zein required simultaneous synthesis of gamma-zein. The zein proteins formed accretions in the endoplasmic reticulum similar to those in maize endosperm. Protein bodies were also found in protein storage vacuoles. The accumulation of both types of zeins peaked early in development and declined during maturation. Even in the presence of gamma-zein, there was a turnover of alpha-zein, suggesting that the interaction between the two proteins might be transitory. We suggest that gamma-zein plays an important role in protein body formation and demonstrate the utility of tobacco for studying interactions between different zeins.  相似文献   

3.
本文对拟南芥菜(Arabidopsis thaliana)种子发育过程中贮藏蛋白的积累和蛋白体的形成进行了超微结构和免疫电镜定位的研究。常规超薄切片的电镜观察表明,在开花后第10天(10 DAF),高电子密度的蛋白质物质开始在子叶细胞的液泡中沉积。这一过程一直延续到种子接近成熟(14 DAF),这时液泡中充满了蛋白质物质,转变成为大的蛋白体。利用了该种植物主要种子贮藏蛋白之一的12 s球蛋白的单克隆抗体作为免疫探针,以蛋白质A-胶体金电镜技术对12 s种子蛋白进行了细胞内定位,证实了在液泡中积累的物质为种子贮藏蛋白。实验结果表明在拟南芥菜中,子叶细胞中的液泡是蛋白体的前体,肯定了蛋白体的发生起源于液泡的观点。本文还对应用胶体金电镜技术进行细胞内定位的某些问题作了初步探讨。  相似文献   

4.
One of the main seed storage proteins of Norway spruce ( Picea abies ), is a salt-soluble protein with an average molecular mass of 42 kDa. This protein was localized by immunocytochemical methods in ultrathin sections of megagametophytes active in storage protein synthesis, as analyzed by SDS-PAGE. The megagametophyte in spruce starts accumulating storage materials, proteins and lipids, as the young embryo grows into the gametophytic tissue. It then continues to accumulate these storage products throughout seed development (Hakman 1993). Megagametophytes at an early stage of storage protein accumulation were chosen in this study for analysing the likely transport pathway of the proteins, since only a small amount of lipid had yet accumulated in the cells, and cell organelles were still easy to distinguish. An antibody against the 42 kDa storage protein showed very good reactivity with the 42 kDa protein in immunoblot experiments with total protein extracts from megagametophytes and embryos. In ultrathin sections of the megagametophyte, the antibodies were preferentially localized in the lumen of Golgi cisterna, in Golgi-associated vesicles, protein deposits close to the vacuolar membrane and in protein storage vacuoles (protein bodies). These observations indicate that the transport is mediated by the Golgi apparatus.
Also, proteins present in storage vacuoles in mature zygotic and somatic embryos showed intense labelling with these antibodies in ultrathin sections.  相似文献   

5.
Storage proteins of wheat grains (Triticum L. em Thell) are deposited in protein bodies inside vacuoles. However, the subcellular sites and mechanisms of their aggregation into protein bodies are not clear. In the present report, we provide evidence for two different types of protein bodies, low- and high-density types that accumulate concurrently and independently in developing wheat endosperm cells. Gliadins were present in both types of protein bodies, whereas the high molecular weight glutenins were localized mainly in the dense ones. Pulse-chase experiments verified that the dense protein bodies were not formed by a gradual increase in density but, presumably, by a distinct, quick process of storage protein aggregation. Subcellular fractionation and electron microscopy studies revealed that the wheat homolog of immunoglobulin heavy-chain-binding protein, an endoplasmic reticulum-resident protein, was present within the dense protein bodies, implying that these were formed by aggregation of storage proteins within the endoplasmic reticulum. The present results suggest that a large part of wheat storage proteins aggregate into protein bodies within the rough endoplasmic reticulum. Because these protein bodies are too large to enter the Golgi, they are likely to be transported directly to vacuoles. This route may operate in concert with the known Golgi-mediated transport to vacuoles in which the storage proteins apparently condense into protein bodies at a postendoplasmic reticulum location. Our results further suggest that although gliadins are transported by either one of these routes, the high molecular weight glutenins use only the Golgi bypass route.  相似文献   

6.
Following their sequestration into the endoplasmic reticulum (ER), wheat storage proteins may either be retained and packaged into protein bodies within this organelle or transported via the Golgi to vacuoles. We attempted to study the processes of transport and packaging of wheat storage proteins using the heterologous expression system of yeast. A wild-type wheat [gamma]-gliadin, expressed in the yeast cells, accumulated mostly within the ER and was deposited in protein bodies with similar density to natural protein bodies from wheat endosperm. This suggested that wheat storage proteins contain sufficient information to initiate the formation of protein bodies in the ER of a heterologous system. Only a small amount of the [gamma]-gliadin was transported to the yeast vacuoles. When a deletion mutant of the [gamma]-gliadin, lacking the entire N-terminal repetitive region, was expressed in the yeast cells, the mutant was unable to initiate the formation of protein bodies within the ER and was completely transported to the yeast vacuole. This strongly indicated that the information for packaging into dense protein bodies within the ER resides in the N-terminal repetitive region of the [gamma]-gliadin. The advantage of using yeast to identify the signals and mechanisms controlling the transport of wheat storage proteins and their deposition in protein bodies is discussed.  相似文献   

7.
R. Bergfeld  T. Kühnl  P. Schopfer 《Planta》1980,148(2):146-156
An electron microscopic investigation of fine structural changes in post-meristematic cotyledon mesophyll cells during the period of storage protein accumulation (16–32 d after pollination) showed that the rough ER, the Golgi apparatus and the developing vacuome are intimately involved in the formation of storage protein bodies (aleurone bodies). At the onset of storage protein accumulation (16–18 d after pollination) storage protein-like material appears within Golgi vesicles and preformed vacuoles. At a later stage (24 d after pollination) similar material can also be detected within vesicles formed directly by the rough endoplasmic reticulum (ER). It is concluded that there are two routes for storage protein transport from its site of synthesis at the ER to its site of accumulation in the vacuome. The first route involves the participation of dictyosomes while the second route bypasses the Golgi apparatus. It appears that the normal pathways of membrane flow in the development of central vacuoles in post-meristematic cells are used to deposit the storage protein within the protein bodies. Thus, the protein body can be regarded as a transient stage in the process of vacuome development of these storage cells.Abbreviation ER endoplasmic reticulum  相似文献   

8.
Plant seeds store nitrogen by accumulating storage proteins in protein bodies within various compartments of the endomembrane system. The prolamin storage proteins of some cereal species are normally retained and assembled into protein bodies within the ER. Yet, these proteins lack a C-terminal KDEL/HDEL signal, suggesting that their retention is regulated by novel mechanisms. Furthermore, in other cereal species, such protein bodies formed within the ER may be subsequently internalized into vacuoles by a special route that does not utilize the Golgi complex. Thus, studies of the routing of seed storage proteins are revealing novel mechanisms of protein assembly and transport in the endomembrane system.  相似文献   

9.
T Sasaki 《Histochemistry》1984,80(3):263-268
Using horseradish peroxidase (HRP) as a soluble protein tracer, electron microscopic studies were carried out in order to analyze endocytosis in the ruffle-ended ameloblasts of rat incisors. Accumulated HRP was initially incorporated from the ruffled border into the cytoplasm by means of pinocytic vacuoles ( pinosomes ) and pinocytotic coated vesicles. The majority of the HRP was taken up by the large number of pinosomes , which then formed large endocytotic vacuoles by fusing either with each other or with preexisting endocytotic vacuoles. As time passed HRP accumulated, not in the pinosomes and ruffled border but in the endocytotic vacuoles and multivesicular bodies. Frequent connections between HRP-labeled coated vesicles and these cytoplasmic bodies indicate that these vesicles serve as an HRP carrier. These findings strongly suggest that ruffle-ended ameloblasts actively absorb soluble proteins from the enamel matrix during enamel maturation.  相似文献   

10.
Summary Using horseradish peroxidase (HRP) as a soluble protein tracer, electron microscopic studies were carried out in order to analyze endocytosis in the ruffle-ended ameloblasts of rat incisors. Accumulated HRP was initially incorporated from the ruffled border into the cytoplasm by means of pinocytotic vacuoles (pinosomes) and pinocytotic coated vesicles. The majority of the HRP was taken up by the large number of pinosomes, which then formed large endocytotic vacuoles by fusing either with each other or with preexisting endocytotic vacuoles. As time passed HRP accumulated, not in the pinosomes and ruffled border but in the endocytotic vacuoles and multivesicular bodies. Frequent connections between HRP-labeled coated vesicles and these cytoplasmic bodies indicate that these vesicles serve as an HRP carrier. These findings strongly suggest that ruffle-ended ameloblasts actively absorb soluble proteins from the enamel matrix during enamel maturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号